
Algèbre Linéaire

Sacha Friedli (CMS, EPFL)
et

Stanislas Herscovich (CAPE, EPFL)

S(∗)

Table des matières

I Préface vi
I.1 À propos de ce cours . vi
I.2 Nouvelle version . vi
I.3 Références bibliographiques . vi
I.4 Notation . vii

1 Systèmes d’équations linéaires 1
1.1 Introduction . 1

1.1.1 Description générale . 1
1.1.2 Motivation : Trafic routier . 1

1.2 Définition et exemples . 3
1.2.1 Définition d’un système d’équations linéaires . 3
1.2.2 Résolution d’un système d’équations linéaires . 3

1.3 Sur le nombre de solutions d’un système linéaire . 4
1.3.1 Interprétation géométrique dans le cas n = 2 . 5
1.3.2 Interprétation géométrique dans le cas n = 3 . 6

1.4 Transformer un système en un autre . 8
1.4.1 Un idéal : les systèmes triangulaires . 9
1.4.2 Opérations élémentaires . 10

1.5 Matrices et algorithme de Gauss . 13
1.5.1 Algorithme de Gauss-Jordan . 13
1.5.2 Matrices associées à un système . 13
1.5.3 Opérations élémentaires sur les matrices . 14
1.5.4 Matrices échelonnées . 14
1.5.5 La forme échelonnée réduite de Gauss . 18

1.6 Résumé du chapitre sur les systèmes d’équations linéaires . 19

2 Vecteurs de Rn 21
2.1 Définitions . 21

2.1.1 Vecteurs . 21
2.1.2 Addition et multiplication par des scalaires . 22

2.2 Colinéarité . 25
2.3 Combinaisons linéaires et parties engendrés . 26

2.3.1 Parties engendrées . 28
2.3.2 La base canonique de Rn . 29

2.4 Indépendance linéaire . 30
2.4.1 Motivation : une caractérisation de la non-colinéarité 30
2.4.2 Définition et propriétés . 31

2.5 Résumé du chapitre sur les vecteurs de Rn . 33

3 Formulation vectorielle des systèmes d’équations linéaires 35
3.1 Systèmes d’équations linéaires : formulation vectorielle . 35

i

Table des matières

3.1.1 Description générale . 35
3.1.2 La formulation vectorielle . 35

3.2 Sur le nombre de solutions d’un système d’équations linéaires (bis) 39
3.3 Systèmes d’équations linéaires homogènes et inhomogènes . 40

3.3.1 Solutions des systèmes homogènes . 40
3.3.2 Systèmes homogènes et indépendance linéaire . 42
3.3.3 Solutions des systèmes d’équations linéaires inhomogènes 43

3.4 Applications linéaires entre Rn et Rm : introduction . 45
3.4.1 Applications : le point de vue général . 45
3.4.2 Définition de la linéarité . 46

3.5 Matrice d’une application linéaire entre Rn et Rm . 48
3.5.1 Résultat principal . 48
3.5.2 Pour la suite... 50

3.6 Résumé du chapitre sur la formulation vectorielle des systèmes d’équations linéaires 50

4 Définitions abstraites I : espaces vectoriels, sous-espaces vectoriels et applications linéaires entre
espaces vectoriels 52
4.1 Motivation . 52
4.2 Définition et exemples . 53

4.2.1 Espaces Rn . 54
4.2.2 Espaces de fonctions . 54
4.2.3 Espaces de polynômes . 56
4.2.4 Espace des matrices . 57
4.2.5 Autres exemples . 57

4.3 Colinéarité et indépendance linéaire . 58
4.3.1 Colinéarité . 58
4.3.2 Combinaisons linéaires et indépendance linéaire . 58

4.4 Sous-espaces vectoriels . 60
4.5 Applications linéaires . 64

4.5.1 Généralités sur les applications . 65
4.5.2 Définition d’application linéaire . 67
4.5.3 Noyau d’une application linéaire . 69
4.5.4 Applications linéaires de Rn dans Rm injectives, surjectives et bijectives 70

4.6 Transformations géométriques⋆ . 75
4.6.1 Projection sur un axe de R2 . 75
4.6.2 Réflexion à travers un axe de R2 . 77
4.6.3 Rotation d’angle θ autour de l’origine dans R2 . 79

4.7 Résumé du chapitre sur les espaces vectoriels, les sous-espaces vectoriels et les applications
linéaires . 80

5 Les opérations matricielles 82
5.1 Introduction . 82
5.2 Produit matriciel . 82
5.3 Transposition . 85

5.3.1 Définition générale . 85
5.3.2 Transposition de vecteurs . 86

5.4 Propriétés du produit et de la transposition de matrices . 87
5.5 Inversion de matrices : définition et propriétés de base . 88

5.5.1 Motivation . 88
5.5.2 Définition et propriétés . 89
5.5.3 Une application : inversion et résolution de systèmes de taille n ×n 91

ii NumChap: claudia, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

botafogo.saitis.net

Table des matières

5.6 Inversion de matrices carrées de taille 2×2 . 92
5.7 Inversion de matrices carrées de taille n ×n : matrices élémentaires et algorithme de Gauss-

Jordan . 94
5.7.1 Introduction . 94
5.7.2 Matrices élémentaires . 94
5.7.3 L’algorithme . 99

5.8 Résumé du chapitre sur les opérations matricielles . 101

6 Déterminant 104
6.1 Introduction . 104
6.2 Déterminant des matrices de taille 2×2 revisité . 104

6.2.1 Propriétés algébriques du déterminant des matrices de taille 2×2 104
6.2.2 L’interprétation géométrique du déterminant des matrices de taille 2×2 106

6.3 Déterminant des matrices de taille n ×n . 108
6.3.1 La définition récursive du déterminant . 108
6.3.2 Une caractérisation du déterminant à partir de ses propriétés algébriques⋆ 109

6.4 Propriétés du déterminant . 111
6.4.1 Le calcul du déterminant à partir des propriétés . 111
6.4.2 Propriétés du déterminant . 113
6.4.3 Une curiosité dans le cas n = 3 . 116

6.5 Interprétation géométrique du déterminant de matrices de taille 3×3 117
6.6 La formule det(AB) = det(A)det(B) . 117

6.6.1 Déterminant et inversibilité . 118
6.6.2 Le déterminant de l’inverse . 119
6.6.3 Le déterminant comme invariant de similitude . 120

6.7 Critères d’inversibilité de matrices carrées . 120
6.7.1 Le résultat . 120
6.7.2 Une application : une simplification de la définition d’inversibilité 121

6.8 Formule de Cramer et conséquences⋆ . 122
6.8.1 Résolution de systèmes d’équations linéaires par déterminants 122
6.8.2 Une application intéressante : formule pour A−1 . 124

6.9 Résumé du chapitre sur le déterminant . 126

7 Définitions abstraites II : bases, dimension et théorème du rang 129
7.1 Introduction . 129
7.2 Bases . 129

7.2.1 Définition et exemples . 129
7.2.2 Extraire une base d’une famille génératrice . 132

7.3 Dimension . 133
7.3.1 La notion fondamentale de dimension . 133
7.3.2 Complétion d’une famille libre en une base . 135

7.4 Lien entre familles libres, familles génératrices et applications linéaires 136
7.5 Une base pour Ker(A) . 137
7.6 Une base pour Img(A) . 139

7.6.1 Extraire une base des colonnes . 139
7.6.2 Une méthode pour identifier les colonnes retirables . 140

7.7 Le Théorème du Rang . 143
7.7.1 Le théorème du rang pour des applications linéaires . 143
7.7.2 Une version alternative du Théorème du Rang : le cas des matrices 144
7.7.3 Une application : l’espace engendré par les lignes d’une matrice 146

7.8 Résumé du chapitre sur les bases, la dimension et le Théorème du Rang 147

NumChap: claudia, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) iii

botafogo.saitis.net

Table des matières

8 Représentations en coordonnées et matricielles 150
8.1 Introduction . 150
8.2 Coordonnées d’un vecteur relatives à une base . 151
8.3 Représentation matricielle d’une application linéaire relative à deux bases 153
8.4 Les matrices de passage . 159

8.4.1 Motivation . 159
8.4.2 La définition de matrice de passage . 161

8.5 Formule de changement de base . 165
8.5.1 Changement de base dans le cas général T : V →V ′ . 165
8.5.2 Changement de base dans le cas T : V →V . 166

8.6 Exemples . 167
8.7 Résumé du chapitre sur les coordonnées et les représentations matricielles 170

9 Valeurs et vecteurs propres 172
9.1 Motivation . 172
9.2 Définitions de valeur propre, de vecteur propre et d’espace propre 173

9.2.1 Espace propre . 176
9.2.2 Matrices inversibles et la valeur propre nulle . 178

9.3 Le polynôme caractéristique . 178
9.3.1 Recherche de vecteurs et valeurs propres . 179
9.3.2 Le polynôme caractéristique est un invariant de similitude 180

9.4 Multiplicités algébriques et géométriques . 181
9.5 Résumé du chapitre sur les valeurs et vecteurs propres . 184

10 Diagonalisation 185
10.1 Motivation et définition . 185

10.1.1 Un idéal : les matrices diagonales . 185
10.1.2 Objectif . 186
10.1.3 Diagonaliser une application dans le plan . 186
10.1.4 Définition générale de la diagonalisabilité . 188

10.2 Vecteurs propres associés à des valeurs propres distinctes . 188
10.3 Critère de base . 189
10.4 Deuxième critère . 192
10.5 Puissances de matrices diagonalisables . 194
10.6 Diagonalisation dans le cas complexe⋆ . 199
10.7 Résumé du chapitre sur la diagonalisation . 201

11 Produit scalaire et orthogonalité 203
11.1 Introduction . 203
11.2 Norme et distance euclidiennes . 204
11.3 Produit scalaire euclidien . 206

11.3.1 Définition et propriétés fondamentales . 206
11.3.2 Orthogonalité . 207

11.4 Définition abstraite de produit scalaire et exemples . 211
11.4.1 Définitions générales . 211
11.4.2 Structure euclidienne sur les espaces de fonctions⋆ . 213

11.5 À propos de Col(A) et Lgn(A) . 214
11.6 Familles orthogonales . 215
11.7 Projection sur un vecteur . 218
11.8 Projection sur un sous-espace vectoriel . 220

11.8.1 Motivation : projection sur un plan de R3 . 220

iv NumChap: claudia, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

botafogo.saitis.net

Table des matières

11.8.2 Cas général . 222
11.8.3 Cas où W est décrit par une base orthogonale . 222
11.8.4 Cas où W est décrit par une base orthonormée . 224

11.9 Le procédé d’orthogonalisationet d’orthonormalisation de Gram-Schmidt 226
11.9.1 L’idée, sur un exemple où dim(W) = 2 . 227
11.9.2 Cas général . 228
11.9.3 Propriété d’unicité de la base orthonormée obtenue par le procédé de Gram-Schmidt⋆231

11.10 La décomposition QR . 232
11.10.1 Cas général . 232
11.10.2 Lorsque les colonnes de A sont indépendantes . 235

11.11 Résumé du chapitre sur le produit scalaire et l’orthogonalité 237

12 La méthode des moindres carrés 240
12.1 Introduction . 240

12.1.1 Description générale . 240
12.1.2 Motivation : Celsius vs Fahrenheit? . 240

12.2 Méthode générale . 244
12.2.1 Généralités . 244
12.2.2 L’équation normale . 245
12.2.3 Droite de régression . 248

12.3 Utilisation de la décomposition QR . 250
12.4 Résumé du chapitre sur la méthode des moindres carrés . 251

13 Diagonalisation de matrices symétriques via matrices orthogonales 252
13.1 Introduction . 252
13.2 Rappel sur les matrices symétriques et orthogonales . 252
13.3 Sur les espaces propres d’une matrice symétrique . 253
13.4 Théorème de décomposition spectrale . 256

13.4.1 Le Théorème Spectral . 256
13.4.2 Décomposition spectrale . 259

13.5 Résumé du chapitre sur la diagonalisation de matrices symétriques via matrices orthogonales262

14 La décomposition en valeurs singulières 263
14.1 Introduction . 263

14.1.1 Le résultat . 263
14.1.2 Structure . 264
14.1.3 Matrices définies par blocs . 266
14.1.4 Le polynôme caractéristique de AB et B A⋆ . 266

14.2 Existence . 267
14.2.1 Les matrices AT A et A AT . 268
14.2.2 Preuve du théorème : . 270

14.3 Exemples . 273
14.4 Représentation d’une matrice suite sa décomposition en valeurs singulières⋆ 279

14.4.1 Le résultat principal . 279
14.4.2 Approximation optimale par une matrice de rang fixé 280

14.5 Élongations et ellipsoïdes⋆ . 281
14.6 Résumé du chapitre sur la décomposition en valeurs singulières 284

NumChap: claudia, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) v

botafogo.saitis.net

Chapitre I

Préface

I.1 À propos de ce cours

“For deep learning, it is linear algebra that matters the most. ”

Gilbert Strang, Linear algebra and learning from data

Ce polycopié, qui est en construction, contient l’essentiel de mon cours d’algèbre linéaire, donné aux étu-
diant.e.s des sections de Génie Civil, Génie Électrique, et Sciences de l’Environnement, à l’EPFL.

Initialement, la structure de ce cours était empruntée (à l’exception du dernier chapitre sur les chaînes de
Markov) au cours donné par Simone Deparis (SMA, EPFL), lui-même basé sur celui du Professeur Assyr
Abdulle (SMA, EPFL). Je remercie Simone et Assyr de m’avoir fourni ce matériel, qui a grandement facilité
la préparation de mes cours et de mes séries d’exercices à mon arrivée à l’EPFL.

Bien-sûr, la rédaction d’un texte engendre l’utilisation d’un style, des changements, des réarrangements,
des ajouts de matériel supplémentaire, etc. et donc le contenu de ce cours va progressivement s’écarter de
ce qu’était le cours d’Assyr.

Le format online de ce polycopié est emprunté de celui de mon cours d’Analyse 1. On trouvera sur ce dernier
plusieurs information additionnelles que je n’ai pas jugé nécessaire de reproduire ici.

I.2 Nouvelle version

Cette version du polycopié a été retravaillée dans l’automne 2024 par Stanislas Herscovich, avec l’accord de
Sacha Friedli, pour le cours d’Algèbre linéaire MATH-111 de première année pour la section SV de l’EPFL. Le
texte a été réorganisé dans plusieurs endroits, mais en respectant la structure fondamentale. De nouveaux
résultats ont été ajoutés, avec le but de simplifier et compléter certaines preuves (e.g. les propriétés des
représentations matricielles des applications linéaires et des matrices de passage entre bases). En outre,
toutes les images du texte qui ne proviennent pas des logiciels de calcul mathématique ont été refaites avec
les paquets TikZ et PGF (voir le lien ici). Les passages (sections, sous-sections, théorèmes, etc) marquées
avec une étoile rouge⋆ sont considérés comme secondaires, et donc peuvent être laissé de côté dans une
première lecture.

I.3 Références bibliographiques

• D.C. Lay, Algèbre linéaire et applications. 4ème édition, Pearson. Ce texte est celui adopté par l’en-
semble des enseignants d’algèbre linéaire. Il est volumineux mais très facile à suivre. Contient de
nombreux exercices.

vi NumChap: chap-preface, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

https://botafogo.saitis.net/analyse-1
http://sourceforge.net/projects/pgf/
botafogo.saitis.net

I.4. Notation

• Le MOOC (Massive Online Open Course) d’Algèbre linéaire de Donna Testerman (SMA, EPFL) contient
tout ce qui est dit ici, et bien plus encore.

• S. Balac et F. Sturm, Algèbre et analyse. 2ème édition, Presses polytechniques et universitaires ro-
mandes. Ce livre est aussi une référence intéressante.

• J. Rappaz et M. Picasso, Introduction à l’analyse numérique. Enseign. Math.[The Teaching of Ma-
thematics] Presses Polytechniques et Universitaires Romandes, Lausanne, 2004. x+256 pp. Ce livre
montre également quelques applications de l’algèbre linéaire à la résolution numérique de certains
problèmes classiques de physique.

• H. Prado Bueno, Álgebra Linear, Um segundo curso. Textos Universitários, Sociedade Brasileira de
Matemática.

• Pour d’autres quiz (sur l’algèbre linéaire et d’autres chapitres des mathématiques), créés par Terence
Tao, cliquer ici.

I.4 Notation

Comme d’habitude, on va noter ; l’ensemble vide, i.e. l’ensemble sans aucun élément,N= {0,1,2, . . . } l’en-
semble des nombres naturels (contenant le zéro),N∗ = {1,2, . . . } l’ensemble des nombres naturels positifs,
Z = {. . . ,−2,−1,0,1,2, . . . } l’ensemble des nombres entiers, Q l’ensemble de nombres rationnels, R l’en-
semble des nombres réels et C l’ensemble des nombres complexes.

On rappelle que le symbole logique ∃ signifie “il existe”, ∃! signifie “il existe un unique”, ∀ signifie “pour
tout” ou “quelque soit”, ≡ signifie “est équivalent à”, et := dans une expression du type “A := B” signifie que
le membre gauche “A” est défini à partir de l’expression “B”. Si A est un ensemble, on écrira {a ∈ A|P } le
sous-ensemble de A formé des éléments a qui satisfont à la condition P .

On définit le symbole de Kronecker δi , j par δi , j = 0 si i ̸= j et δi ,i = 1. Étant données deux nombres entiers
m et n, on définit �m,n� := {i ∈Z|m⩽ i ⩽ n}.

NumChap: chap-preface, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) vii

https://www.ffhs-mooc.ch/courses/course-v1:EPFL+Algebre3-Testerman+2018/about
https://en.wikipedia.org/wiki/Terence_Tao
https://en.wikipedia.org/wiki/Terence_Tao
http://scherk.pbwiki.com/
botafogo.saitis.net

I.4. Notation

viii NumChap: chap-preface, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

botafogo.saitis.net

Chapitre 1

Systèmes d’équations linéaires

1.1 Introduction

1.1.1 Description générale

Ce premier chapitre présente les systèmes d’équations linéaires, qui seront étudiés dans ce cours.

Objectifs de ce chapitre

À la fin de ce chapitre vous devriez être capable de

(O.1) reconnaître un système d’équations linéaires (SEL) et l’écrire sous forme matricielle ;

(O.2) représenter graphiquement les solutions d’un SEL avec 2 variables ;

(O.3) connaître les SEL incompatibles et compatibles, déterminés et indéterminés ;

(O.4) connaître la notion de SEL équivalents, les opérations élémentaires, leur propriété fonda-
mentale, et les matrices échelonnées et échelonnées réduites ;

(O.5) calculer la forme échelonnée réduite d’une matrice, avec la méthode de Gauss-Jordan;

(O.6) déterminer les variables liées et variables libres ;

(O.7) calculer les solutions d’un SEL à partir de la forme échelonnée réduite.

Nouveau vocabulaire dans ce chapitre

• système d’équations linéaires (SEL)
• représentation matricielle d’un SEL
• SEL compatible in/déterminé
• opération élémentaire sur les lignes
• forme/matrice échelonnée
• solution d’un SEL
• matrice augmentée

• SEL incompatible
• SEL équivalents
• forme/matrice échelonnée réduite
• matrices ligne-équivalentes
• algorithme de Gauss-Jordan
• variables liées (ou de base)
• variables libres (ou fondamentales)

1.1.2 Motivation : Trafic routier

Voyons comment les systèmes d’équations linéaires peuvent apparaître, dans des situations très pratiques.
Dans une petite ville ne possédant que 4 croisements, on a mesuré les flux de voitures sur quelques axes
routiers entrants et sortants de la ville, dans le but de prévoir les flux résultant sur le réseau interne, et de
préparer les aménagements nécessaires :

NumChap: chap-systemes-lineaires, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) 1

botafogo.saitis.net

1.1. Introduction

A B

CD

160 100

450

x1

x5

40
170

65

x3

x4

x2

Ces mesures indiquent, par exemple, que le flux de voitures entrant au croisement B , venant de l’est de la
ville, est de 450 voitures par heure.

Étant données ces contraintes, se pose la question de savoir s’il est possible de calculer les flux résultants
sur les autres axes, indiqués par les lettres x1 à x5 sur la figure.

Le principe régissant les flux à un croisement est le même que celui utilisé dans les réseaux électriques (Loi
de Kirchhoff) : en chaque nœud du réseau, la somme des flux entrants doit être égal à la somme des flux
sortants, ce qui donne, en chacun des points du réseau,

A : x1 +x3 = 160,

B : 450 = 100+x1 +x2 ,

C : x2 +x4 = 65+170,

D : 40 = x3 +x4 +x5 .

On peut récrire ces relations comme suit :
x1 + x3 = 160,
x1 + x2 = 350,

x2 + x4 = 235,
x3 + x4 + x5 = 40.

Plusieurs questions se posent :

• Existe-t-il des nombres x1, x2, x3, x4, x5 satisfaisant simultanément à ces 4 conditions?

• Si oui, ces nombres sont-ils tous positifs, pour respecter les sens imposés sur la figure, ou alors cer-
tains de ces nombres sont-ils négatifs (auquel cas on devra inverser le sens du trafic sur les axes
concernés) ?

• Si oui toujours, est-ce que ces nombres sont uniques ? Existe-t-il plusieurs solutions? Et s’ils ne sont
pas uniques, quelles contraintes y a-t-il sur les choix que l’on peut faire?

• Et si la ville contenait des milliers de croisements, avec des centaines de flux entrants/sortants?

Le système de 4 équations à 5 inconnues ci-dessus est un exemple de ce qu’on appelle un système d’équa-
tions linéaires ou, plus simplement, un système linéaire. Ce type de système forme une part importante de
ce cours, et on commencera leur étude dans la section suivante.

Informel 1.1. La dernière question (“et si la ville était beaucoup plus grande?”) montre qu’il est
important d’aborder l’étude de ces systèmes de façon rigoureuse, en acceptant qu’ils peuvent être
de taille arbitrairement grande.

2 NumChap: chap-systemes-lineaires, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

botafogo.saitis.net

1.2. Définition et exemples

1.2 Définition et exemples

1.2.1 Définition d’un système d’équations linéaires

Définition 1.2. Un système d’équations linéaires (SEL), ou simplement un systeme linéaire, en les
variables x1, x2, . . . , xn est une famille d’équations du type suivant :

(∗)


a1,1x1 + a1,2x2 + ·· · + a1,n xn = b1 ,
a2,1x1 + a2,2x2 + ·· · + a2,n xn = b2 ,

...
...

am,1x1 + am,2x2 + ·· · + am,n xn = bm .

Un tel système est dit de taille m ×n : il contient m équations, et n variables. Les nombres ak, j (1⩽
k ⩽m, 1 ⩽ j ⩽ n) sont appelés les coefficients du système, les bk (1 ⩽ k ⩽m) forment le second
membre.

Remarque 1.3. Insistons sur le fait que les coefficients ai , j , ainsi que le second membre, sont des nombres
fixés qui ne dépendent pas des xi ; en général ils sont donnés par une situation pratique. ⋄

On peut voir un système (∗) comme une famille de m contraintes que les variables x1, . . . , xn doivent satis-
faire, où la k-ème contrainte est

ak,1x1 + ak,2x2 + ·· · + ak,n xn = bk .

On appelle cette contrainte une équation linéaire. On écrira parfois ai j au lieu de ai , j s’il n’y a pas de risque
de confusion.

1.2.2 Résolution d’un système d’équations linéaires

Considérons un système de taille m ×n donné, comme (∗).

Définition 1.4. Une famille de nombres (x̄1, x̄2, . . . , x̄n) ∈ Rm est une solution de (∗) si elle satisfait
simultanément aux m contraintes spécifiées par (∗). L’ensemble formé de toutes les solutions de (∗)
est noté S(∗) et #(S(∗)) dénote la quantité d’éléments de S(∗).

(S.1) S’il existe au moins une solution, i.e. S(∗) ̸=∅, on dit que (∗) est compatible. En plus,

(S.1.1) si #(S(∗)) = 1, on dira que le système (∗) est compatible déterminé (ou simplement dé-
terminé) ;

(S.1.2) si #(S(∗)) > 1, on dira que le système (∗) est compatible indéterminé (ou simplement
indéterminé).

(S.2) S’il n’existe aucune solution, i.e. S(∗) =∅, on dit que (∗) est incompatible (ou singulier).

Lorsqu’un système est compatible, le résoudre signifiera trouver toutes ses solutions. Dans ce cas, on devra
aussi savoir décrire précisément S(∗). Voyons deux exemples simples.

Exemple 1.5. Le système de taille 2×2

(∗)

{
x1 + x2 = 1,
x1 + x2 = 0

est incompatible. En effet, quelle que soit la valeur de x1 et x2, la somme x1 + x2 ne peut pas être à la fois
égale à 1 et à 0. Donc S(∗) =∅. ⋄

NumChap: chap-systemes-lineaires, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) 3

botafogo.saitis.net

1.3. Sur le nombre de solutions d’un système linéaire

Exemple 1.6. Considérons le système taille 1×2 suivant :{
x1 + x2 = 1.

On trouve facilement des solutions : (1,0), (2,−1), (3,−2), etc. Donc ce système est compatible, et semble
même posséder une infinité de solutions. Pour décrire son ensemble de solutions précisément (pour n’en
oublier aucune!), il suffit de remarquer que l’on peut toujours choisir une des variables, et prendre l’autre
en fonction de façon à ce que la relation soit satisfaite. Par exemple, en choisissant x1, on garantit que la
contrainte est satisfaite en prenant

x2 = 1−x1 .

Lorsqu’on peut ainsi choisir une variable, appelée variable libre, on a avantage à y penser comme à un
paramètre, et à utiliser une autre lettre pour la décrire. Si on utilise la lettre t pour ce paramètre, on a

x1 = t ,

x2 = 1− t .

Les variables x1 et x2 étant exprimées en fonction des variables libres, on les appelle variables liées (ou
variables de base). On peut finalement exprimer l’ensemble des solutions comme suit :

S = {
(t ,1− t) : t ∈R}

.

⋄

1.3 Sur le nombre de solutions d’un système linéaire

Un de nos objectifs dans ce qui suit sera de trouver des conditions suffisantes pour déterminer si un système
est compatible ou incompatible.

Mais avant cela, nous allons énoncer une propriété générale, satisfaite par n’importe quel système linéaire,
concernant le nombre de solutions qu’il peut posséder.

Théorème 1.7. Si un système est compatible, alors soit il possède exactement une solution, soit il en
possède une infinité.

Preuve: Considérons un système de taille m×n de la forme (∗), que l’on suppose être compatible. Si sa solution n’est
pas unique, c’est qu’il existe au moins deux familles distinctes, que l’on notera (x̄1, . . . , x̄n) et (ȳ1, . . . , ȳn), qui sont toutes
deux solutions de (∗) ; cela signifie qu’elles satisfont toutes les contraintes : pour tout k = 1,2, . . . ,m, on a d’une part
que

ak,1x̄1 + ·· · + ak,n x̄n = bk

et d’autre part que
ak,1 ȳ1 + ·· · + ak,n ȳn = bk .

Prenons alors un réel λ quelconque, différent de 0 et de 1, et définissons la famille (z̄1, . . . , z̄n), où

z j :=λx̄ j + (1−λ)ȳ j , j = 1,2, . . . ,n .

Montrons alors que (z̄1, . . . , z̄n) est aussi solution, en montrant qu’elle satisfait chacune des m contraintes du système.
En effet,

ak,1 z̄1 +·· ·+ak,n z̄n

=ak,1(λx̄1 + (1−λ)ȳ1)+·· ·+ak,n(λx̄n + (1−λ)ȳn)

=λ(
ak,1x̄1 +·· ·+ak,n x̄n︸ ︷︷ ︸

=bk

)+ (1−λ)
(
ak,1 ȳ1 +·· ·+ak,n ȳn︸ ︷︷ ︸

=bk

)
=λbk + (1−λ)bk

=bk ,

4 NumChap: chap-systemes-lineaires, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

botafogo.saitis.net

1.3. Sur le nombre de solutions d’un système linéaire

ce qui signifie que la k-ème contrainte est satisfaite.

Puisque (x̄1, . . . , x̄n) et (ȳ1, . . . , ȳn) sont distinctes, il existe au moins un k tel que x̄k ̸= ȳk . Cela signifie que si λ n’est

égal ni à 0 ni à 1, le nombre zk = λx̄k + (1−λ)ȳk est différent à la fois de x̄k et de ȳk . On peut donc, en choisissant λ,

construire autant de nouvelles solutions. Ceci signifie que le système possède une infinité de solutions.

Remarque 1.8. Un peu plus loin dans le cours, nous redonnerons la preuve de ce théorème, mais en utilisant
le langage vectoriel, ce qui la rendra plus transparente. ⋄

Informel 1.9. En d’autres termes, le nombre de solutions de n’importe quel système linéaire ne peut
être que 0 (s’il est incompatible), 1 ou ∞. Plus tard on se référera à ce résultat comme le Théorème
“0,1,∞”.

Pour des petites valeurs de n, l’affirmation du Théorème “0,1,∞” peut s’interpréter géométriquement.

1.3.1 Interprétation géométrique dans le cas n = 2

Fixons n = 2, et considérons un système de taille m ×2 :

(∗)


a1,1x1 + a1,2x2 = b1 ,
a2,1x1 + a2,2x2 = b2 ,

...
am,1x1 + am,2x2 = bm .

Ici, une paire (x1, x2) peut s’interpréter comme les coordonnées d’un point dans le plan, relativement à un
repère orthonormé fixé. Aussi, on sait (voir cours de géométrie analytique) qu’une contrainte de la forme

ak,1x1 + ak,2x2 = bk

signifie que le point de coordonnées (x1, x2) est sur une droite.

Donc une paire (x1, x2) sera solution de (∗), (x1, x2) ∈ S(∗), si et seulement si le point (x1, x2) appartient en
même temps à chacune des m droites spécifiées dans (∗). Or appartenir à m droites en même temps est
une contrainte en général difficile à satisfaire, surtout si m est grand.

• S(∗) est en général vide, surtout si on parle de plus de deux droites, ou dès que deux de ces droites sont
parallèles et distinctes :

x1

x2

(1)

(2)

(3)

(4) parallèles

Sur ce dessin, on voit qu’il n’existe aucun point (x1, x2) qui appartient aux quatre droites à la fois.

• S(∗) contient seulement un élément si les droites s’intersectent en exactement un point :

NumChap: chap-systemes-lineaires, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) 5

botafogo.saitis.net

1.3. Sur le nombre de solutions d’un système linéaire

x1

x2

(2)

(4)

(1) (3)

S(∗)

• S(∗) contient une infinité d’éléments si les droites sont confondues :

x1

x2

(1) = . . . = (4) = S(∗)

On comprend que géométriquement, il est impossible de créer m droites dans le plan qui s’intersectent,
par exemple, en exactement 4 points.

1.3.2 Interprétation géométrique dans le cas n = 3

Fixons n = 3, et considérons un système de taille m ×3 :

(∗)


a1,1x1 + a1,2x2 + a1,3x3 = b1 ,
a2,1x1 + a2,2x2 + a2,3x3 = b2 ,

...
am,1x1 + am,2x2 + am,3x3 = bm .

Ici, un triplet (x1, x2, x3) peut s’interpréter comme les coordonnées d’un point dans l’espace, relativement à
un repère orthonormé fixé. Aussi, on sait (voir cours de géométrie analytique) qu’une contrainte de la forme

ak,1x1 + ak,2x2 + ak,3x3 = bk

signifie que le point de coordonnées (x1, x2, x3) est sur un plan.

Donc un triplet (x1, x2, x3) sera solution de (∗) si et seulement si le point (x1, x2, x3) appartient en même
temps à chacun des m plans spécifiés. Or ici aussi il est géométriquement clair que S(∗) ne peut contenir
que 0, 1 ou une infinité de points.

• S(∗) est vide dès que 2 de ces plans sont parallèles, distincts :

6 NumChap: chap-systemes-lineaires, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

botafogo.saitis.net

1.3. Sur le nombre de solutions d’un système linéaire

parallèles

Ou alors ils peuvent aussi n’avoir aucun point en commun mais s’intersecter 2 à 2, sans que certains
soient parallèles :

• S(∗) contient exactement un élément si les plans s’intersectent en seulement un point :

NumChap: chap-systemes-lineaires, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) 7

botafogo.saitis.net

1.4. Transformer un système en un autre

S(∗)

• S(∗) contient une infinité d’éléments si les plans sont confondus, ou s’intersectent selon une droite :

S(∗)

1.4 Transformer un système en un autre

Notre but pour la suite du chapitre est de présenter une méthode qui permet de savoir si un système est
compatible ou incompatilbe et qui, lorsqu’il est compatible, permet en plus de décrire précisément l’en-
semble de toutes ses solutions.

Cette méthode est utile non-seulement parce qu’elle mène à un algorithme (l’algorithme de Gauss) que
l’on peut facilement implémenter sur une machine à l’aide d’un programme de quelques lignes, mais aussi
parce qu’elle fournit un résultat théorique qui sera utilisé souvent dans la suite du cours.

Informel 1.10. Attention : Ce que nous présentons ci-dessous est une méthode de calcul. Elle sera
utilisée souvent dans la suite du cours, mais ne constitue pas, en soi, “l’essence de l’algèbre linéaire” !

8 NumChap: chap-systemes-lineaires, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

botafogo.saitis.net

1.4. Transformer un système en un autre

1.4.1 Un idéal : les systèmes triangulaires

Pour comprendre l’idée derrière la méthode générale qui va suivre, commençons par considérer un type de
système dont la structure suggère elle-même une méthode de résolution.

Exemple 1.11. Considérons le système de taille 3×3 suivant :

(∗)


x1 − x2 + 2x3 = 4,

x2 − 3x3 = −5,
5x3 = 10,

que l’on peut comprendre comme étant en fait

(∗)


x1 − x2 + 2x3 = 4,

0x1 + x2 − 3x3 = −5,
0x1 + 0x2 + 5x3 = 10.

La présence des zéros en bas à gauche donne à ce système une structure triangulaire, qui suggère une réso-
lution simple, “du bas vers le haut” :

1) Dans la troisième équation, on calcule x3 = 10
5 = 2.

2) On injecte x3 dans la deuxième équation, pour trouver

x2 =−5+3x3 =−5+6 = 1.

3) On injecte x3 et x2 dans la première équation, pour trouver

x1 = 4+x2 −2x3 = 4+1−4 = 1.

Donc la solution est unique, donnée par (x1, x2, x3) = (1,1,2). ⋄

Le système de ce dernier exemple était très particulier, puisque les coefficients a2,1 = a3,1 = a3,2 = 0, lui
conférant une structure simple à traiter. Mais même si le système était très grand, toujours avec la même
structure triangulaire,

(∗)



x1 + 2x2 − 4x3 − 8x4 + x5 + 9x6 = −3,
x2 + 4x3 − 5x4 + x5 − x6 = 6,

x3 + 6x4 + x5 − 6x6 = −2,
−x4 + x5 + x6 = 3,

4x5 + x6 = 0,
7x6 = 11,

on traiterait le problème de la même façon, “du bas vers le haut”...

Voyons un autre exemple dans lequel on profite de la présence de coefficients nuls dans la partie inférieure
gauche, mais où le nombre de variables est supérieur au nombre d’équations :

Exemple 1.12. Considérons {
2x1 + x2 − x3 = 0,
0x1 + x2 + 2x3 = 3.

Ce système de taille 2×3 n’est pas “aussi triangulaire” que l’on voudrait. Pourtant, une opération naturelle
est de déplacer les termes contenant x3 du côté droit, pour récrire ce système comme{

2x1 + x2 = x3 ,
0x1 + x2 = 3−2x3 .

NumChap: chap-systemes-lineaires, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) 9

botafogo.saitis.net

1.4. Transformer un système en un autre

Écrit sous cette forme, on voit qu’on peut choisir la valeur de x3, ce qui fixe le côté droit, et qu’on se retrouve
ensuite avec un système d’équations linéaires triangulaire de taille 2×2 dont second membre dépend de x3.
Comme la valeur de x3 peut être choisie, on dit que c’est une variable libre, elle joue le rôle de paramètre ;
on la notera plutôt t : {

2x1 + x2 = t ,
x2 = 3−2t .

Procédant “du bas vers le haut”, on obtient x2 = 3−2t , puis

x1 = 1
2 (t −x2) = 1

2

(
t − (3−2t)

)= 3
2 (t −1) .

On a donc, pour tout choix de t , une solution (x1, x2, x3) donnée par

x1 = 3
2 (t −1) ,

x2 = 3−2t ,

x3 = t .

On peut donc écrire l’ensemble de toutes les solutions de la façon suivante :

S =
{(3

2 (t −1),3−2t , t
)

: t ∈R
}

.

⋄
Ainsi, la stratégie générale, pour résoudre un système quelconque, sera d’arriver à le transformer en un
système aussi triangulaire que possible. Pour que ce nouveau système soit utile, il faudra être sûr que son
ensemble de solutions soit exactement le même que le système de départ.

1.4.2 Opérations élémentaires

Considérons un système de taille m ×n, noté (∗). Dans la suite, on utilisera le symbole Li pour représenter
la i -ème ligne de (∗) :

Li : ai ,1x1 +ai ,2x2 +·· ·+ai ,n xn = bi .

Définissons plusieurs façons d’agir sur les lignes d’un système :

Définition 1.13.

(OEL.I) L’opération consistant à échanger la i -ème et la j -ème lignes est appelée opération élémen-
taire sur les lignes (OEL) de type I, et sera notée

Li ↔ L j .

(OEL.II) L’opération consistant à multiplier la i -ème ligne par un scalaire non-nul λ ∈ R∗ est appelée
opération élémentaire sur les lignes (OEL) de type II, et sera notée

Li ←λLi .

(OEL.III) L’opération consistant à rajouter à la i -ème ligne un multiple (par un scalaire λ) de la j -ème
est appelée opération élémentaire sur les lignes (OEL) de type III, et sera notée

Li ← Li +λL j .

Une opération élémentaire sur les lignes a pour effet de transformer un système linéaire (∗) en un autre
système linéaire (∗)′, de même dimension; ces deux systèmes sont alors dits équivalents selon les lignes

10 NumChap: chap-systemes-lineaires, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

botafogo.saitis.net

1.4. Transformer un système en un autre

(ou ligne-équivalents). Pour simplifier, les opérations élémentaires sur les lignes, seront souvent appelées
opérations élémentaires.

Exemple 1.14. Considérons le système

(∗)


x1 + 3x2 + x3 + 4x4 = 3,

2x1 + 5x2 + x3 − x4 = −1,
−x1 − 2x2 − 3x3 − 9x4 = 0.

• En appliquant à (∗) l’opération de Type I donnée par L1 ↔ L2, on obtient

(∗)′


2x1 + 5x2 + x3 − x4 = −1,
x1 + 3x2 + x3 + 4x4 = 3,
−x1 − 2x2 − 3x3 − 9x4 = 0.

• En appliquant à (∗) l’opération de Type II donnée par L2 ← 1
2 L2, on obtient

(∗)′


x1 + 3x2 + x3 + 4x4 = 3,
x1 + 5

2 x2 + 1
2 x3 − 1

2 x4 = −1
2 ,

−x1 − 2x2 − 3x3 − 9x4 = 0.

• En appliquant à (∗) l’opération de Type III donnée par L3 ← L3 +L1, on obtient

(∗)′


x1 + 3x2 + x3 + 4x4 = 3,
2x1 + 5x2 + x3 − x4 = −1,

x2 − 2x3 − 5x4 = 3.

⋄
Un propriété remarquable des opérations définies ci-dessus est qu’elles sont toutes inversibles, dans le sens
suivant : si (∗)′ s’obtient en appliquant une opération élémentaire (de Type I, II ou III) à (∗), alors il existe une
opération élémentaire réciproque qui permet, si on l’applique à (∗)′, de revenir au système (∗) de départ.

1) La réciproque de Li ↔ L j est Li ↔ L j (évident).

2) La réciproque de Li ← λLi (λ ∈ R∗) est Li ← 1
λLi (en effet, on peut “défaire” la multiplication de la

ligne i par λ en... divisant la ligne i par λ).

3) La réciproque de Li ← Li +λL j est Li ← Li −λL j (évident).

Comme conséquence de l’inversibilité :

Théorème 1.15. Soient deux systèmes de mêmes dimensions, (∗) et (∗)′. Si (∗)′ est obtenu à partir de
(∗) par une d’opération élémentaire, alors (∗) et (∗)′ ont le même ensemble de solutions :

S(∗) = S(∗)′ .

L’usage du théorème ci-dessus se fera comme suit :

Théorème 1.16. Soient deux systèmes de mêmes dimensions, (∗)1 et (∗)2. Si (∗)2 peut être obtenu à
partir de (∗)1 par une suite finie d’opérations élémentaires,

(∗)1⇝ · · ·⇝ (∗)2 ,

alors (∗)1 et (∗)2 ont le même ensemble de solutions :

S(∗)1 = S(∗)2 .

NumChap: chap-systemes-lineaires, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) 11

botafogo.saitis.net

1.4. Transformer un système en un autre

Preuve: Par le théorème, on sait que lors de chaque étape, l’ensemble de solutions est préservé. Puisqu’il y un nombre

fini d’étapes, ceci implique S(∗)1 = S(∗)2 .

Ce dernier corollaire suggère une méthode de résolution d’un système de taille m×n quelconque : puisque
les opérations élémentaires ne changent pas l’ensemble des solutions, on pourra appliquer au système de
départ des opérations qui font peu à peu apparaître des zéros dans la partie inférieure gauche. Une fois le
système “triangularisé”, on procédera “du bas vers le haut”, comme vu précédemment.

Plutôt que d’écrire explicitement un algorithme très général, considérons un premier exemple, qui contient
déjà l’idée de la méthode, et montre dans quel ordre les opérations élémentaires sont choisies :

Exemple 1.17. Considérons le système

(∗)1


3x1 + 5x2 + 4x3 = 1,
6x1 + 12x2 + 6x3 = 0,
−2x1 − 2x2 − 7x3 = 5.

D’abord, simplifions la deuxième ligne en la divisant par 6, ce qui revient à faire L2 ← 1
6 L2 :

(∗)′1


3x1 + 5x2 + 4x3 = 1,
x1 + 2x2 + x3 = 0,

−2x1 − 2x2 − 7x3 = 5.

Regardons maintenant la première colonne, et les coefficients présents devant x1. Pour ce qui va suivre, on
a avantage à faire L1 ↔ L2 :

(∗)′′1


x1 + 2x2 + x3 = 0,

3x1 + 5x2 + 4x3 = 1,
−2x1 − 2x2 − 7x3 = 5.

On va maintenant profiter du “x1” en haut à gauche, appelé pivot, pour faire apparaître des zéros dans la
partie inférieure de la première colonne. Par exemple, pour faire disparaître le “3x1” de la deuxième ligne,
on a besoin de lui soustraire 3 fois la première ligne. Donc en faisant L2 ← L2 −3L1, on obtient

(∗)′′′1


x1 + 2x2 + x3 = 0,

0x1 − x2 + x3 = 1,
−2x1 − 2x2 − 7x3 = 5.

Ensuite, en faisant L3 ← L3 +2L1,

(∗)′′′′1


x1 + 2x2 + x3 = 0,

0x1 − x2 + x3 = 1,
0x1 + 2x2 − 5x3 = 5.

Ensuite, on passe à la deuxième colonne. C’est maintenant le “−x2”, dans L2, qui joue le rôle de pivot et
dicte le choix de l’opération suivante, qui fait apparaître encore un zéro au bas de la deuxième colonne :
L3 ← L3 +2L2, qui donne

(∗)2 = (∗)′′′′′1


x1 + 2x2 + x3 = 0,

0x1 − x2 + x3 = 1,
0x1 + 0x2 − 3x3 = 7.

Remarquons que dans cette dernière étape, l’opération élémentaire n’a pas affecté les zéros de la première
colonne !

En transformant (∗)1 en (∗)2, nous dirons plus loin que nous avons échelonné le système.

En procédant “du bas vers le haut” dans (∗)2, on obtient

S(∗)2 =
{(27

3 ,−10
3 ,−7

3

)}
,

et le corollaire permet de conclure que S(∗)1 = S(∗)2 . ⋄

12 NumChap: chap-systemes-lineaires, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

botafogo.saitis.net

1.5. Matrices et algorithme de Gauss

1.5 Matrices et algorithme de Gauss

1.5.1 Algorithme de Gauss-Jordan

On comprend que la méthode illustrée sur l’exemple précédent, appelée algorithme de Gauss-Jordan (ou
simplement algorithme de Gauss), s’applique à des systèmes de tailles quelconques. Il consiste à utiliser
des opérations élémentaires qui font progressivement apparaître des zéros dans la partie inférieure gauche
de la matrice.

Même si en général on n’utilise pas la méthode de Gauss-Jordan de façon exacte, car on emploie souvent
des raccourcis, on va expliquer la méthode de façon algorithmique pour aider à la comprendre mieux.

Méthode de Gauss-Jordan pour calculer la forme échelonnée réduite d’une matrice A

(GJ.1) Repérez la première colonne de A à partir de la gauche avec un coefficient non nul. Avec une
(OEL.II) transformez ce coefficient en 1 et avec une (OEL.I) mettez le coefficient 1 dans la
première ligne.

(GJ.2) Avec des transformez tous les autres coefficients de la colonne dans l’étape précédente en 0,
sauf le coefficient 1 dans la première ligne.

(GJ.3) Repérez la première colonne de la matrice obtenue à la fin de l’étape précédente qui est à
droite de la colonne dans (GJ.1) avec un coefficient non nul. Avec une (OEL.II) transformez
ce coefficient en 1 et avec une (OEL.I) mettez le coefficient 1 dans la deuxième ligne.

(GJ.4) Avec des transformez tous les autres coefficients de la colonne dans l’étape précédente en 0,
sauf le coefficient 1 dans la deuxième ligne.

(GJ.5) Repérez la première colonne de la matrice obtenue à la fin de l’étape précédente qui est à
droite de la colonne dans (GJ.3) avec un coefficient non nul. Avec une (OEL.II) transformez
ce coefficient en 1 et avec une (OEL.I) mettez le coefficient 1 dans la troisième ligne.

(GJ.6) Avec des transformez tous les autres coefficients de la colonne dans l’étape précédente en 0,
sauf le coefficient 1 dans la troisième ligne.

(GJ.7) . . . (on continue jusqu’au moment où il n’y a plus de colonnes à repérer)

Noter que, pour une matrice A de taille m ×n l’algorithme décrit ci-dessus termine après au moins 2n
d’étapes, vu que dans chaque étape de la forme (GJ.2i) avec i entier on se déplace vers une colonne à droite.

Nous verrons plus d’exemples de l’utilisation de la méthode de Gauss-Jordan plus loin, mais arrêtons-nous
un instant pour introduire une certaine simplification d’écriture.

1.5.2 Matrices associées à un système

Les opérations élémentaires que l’on effectue sur un système général du type

(∗)


a1,1x1 + a1,2x2 + ·· · + a1,n xn = b1 ,
a2,1x1 + a2,2x2 + ·· · + a2,n xn = b2 ,

...
...

am,1x1 + am,2x2 + ·· · + am,n xn = bm

agissent sur les coefficients ai , j , et sur les termes du second membre, les bi . Dans ces opérations, le nom
que l’on donne aux variables (jusqu’à présent : x1, . . . , xn) n’a pas d’importance. Il est donc utile de simpli-
fier la manipulation des systèmes en ne gardant que la structure numérique des coefficients et du second
membre.

NumChap: chap-systemes-lineaires, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) 13

botafogo.saitis.net

1.5. Matrices et algorithme de Gauss

Définition 1.18. Soit (∗) le système ci-dessus.

1) La matrice associée à (∗) est le tableau de m ×n nombres réels défini par
a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n
...

...
. . .

...
am,1 am,2 · · · am,n

 .

2) La matrice augmentée associée à (∗) est le tableau de m × (n +1) nombres défini par
a1,1 a1,2 · · · a1,n b1

a2,1 a2,2 · · · a2,n b2
...

...
. . .

...
...

am,1 am,2 · · · am,n bm


avec une décoration supplémentaire : une ligne verticale qui sépare la dernière colonne du
reste de la matrice (cette ligne est là pour rappeler que la dernière colonne doit être interprétée
comme le second membre dans (∗)).

Exemple 1.19. La matrice augmentée du système


−x1 + x2 + x4 = α ,
x1 + x3 + 7x4 = β ,

x2 − x3 + x4 = γ

est donnée par  −1 1 0 1 α

1 0 1 7 β

0 1 −1 1 γ

 .

⋄

1.5.3 Opérations élémentaires sur les matrices

Il est clair que les opérations élémentaires sur les lignes (de Type I, II, III) que l’on effectue sur un système
se traduisent naturellement en des opérations élémentaires sur les lignes de la matrice et de la matrice
augmentée associée.

De manière générale, on peut effectuer des opérations élémentaires sur une matrice sans se référer au sys-
tème dont elle est issue. On peut donc définir deux matrices comme étant équivalentes selon les lignes (ou
ligne-équivalentes) si l’une peut s’obtenir à partir de l’autre par un nombre fini d’opérations élémentaires.

1.5.4 Matrices échelonnées

L’algorithme de Gauss mène, en général, à une matrice qui est ce que nous appelions “aussi triangulaire que
possible” ; définissons ce terme précisément.

14 NumChap: chap-systemes-lineaires, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

botafogo.saitis.net

1.5. Matrices et algorithme de Gauss

Définition 1.20. Pour une matrice de taille m ×n quelconque,

1) Le coefficient principal de la i -ème ligne est, s’il y en a un, le premier coefficient non-nul
trouvé, en partant de la gauche.

2) Une matrice est échelonnée si les deux conditions suivantes sont satisfaites :

(ECH.1) si elle possède des lignes nulles (c’est-à-dire ne contenant que des coefficients nuls), alors
celles-ci sont toutes dans la partie inférieure de la matrice ;

(ECH.2) si elle possède des lignes non-nulles, alors le coefficient principal de chacune de ces
lignes se trouve strictement à droite du coefficient principal de la ligne du dessus.

Exemple 1.21. La matrice 
3 1 2 0 7
0 0 4 3 −1
0 0 0 −1

2 0
0 0 0 0 0


est échelonnée. En effet, la seule ligne ne contenant que des zéros est tout en bas, et sur chacune des autres
lignes, le coefficient principal est strictement à droite du coefficient principal de la ligne du dessus : −1

2
(coefficient principal de la troisième ligne) est à droite de 4 (coefficient principal de la deuxième ligne), qui
est lui-même à droite de 3 (coefficient principal de la première ligne). ⋄
Exemple 1.22. La matrice 1 2 3 4

0 0 1 2
0 0 −1 0


n’est pas échelonnée, car le coefficient principal de la troisième ligne est juste sous le (et non strictement à
droite du) coefficient principal de la deuxième ligne. ⋄

Théorème 1.23. Toute matrice peut être transformée, à l’aide d’un nombre fini de transformations
élémentaires, en une matrice échelonnée. (En d’autres termes : toute matrice est équivalente selon les
lignes à une matrice échelonnée.)

Preuve: La méthode utilisée dans les exemples traités plus haut se généralise sans difficulté à n’importe quelle ma-

trice.

Exemple 1.24. Considérons la matrice augmentée du système vu plus haut :

 3 5 4 1
6 12 6 0
−2 −2 −7 5

 .

En appliquant successivement les opérations élémentaires

L2 ← 1
6 L2 , L1 ↔ L2 , L2 ← L2 −3L1 ,L3 ← L3 +2L1 , L3 ← L3 +2L2 ,

on obtient comme on a vu la matrice  1 2 1 0
0 −1 1 1
0 0 −3 7

 ,

qui est échelonnée. ⋄

NumChap: chap-systemes-lineaires, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) 15

botafogo.saitis.net

1.5. Matrices et algorithme de Gauss

Remarque 1.25. La matrice échelonnée obtenue dépend du choix des opérations élémentaires faites en
chemin! Par exemple, en partant de (

1 1 1
1 1 3

)
,

alors en faisant L2 ← L2 −L1 on obtient une première échelonnée(
1 1 1
0 0 2

)
,

mais en faisant L1 ↔ L2 suivie de L2 ← L2 −L1 on obtient(
1 1 3
0 0 −2

)
,

qui est une autre forme échelonnée. Donc une matrice peut posséder plusieurs formes échelonnées. ⋄

Concrètement, dans la transformation d’un système à l’aide d’opérations élémentaires, c’est une fois que la
matrice obtenue est échelonnée que l’on peut déjà savoir si le système est compatible, si oui identifier les
variables libres, et exprimer l’ensemble des solutions. Voyons un exemple assez complet :

Exemple 1.26. Supposons que l’on parte du système

(∗)


3x1 + x2 + 2x3 = 7,
6x1 + 2x2 + 12x3 + 7x4 = 12,
6x1 + 2x2 + 8x3 + 4x4 = 13,
3x1 + x2 + 6x3 + 4x4 = 6,

dont la matrice augmentée est 
3 1 2 0 7
6 2 12 7 12
6 2 8 4 13
3 1 6 4 6

 .

Faisons d’abord apparaître des zéros dans la première colonne, en appliquant successivement L2 ← L2−2L1,
L3 ← L3 −2L1, L4 ← L4 −L1 : 

3 1 2 0 7
0 0 8 7 −2
0 0 4 4 −1
0 0 4 4 −1

 .

Comme les deux dernières lignes sont égales, on peut faire L4 ← L4 −L3 :
3 1 2 0 7
0 0 8 7 −2
0 0 4 4 −1
0 0 0 0 0

 .

Ensuite, L2 ← L2 −2L3, suivie de L2 ↔ L3, nous donne une version échelonnée :
3 1 2 0 7
0 0 4 4 −1
0 0 0 −1 0
0 0 0 0 0

 .

16 NumChap: chap-systemes-lineaires, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

botafogo.saitis.net

1.5. Matrices et algorithme de Gauss

Comment poursuivre, pour obtenir S(∗) ? Pour y voir plus clair, revenons au système correspondant à cette
dernière matrice augmentée :

(∗)′


3x1 + x2 + 2x3 + 0x4 = 7,
0x1 + 0x2 + 4x3 + 4x4 = −1,
0x1 + 0x2 + 0x3 − x4 = 0,
0x1 + 0x2 + 0x3 + 0x4 = 0,

que l’on peut écrire plus simplement comme

(∗)′


3x1 + x2 + 2x3 = 7,
4x3 + 4x4 = −1,

− x4 = 0.

On a supprimé la dernière ligne “0x1 +0x2 +0x3 +0x4 = 0”. En effet, cette contrainte n’en est pas une, puis-
qu’elle est satisfaite par n’importe quel quadruplet (x1, x2, x3, x4).

On observe maintenant que la variable x2 = t est libre, puisqu’on peut la passer du côté droit pour obtenir
un système triangulaire en (x1, x3, x4), qui sont les variables de base :

(∗)′


3x1 + 2x3 = 7− t ,
4x3 + 4x4 = −1,

− x4 = 0.

Maintenant, en procédant “de bas en haut”, on obtient

x4 = 0, x3 =−1
4 , x1 = 15−2t

6
,

et donc :

S(∗) = S(∗)′ =
{(15−2t

6 , t ,−1
4 ,0

)
: t ∈R

}
.

Le système est donc compatible, et possède une infinité de solutions. ⋄
Exemple 1.27. Considérons le système

(∗)


x1 + x2 − x3 = 5,

3x1 + 4x2 = 4,
4x1 + 5x2 − x3 = 7.

Après échelonnage, sa matrice devient  1 1 −1 5
0 1 3 −11
0 0 0 −3

 .

Le système correspondant est

(∗)′


x1 + x2 − x3 = 5,
0x1 + x2 + 3x3 = −11,
0x1 + 0x2 + 0x3 = −3,

qui est incompatible, puisque la dernière contrainte ne peut jamais être satisfaite, quel que soit (x1, x2, x3).
Donc (∗) est aussi incompatible. ⋄

NumChap: chap-systemes-lineaires, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) 17

botafogo.saitis.net

1.5. Matrices et algorithme de Gauss

1.5.5 La forme échelonnée réduite de Gauss

Définition 1.28. Une matrice est échelonnée réduite si elle est échelonnée et si, de plus, les deux
conditions suivantes sont vérifiées :

(ECH.3) tous ses coefficients principaux sont égaux à 1,

(ECH.4) chaque coefficient principal est l’unique élément non-nul de sa colonne.

Les coefficients principaux d’une matrice échelonnée réduite sont appelés pivots.

Si un SEL (∗) est représenté par une matrice augmentée A de taille m×(n+1), dont la forme échelon-
née réduite est A′, on dira qu’une variable xi avec 1⩽ i ⩽ n est libre (ou fondamentale) si la i -ème
colonne de A′ ne contient pas de pivot. Une variable xi avec 1⩽ i ⩽ n qui n’est pas libre est appelée
liée (ou de base).

Exemple 1.29. La matrice 
0 1 0 3 8 0 1 0 2
0 0 1 5 9 0 2 0 1
0 0 0 0 0 1 3 0 6
0 0 0 0 0 0 0 1 5
0 0 0 0 0 0 0 0 0


est échelonnée réduite, où les pivots sont indiqués en bleu. ⋄

Voyons comment obtenir une échelonnée réduite d’une matrice. Une fois encore, la méthode présentée
dans cet exemple particulier montre comment procéder en général :

Exemple 1.30. Considérons encore une fois la matrice du premier exemple de cette section : 3 5 4 1
6 12 6 0
−2 −2 −7 5

 .

Pour obtenir sa réduite, on commence par l’échelonner, comme vu plus haut : 1 2 1 0
0 −1 1 1
0 0 −3 7

 .

On poursuit en rendant tous les coefficients principaux égaux à 1, à l’aide de L2 ← (−1)L2 et L3 ← −1
3 L3 :

 1 2 1 0
0 1 −1 −1
0 0 1 −7/3

 ,

Remarquons que maintenant, lorsqu’on additionne un multiple d’une ligne Li à une ligne L j située au-
dessus, la présence de zéros fait qu’on ne modifie pas les coefficients de L j situés à droite du coefficient prin-
cipal de Li .

On procède donc “du bas vers le haut” pour faire apparaître des zéros au-dessus des “1”. D’abord, on utilise
L2 ← L2 +L3 pour faire partir le “−1” de la troisième colonne, ce qui donne 1 2 1 0

0 1 0 −10/3
0 0 1 −7/3

 .

18 NumChap: chap-systemes-lineaires, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

botafogo.saitis.net

1.6. Résumé du chapitre sur les systèmes d’équations linéaires

Ensuite, on peut faire disparaître le “2” de la deuxième colonne en faisant L1 ← L1 −2L2, 1 0 1 20/3
0 1 0 −10/3
0 0 1 −7/3

 ,

puis le “1” de la troisième colonne en faisant L1 ← L1 −L3 : 1 0 0 27/3
0 1 0 −10/3
0 0 1 −7/3

 ,

qui est la forme échelonnée réduite de la matrice de départ. On remarque que cette matrice correspond au
système 

x1 = 27/3,
x2 = −10/3,

x3 = −7/3,

pour lequel on a la solution “sous les yeux” : (x1, x2, x3) = (27
3 , −10

3 , −7
3). ⋄

On l’a mentionné plus haut, une matrice peut être échelonnée d’une infinité de façons différentes. Pour la
réduite, c’est différent :

Théorème 1.31. Toute matrice A de taille m ×n peut être transformée, à l’aide d’un nombre fini de
transformations élémentaires, en une matrice échelonnée réduite. De plus, cette échelonnée réduite est
unique et ne dépend pas des opérations élémentaires avec lesquelles elle a été obtenue ; on l’appelle la
réduite de Gauss de A ou la forme échelonnée réduite (FER) de A.

Preuve: L’existence suit de l’algorithme de Gauss-Jordanvu dans la Sous-section 1.5.1, qui termine après un nombre

fini d’étapes. Pour la preuve de l’unicité, on a besoin de développer un peu la notation. Voir Lemme 3.3.

Dans la résolution d’un système, on n’a pas besoin d’aller jusqu’à la réduite pour obtenir la solution; n’im-
porte quelle échelonnée suffit. Mais puisque la réduite est unique, comme l’affirme le théorème ci-dessus,
elle fournit des informations importantes sur la matrice de départ, que nous exploiterons dans les chapitres
suivants, en particulier dans l’étude des applications linéaires. D’un point de vue pratique, elle nous per-
met toujours d’identifier les variables de base et les variables libres, et donc de résoudre complètement le
système.

1.6 Résumé du chapitre sur les systèmes d’équations linéaires

a1 x1 + · · · + an xn = b

coefficients

variables

membre de droite

ÉQUATION LINÉAIRE

(∗)


a1,1x1 + a1,2x2 + ·· · + a1,n xn = b1 ,
a2,1x1 + a2,2x2 + ·· · + a2,n xn = b2 ,

...
...

am,1x1 + am,2x2 + ·· · + am,n xn = bm .

←− SYSTÈME D’ÉQUATIONS LINÉAIRES (SEL)

NumChap: chap-systemes-lineaires, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) 19

botafogo.saitis.net

1.6. Résumé du chapitre sur les systèmes d’équations linéaires

ai , j

ligne colonne

COEFFICIENT DU SEL

ENSEMBLE DE SOLUTIONS DU SEL (*) :

S(∗) =
{
(s1, . . . , sn) ∈Rn qui satisfont aux éq. de (∗)

}
3 TYPES DE SEL

COMPATIBLE DÉTERMINÉ :

une unique solution

COMPATIBLE INDÉTERMINÉ :

nombre infini de solutions

INCOMPATIBLE :

aucune solution

OPÉRATIONS ÉLÉMENTAIRES SUR LES LIGNES (OEL) :

(OEL.I) Li ↔ L j (ÉCHANGE)

(OEL.II) Li ←λLi (MULTIPLICATION, λ ̸= 0)

(OEL.III) Li ← Li +λL j (ADDITION D’UN MULTIPLE)

MATRICE ET MATRICE AUGMENTÉE ASSOCIÉES AU SEL (∗) :

A =


a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n
...

...
. . .

...
am,1 am,2 · · · am,n


︸ ︷︷ ︸

MATRICE ASSOCIÉE À (∗)

[A|b] =


a1,1 a1,2 · · · a1,n b1

a2,1 a2,2 · · · a2,n b2
...

...
. . .

...
...

am,1 am,2 · · · am,n bm


︸ ︷︷ ︸

MATRICE AUGMENTÉE ASSOCIÉE À (∗)

FORME ÉCHELONNÉE RÉDUITE (FER) : ←− MÉTHODE DE GAUSS-JORDAN (VOIR 1.5.1)

0 · · · 0 1 · · · 0 0 · · · 0 · · · · · · 0 · · · · · ·
0 · · · 0 0 · · · 1 0 · · · 0 · · · · · · 0 · · · · · ·
0 · · · 0 0 · · · 0 1 · · · 0 · · · · · · 0 · · · · · ·
0 · · · 0 0 · · · 0 0 · · · 1 · · · · · · 0 · · · · · ·
0 · · · 0 0 · · · 0 0 · · · 0 · · · · · · 1 · · · · · ·
...

. . .
...

...
...

...
...

...
...

. . .
. . .

...
. . .

. . .





Ligne non nulle

Pivot

VARIABLES :

• COLONNE AVEC PIVOT DE FER DE A −→ VARIABLE LIÉE DE (∗)

• COLONNE SANS PIVOT DE FER DE A −→ VARIABLE LIBRE DE (∗)

SEL INCOMPATIBLE :

SEL (∗) INCOMPATIBLE ⇔ FER DE [A|b] =

a′
1,1 a′

1,2 · · · a′
1,n b′

1

a′
2,1 a′

2,2 · · · a′
2,n b′

2
...

...
. . .

...
...

0 0 · · · 0 b′
i

...
...

. . .
...

...




ET b′

i ̸= 0

SI (*) EST SEL COMPATIBLE :

SEL (∗) COMPATIBLE DÉTERMINÉ ⇔ LA FER DE A N’A PAS DE VARIABLE LIBRE

20 NumChap: chap-systemes-lineaires, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

botafogo.saitis.net

Chapitre 2

Vecteurs de Rn

2.1 Définitions

Dans ce chapitre, nous laissons les systèmes de côté un instant, pour introduire le langage de base néces-
saire au développement de l’algèbre linéaire dans les espacesRn , n⩾ 1. Pour commencer, nous introduirons
la notion de vecteur, centrale en algèbre linéaire, et particulièrement utile pour décrire les systèmes.

Objectifs de ce chapitre

À la fin de ce chapitre vous devriez être capable de

(O.1) exprimer un vecteur de Rn comme combinaison linéaire d’autres vecteurs, si possible ;

(O.2) déterminer si un vecteur est dans la partie engendrée par une famille de vecteurs en résolvant
le SEL associé ;

(O.3) déterminer si une famille de vecteurs est libre ou liée en résolvant le SEL associé.

Nouveau vocabulaire dans ce chapitre

• combinaison linéaire
• vecteurs colinéaires
• famille liée (ou linéairement dépendante)

• famille libre (ou linéairement indépen-
dante)

• partie engendrée

2.1.1 Vecteurs

On l’a déjà mentionné plus haut : toute liste de nombres réels (x1, x2, . . . , xn) peut être identifiée avec un
point de l’espace Rn . Or les points de Rn sont plus facilement manipulables lorsqu’on les interprète comme
des objets appelés vecteurs.

On identifiera donc (x1, . . . , xn) avec le vecteur (dit aussi vecteur-colonne), noté

x =


x1

x2
...

xn

 .

Informel 2.1. En analyse, Rn est considéré comme un ensemble de points. En algèbre linéaire, Rn

est considéré comme un ensemble de vecteurs.

NumChap: chap-vecteurs-de-Rn, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) 21

botafogo.saitis.net

2.1. Définitions

Il est clair que la liste (x1, . . . , xn) et le vecteur x contiennent la même information, mais ici il faut interpréter
x comme le déplacement depuis l’origine jusqu’au point (x1, x2, . . . , xn). Par exemple, dans le plan R2,

(1)

(2)

x

x2

x1

ou dans l’espace R3 :

(1)

(2)

(3)

x

x1
x2

x3

L’avantage d’identifier des points avec des vecteurs est que le langage vectoriel permet d’introduire des
opérations qui rendent les vecteurs propices au calcul.

2.1.2 Addition et multiplication par des scalaires

On munit l’ensemble des vecteurs de Rn de deux opérations :

1) (Multiplication par un scalaire) La multiplication d’un vecteur

x =


x1

x2
...

xn


par un scalaire λ ∈R est le vecteur λx défini par

λx :=


λx1

λx2
...

λxn

 .

Du point de vue géométrique, la multiplication par un scalaire λ> 0 correspond à étirer (si λ⩾ 1) ou
comprimer (si 0 <λ< 1) :

22 NumChap: chap-vecteurs-de-Rn, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

botafogo.saitis.net

2.1. Définitions

x

2x

Lorsque λ< 0, cette transformation est en plus accompagnée d’un changement de sens :

x

−x/2

2) (Addition vectorielle) Si deux vecteurs

x =


x1

x2
...

xn

 et y =


y1

y2
...

yn


sont donnés, leur somme est définie par

x+y :=


x1 + y1

x2 + y2
...

xn + yn

 .

Remarque 2.2. En petites dimensions, n = 2 et n = 3, l’addition vectorielle peut s’interpréter géométrique-
ment comme la règle du parallélogramme :

x

y

x

y x+y

On comprend ici que c’est l’interprétation d’un vecteur comme à un déplacement qui rend cette opération
d’addition naturelle. ⋄

Le vecteur nul est celui dont toutes les composantes sont égales à zéro. On le notera

0 =


0
0
...
0

 .

Par définition, on a 0x = 0. Pour tout vecteur x, on appelle opposé de x le vecteur −x := (−1)x. Les opérations
d’addition et de multiplication par un scalaire permettent de manipuler les vecteurs à l’aide de calculs. Ces
calculs obéissent aux règles standard de l’arithmétique :

NumChap: chap-vecteurs-de-Rn, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) 23

botafogo.saitis.net

2.1. Définitions

Proposition 2.3. Pour tous vecteurs x, y, z de Rn , et pour tous scalaires λ,µ ∈R,

(V.1) x+y = y+x (commutativité) ;

(V.2) x+ (y+z) = (x+y)+z (associativité) ;

(V.3) x+0 = 0+x = x ;

(V.4) x+ (−x) = (−x)+x = 0 ;

(V.5) λ(x+y) =λx+λy (distributivité I) ;

(V.6) (λ+µ)x =λx+µx (distributivité II) ;

(V.7) (λµ)x =λ(µx) =µ(λx) (distributivité mixte) ;

(V.8) 1x = x.

Preuve: Ces propriétés ne font que refléter une propriété élémentaire semblable, valide dans le corps des nombres

réels. Ci-dessous, on indiquera par le symbole
!= une identité obtenue en utilisant une propriété de base dans les réels,

pour chacune des composantes :

(V.1)

x+y =


x1 + y1

x2 + y2
...

xn + yn

 !=


y1 +x1

y2 +x2
...

yn +xn

= y+x ;

(V.2)

x+ (y+z) =


x1

x2
...

xn

+


y1 + z1

y2 + z2
...

yn + zn

=


x1 + (y1 + z1)
x2 + (y2 + z2)

...
xn + (yn + zn)

 !=


(x1 + y1)+ z1

(x2 + y2)+ z2
...

(xn + yn)+ zn

=


x1 + y1

x2 + y2
...

xn + yn

+


z1

z2
...

zn

= (x+y)+z ;

(V.3)

x+0 =


x1 +0
x2 +0

...
xn +0

 !=


x1

x2
...

xn

 !=


0+x1

0+x2
...

0+xn

= 0+x ;

(V.4)

x+ (−x) =


x1 + (−x1)
x2 + (−x2)

...
xn + (−xn)

 !=


0
0
...
0

 !=


(−x1)+x1

(−x2)+x2
...

(−xn)+xn

= (−x)+x ;

(V.5)

λ(x+y) =λ


x1 + y1

x2 + y2
...

xn + yn

=


λ(x1 + y1)
λ(x2 + y2)

...
λ(xn + yn)

 !=


λx1 +λy1

λx2 +λy2
...

λxn +λyn

=λx+λy ;

(V.6)

(λ+µ)x =


(λ+µ)x1

(λ+µ)x2
...

(λ+µ)xn

 !=


λx1 +µx1

λx2 +µx2
...

λxn +µxn

=λx+µx ;

24 NumChap: chap-vecteurs-de-Rn, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

botafogo.saitis.net

2.2. Colinéarité

(V.7)

(λµ)x =


(λµ)x1

(λµ)x2
...

(λµ)xn

 !=


λ(µx1)
λ(µx2)

...
λ(µxn)

=λ(µx)
!=


µ(λx1)
µ(λx2)

...
µ(λxn)

=µ(λx) ;

(V.8)

1x =


1.x1

1.x2
...

1.xn

 !=


x1

x2
...

xn

= x.

Avec ces propriétés, on peut résoudre des équations vectorielles, dont l’inconnue est un vecteur x, de la
même façon qu’on résout des équations élémentaires où l’inconnue est un réel x.

Exemple 2.4. Considérons deux vecteurs a,b ∈Rn fixés, et étudions l’équation vectorielle

2a−3x = 5x+7b .

Utilisons les propriétés démontrées ci-dessus pour isoler x, comme on le fait quand on résout une équation
en arithmétique élémentaire.

Rajoutons +3x des deux côtés. Du côté gauche, détaillons l’utilisation des propriétés :

2a−3x+3x = 2a+ (−3+3)x = 2a+0x = 2a+0 = 2a .

En procédant de même du côté droit, on obtient

2a = 8x+7b .

En soustrayant 7b des deux côtés,
8x = 2a−7b ,

puis en multipliant par 1
8 ,

x = 1
4 a− 7

8 b .

⋄

2.2 Colinéarité

La colinéarité est une généralisation du parallélisme.

Définition 2.5. Deux vecteurs x,y ∈ Rn sont colinéaires s’il existe un scalaire λ ∈ R tel que y = λx ou
x =λy.

Deux vecteurs sont colinéaires si ils sont supportés par la même droite,

x

y

NumChap: chap-vecteurs-de-Rn, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) 25

botafogo.saitis.net

2.3. Combinaisons linéaires et parties engendrés

et non-colinéaires (on dira bientôt indépendants) s’ils pointent dans des directions différentes :

y

x

Exemple 2.6. Parmi les trois vecteurs de R4 suivants,

x =


3
4
0
−1

 , y =


−3
1/2

0
1

 , z =


6
−1
0
−2

 ,

seuls y et z sont colinéaires, puisque z =−2y. ⋄
Remarque 2.7. Le vecteur nul, 0, est colinéaire à n’importe quel autre vecteur. En effet, quel que soit y ∈Rn ,
on peut toujours écrire 0 =λy, où λ= 0. ⋄

2.3 Combinaisons linéaires et parties engendrés

En algèbre linéaire, une façon standard et non-triviale d’obtenir de nouveaux vecteurs à partir d’une famille
donnée est de former des combinaisons linéaires.

Définition 2.8. Soient v1,v2, . . . ,vk des vecteurs de Rn . Une somme du type

λ1v1 +·· ·+λk vk ,

où les λ1,λ2, . . . ,λk sont des scalaires fixés, est appelée combinaison linéaire des vecteurs v1, . . . ,vk .
Les scalaires λ j sont les coefficients de la combinaison linéaire.

Exemple 2.9. Dans R2, considérons v1 =
(
3
5

)
, v2 =

(−1
2

)
. En prenant λ1 =−2, λ2 = 3,

λ1v1 +λ2v2 =−2

(
3

5

)
+3

(
−1

2

)
=

(
−9

−4

)
.

Choisissons maintenant un troisième vecteur : w =
(

5
−2

)
, et posons la question : est-il possible d’écrire w

comme une combinaison linéaire de v1 et v2 ? Il s’agit donc de voir s’il existe des scalaires λ1,λ2 tels que

λ1v1 +λ2v2 = w .

Lorsqu’on exprime cette relation en composantes,(
3λ1 −λ2

5λ1 +2λ2

)
=

(
5

−2

)
.

Puisque deux vecteurs sont égaux si et seulement si leurs composantes sont égales deux-à-deux, on en
déduit que λ1 et λ2 doivent être solution du système{

3λ1 − λ2 = 5,
5λ1 + 2λ2 = −2.

26 NumChap: chap-vecteurs-de-Rn, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

botafogo.saitis.net

2.3. Combinaisons linéaires et parties engendrés

La solution de ce système est unique, donnée par λ1 = 8
11 , λ2 = −31

11 . On en déduit que w est bien combinai-
son linéaire de v1 et v2 :

w = 8
11 v1 − 31

11 v2 .

⋄

Plus généralement, fixons deux vecteurs v1 et v2 dans le plan, et considérons toutes les combinaisons li-
néaires de la forme

w =λ1v1 +λ2v2 , λ1,λ2 ∈R .

On remarque que

• Si v1 et v2 ne sont pas colinéaires, alors toutes les combinaisons linéaires possibles de v1 et v2 rem-
plissent le plan, dans le sens suivant : n’importe quel vecteur w peut s’écrire comme combinaison
linéaire de v1 et v2.

• Si v1 et v2 sont colinéaires, alors seulement certains vecteurs w du plan peuvent s’écrire comme com-
binaison linéaire de v1 et v2 (essentiellement ceux qui sont sur la droite portée par v1 et v2).

Exemple 2.10. Dans R3, considérons

v1 =
−3

2
0

 , v2 =
 1

1
−1

 , w =
4

0
3

 .

Est-ce que w est combinaison linéaire de v1 et v2 ? Pour le savoir, cherchons λ1,λ2 tels que

λ1v1 +λ2v2 = w ,

qui mène au système 
−3λ1 + λ2 = 4,
2λ1 + λ2 = 0,

− λ2 = 3.

Ce système est incompatible, donc w ne peut pas s’écrire comme combinaison linéaire de v1 et v2. ⋄

Informel 2.11. Dans ce dernier exemple, on a résolu un problème de combinaison linéaire en l’ex-
primant sous la forme d’un système linéaire. Dans la section suivante nous ferons l’inverse, en mon-
trant qu’un système linéaire peut se traduire en un problème de combinaison linéaire.

NumChap: chap-vecteurs-de-Rn, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) 27

botafogo.saitis.net

2.3. Combinaisons linéaires et parties engendrés

2.3.1 Parties engendrées

Définition 2.12. Soient v1, . . . ,vp des vecteurs de Rn donnés. La partie de Rn engendrée par la fa-
mille {v1, . . . ,vp }, notée

Vect{v1, . . . ,vp } ,

est définie comme l’ensemble des vecteurs de Rn qui peuvent s’écrire comme combinaison linéaire
des vecteurs v1, . . . ,vp :

w =λ1v1 +·· ·+λp vp .

Informel 2.13. La partie engendrée par une famille de vecteurs, c’est l’ensemble de toutes les com-
binaisons linéaires possibles de ces vecteurs.

Remarque 2.14. En anglais, Vect{v1, . . . ,vp } se note Span{v1, . . . ,vp }. ⋄
Pour les familles contenant un ou deux vecteurs :

• Lorsqu’on considère une famille {v} contenant un seul vecteur non-nul v, Vect{v} est constitué de tous
les vecteurs colinéaires à v, c’est-à-dire de la forme w = λv. Il est donc naturel d’interpréter Vect{v}
comme la droite de Rn engendrée par v, passant par l’origine :

v
Vect{v}

• Lorsqu’on considère une famille {v1,v2} contenant deux vecteurs non-colinéaires, on interprète Vect{v1,v2}
comme le plan de Rn engendrée par v1 et v2, passant par l’origine :

v1

v2

Vect{v1,v2}

(2)

(1)

(3)

Même si cette terminologie (“droite”, “plan”) est empruntée à la géométrie du plan (n = 2) et de l’espace
(n = 3), nous l’utiliserons aussi dans les dimensions supérieures (n > 3).

Exemple 2.15. Plus haut, nous avions défini

v1 =
−3

2
0

 , v2 =
 1

1
−1

 , w =
4

0
3

 ,

28 NumChap: chap-vecteurs-de-Rn, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

botafogo.saitis.net

2.3. Combinaisons linéaires et parties engendrés

et montré que w n’est pas combinaison linéaire de v1 et v2. Nous pouvons maintenant interpréter ceci en
disant que w n’est pas dans le plan engendré par v1 et v2 :

v1

v2

Vect{v1,v2} w

(2)

(1)

(3)

⋄

2.3.2 La base canonique de Rn

Définissons, pour tout k = 1, . . . ,n, le vecteur ek ∈ Rn comme étant le vecteur dont toutes les composantes
sont nulles, sauf la k-ème, qui vaut 1.

e1 =



1
0
0
...
0
0


, e2 =



0
1
0
...
0
0


, · · · ,en =



0
0
0
...
0
1


.

Cette famille de vecteur peut être utilisée pour décomposer n’importe quel vecteur, comme suit :

x =


x1

x2
...

xn

=


x1

0
...
0

+


0
x2
...
0

+·· ·+


0
0
...

xn



= x1


1
0
...
0

+x2


0
1
...
0

+·· ·+xn


0
0
...
1


= x1e1 +x2e2 +·· ·+xnen .

En d’autres termes,

Rn = Vect{e1, . . . ,en} .

Plus tard, on appellera {e1, . . . ,en} la base canonique de Rn .

NumChap: chap-vecteurs-de-Rn, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) 29

botafogo.saitis.net

2.4. Indépendance linéaire

2.4 Indépendance linéaire

La notion d’indépendance linéaire (et celle qui lui est associée, la dépendance linéaire) est une des plus
importantes de l’algèbre linéaire.

Informel 2.16. En effet, il sera important de comprendre comment des vecteurs peuvent être utilisés
pour “remplir l’espace”, à l’aide de combinaisons linéaires. Pour ce faire, il faudra pouvoir décrire
dans quelle mesure ces vecteurs pointent dans des dimensions différentes de Rn . Et pour avoir en
main une notion qui permette de travailler (et faire des calculs !), il faut introduire une définition
abstraite, qui s’utilise en toute dimension. Cette notion, c’est l’indépendance linéaire.

2.4.1 Motivation : une caractérisation de la non-colinéarité

En guise de motivation, considérons deux vecteurs dans le plan. Clairement, si ces vecteurs ne sont pas
colinéaires, c’est qu’ils pointent dans des directions différentes. Or on peut reformuler ce que signifie être
non-colinéaire un peu différemment.

Fixons deux vecteurs du plan, v1 et v2, et étudions toutes les combinaisons linéaires de la forme

w =λ1v1 +λ2v2 , λ1,λ2 ∈R .

Bien-sûr, quels que soient v1 et v2, on a w = 0 dès que λ1 =λ2 = 0, puisque

0v1 +0v2 = 0 .

Mais posons-nous la question de savoir s’il existe d’autres paires (λ1,λ2) telles que w = 0. Par un simple
calcul, ou en utilisant l’animation ci-dessus , on se convainc facilement des deux faits suivants :

1) Si v1 et v2 ne sont pas colinéaires, alors l’unique façon d’avoir w = 0 est de prendre λ1 =λ2 = 0.

2) Si v1 et v2 sont colinéaires, alors il existe une infinité de choix possibles pour λ1 et λ2 qui garantissent
w = 0.

3) La même chose fonctionne en toute dimension.

On conclut de cette simple discussion que la non-colinéarité, pour deux vecteurs, peut s’exprimer de façon
plus abstraite, par cette condition à propos de leurs combinaisons linéaires nulles :

Lemme 2.17. Deux vecteurs non-nuls v1,v2 ∈Rn sont non-colinéaires si et seulement si l’unique com-
binaison linéaire nulle,

λ1v1 +λ2v2 = 0 ,

est celle pour laquelle λ1 =λ2 = 0.

30 NumChap: chap-vecteurs-de-Rn, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

botafogo.saitis.net

2.4. Indépendance linéaire

L’avantage de cette caractérisation de la non-colinéarité de deux vecteurs, proposée dans le lemme précé-
dent, est qu’elle se généralise naturellement à des familles contenant plus que deux vecteurs (deRn). Voyons
comment, dans la section suivante.

2.4.2 Définition et propriétés

Définition 2.18. Soient v1, . . . ,vp des vecteurs de Rn donnés. La famille {v1, . . . ,vp } est dite

(LD) liée (ou linéairement dépendante) s’il existe des coefficients λ1,λ2, . . . ,λp , dont au moins un
n’est pas nul, tels que

λ1v1 +·· ·+λp vp = 0 ;

(LI) libre (ou linéairement indépendante) si elle n’est liée, i.e. si l’unique combinaison linéaire
nulle,

λ1v1 +·· ·+λp vp = 0

est celle pour laquelle λ1 =λ2 = ·· · =λp = 0.

Remarque 2.19. Dès qu’un des vecteurs de la famille {v1, . . . ,vp } est nul, cette famille est dépendante. En
effet, supposons que vk = 0. On peut alors écrire l’identité suivante, toujours vraie,

0v1 +0v2 +·· ·+0vk−1 +1 vk︸︷︷︸
=0

+0vk+1 +·· ·+0vp = 0 ,

qui implique bien que {v1, · · · ,vp } est dépendante. ⋄
Exemple 2.20. Considérons la famille de vecteurs de R4 contenant les trois vecteurs

v1 =


1
0
2
−3

 , v2 =


0
−2
1
5

 , v3 =


3
2
1
0

 .

Cette famille est-elle libre ou liée? Pour répondre, considérons la relation linéaire

λ1v1 +λ2v2 +λ3v3 = 0 .

Lorsqu’on écrit explicitement cette relation en composantes, on obtient le système de taille 4×3 suivant :
λ1 + 3λ3 = 0,

− 2λ2 + 2λ3 = 0,
2λ1 + λ2 + λ3 = 0,
−3λ1 + 5λ2 = 0.

La matrice augmentée de ce système devient, après échelonnage,
1 0 3 0
0 1 −1 0
0 0 1 0
0 0 0 0

 .

La solution du système correspondant est λ1 = λ2 = λ3 = 0. On conclut que {v1,v2,v3} est une famille libre.
⋄

NumChap: chap-vecteurs-de-Rn, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) 31

botafogo.saitis.net

2.4. Indépendance linéaire

Exemple 2.21. Montrons que la famille formée des vecteurs de la base canonique deRn , {e1, . . . ,en}, est libre.
Pour ce faire, considérons la relation linéaire

λ1e1 +λ2e2 +·· ·+λnen = 0 .

Lorsqu’on l’exprime en composantes, cette dernière devient
λ1 = 0,
λ2 = 0,

...
λn = 0,

qui montre bien que la famille est libre. ⋄

Théorème 2.22. Une famille {v1, . . . ,vp } est liée si et seulement si un de ses vecteurs peut s’écrire comme
combinaison linéaire des autres, plus précisément : s’il existe k ∈ {1, . . . , p} tel que vk peut s’écrire comme
combinaison linéaire des v j , j ̸= k.

Preuve: Si la famille est liée, alors il existe des nombres λ1, . . . ,λp , non tous nuls, tels que

λ1v1 +·· ·+λk vk +·· ·+λp vp = 0 .

Si on supposons que le coefficient λk ̸= 0, on peut isoler vk dans cette dernière :

vk =
p∑

j=1
j ̸=k

(−λ j)

λk
v j .

On a donc bien exprimé vk comme combinaison linéaire des autres. Inversément, si un vk peut s’écrire comme com-
binaison linéaire des autres,

vk =
p∑

j=1
j ̸=k

α j v j ,

et on peut récrire cette dernière comme

α1v1 +·· ·+αk−1vk−1 + (−1)vk +αk+1vk+1 +·· ·+αp vp = 0 ,

qui montre bien que la famille est liée.

À la lumière de ce dernier théorème, illustrons encore la différence libre/liée dans le cas simple de trois
vecteurs dans R3.

Exemple 2.23. Considérons une famille de trois vecteurs de R3, F = {v1,v2,v3}.

• Si F est liée, alors le théorème précédent implique que l’un des vecteurs, disons v1, peut s’écrire
comme combinaison linéaire des deux autres. En d’autres termes, cela signifie que v1 est dans le plan
engendré par v2,v3 :

v3

v2

v1

Vect{v2,v3}

(2)

(1)

(3)

32 NumChap: chap-vecteurs-de-Rn, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

botafogo.saitis.net

2.5. Résumé du chapitre sur les vecteurs de Rn

• Par contre, si F est libre, alors le théorème implique qu’aucun des vecteurs ne peut s’écrire comme
combinaison linéaire des autres (aucun n’est dans le plan engendré par les deux autres), ce qui ex-
prime bien le fait que ces trois vecteurs pointent tous dans des dimensions différentes :

v2

v3

Vect{v2,v3} v1

(2)

(1)

(3)

⋄

2.5 Résumé du chapitre sur les vecteurs de Rn

VECTEURS DE Rn :

x =


x1

x2
...

xn

 ∈Rn −−−→ COORDONNÉES (OU COMPOSANTES) DE x : x1, · · · , xn

0 =


0
0
...
0

 ∈Rn −−→ VECTEUR NUL −x =


−x1

−x2
...

−xn

−−→ VECTEUR OPPOSÉ

SOMME ET PRODUIT PAR SCALAIRES :


x1

x2
...

xn

+


y1

y2
...

yn

 :=


x1 + y1

x2 + y2
...

xn + yn

 ET λ


x1

x2
...

xn

 :=


λx1

λx2
...

λxn



x

y

x

y x+y

z

2z

v

−v/2

NumChap: chap-vecteurs-de-Rn, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) 33

botafogo.saitis.net

2.5. Résumé du chapitre sur les vecteurs de Rn

PROPRIÉTÉS DE SOMME ET PRODUIT PAR SCALAIRES :

(V.1) x+y = y+x (commutativité) ;

(V.2) x+ (y+z) = (x+y)+z (associativité) ;

(V.3) x+0 = 0+x = x ;

(V.4) x+ (−x) = (−x)+x = 0 ;

(V.5) λ(x+y) =λx+λy (distributivité I) ;

(V.6) (λ+µ)x =λx+µx (distributivité II) ;

(V.7) (λµ)x =λ(µx) =µ(λx) (distributivité mixte) ;

(V.8) 1x = x.

COMBINAISON LINÉAIRE (CL) de v1, . . . ,vp ∈Rn :

λ1 v1 + · · · + λp vp = b

coefficients
(∈R)

vecteurs

COMBINAISON LINÉAIRE

PARTIE ENGENDRÉE PAR v1, . . . ,vp ∈Rn :

Vect{v1, . . . ,vp } = {
λ1v1+·· ·+λp vp :λ1, · · · ,λp ∈R}←− PARTIE ENGENDRÉE = ENSEMBLE DE TOUTES LES CL!

VECTEURS COLINÉAIRES :

v ET w COLINÉAIRES ≡ v =λw OU w =λv

FAMILLE {v1, . . . ,vp } LIÉE (OU LINÉAIREMENT DÉPENDANTE) :

ON PEUT ÉCRIRE λ1v1 +·· ·+λp vp = 0 AVEC AU MOINS UN λi ̸= 0

FAMILLE {v1, . . . ,vp } LIBRE (OU LINÉAIREMENT INDÉPENDANTE) :

λ1v1 +·· ·+λp vp = 0 ⇒ λ1 = ·· · =λp = 0

BASE CANONIQUE {e1, . . . ,en} DE Rn :

e1 =



1
0
0
...
0
0


, e2 =



0
1
0
...
0
0


, · · · ,en =



0
0
0
...
0
1


←− C’EST UNE FAMILLE LIBRE DE Rn !

34 NumChap: chap-vecteurs-de-Rn, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

botafogo.saitis.net

Chapitre 3

Formulation vectorielle des systèmes
d’équations linéaires

3.1 Systèmes d’équations linéaires : formulation vectorielle

3.1.1 Description générale

Dans ce chapitre, nous allons reformuler ce qui a été dit à propos des systèmes en utilisant le langage vecto-
riel de l’algèbre linéaire. Ceci aura plusieurs avantages, et mènera en particulier à une compréhension plus
profonde des divers aspects liés à la recherche des solutions d’un système linéaire.

Objectifs de ce chapitre

À la fin de ce chapitre vous devriez être capable de

(O.1) exprimer un SEL sous forme vectorielle ;

(O.2) calculer l’ensemble solution d’un SEL à partir d’une solution particulière et l’ensemble de
solutions du SEL homogène associé ;

(O.3) déterminer si une application de Rm dans Rn est linéaire ;

(O.4) déterminer la matrice canonique d’une application linéaire de Rm dans Rn ;

(O.5) connaître le lien entre SEL et équations matricielles, et l’utiliser pour calculer des solutions
des équations matricielles.

Nouveau vocabulaire dans ce chapitre

• formulation vectorielle d’un SEL
• SEL homogène/inhomogène
• SEL homogène associé
• solution triviale
• solution particulière

• ensemble image d’une application

• application linéaire de Rm dans Rn

• matrice d’une application linéaire de Rm

dans Rn

3.1.2 La formulation vectorielle

On peut voir un système d’équations linéaires de taille m ×n général, de la forme

(∗)


a1,1x1 + a1,2x2 + ·· · + a1,n xn = b1 ,
a2,1x1 + a2,2x2 + ·· · + a2,n xn = b2 ,

...
...

am,1x1 + am,2x2 + ·· · + am,n xn = bm ,

NumChap: chap-systemes-formulation-vect, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) 35

botafogo.saitis.net

3.1. Systèmes d’équations linéaires : formulation vectorielle

comme une égalité entre deux vecteurs de Rm :
a1,1x1 + a1,2x2 + ·· · + a1,n xn

a2,1x1 + a2,2x2 + ·· · + a2,n xn
...

am,1x1 + am,2x2 + ·· · + am,n xn

=


b1

b2
...

bm

 .

Or on peut récrire cette dernière comme suit :

x1


a1,1

a2,1
...

am,1

+x2


a1,2

a2,2
...

am,2

+·· ·+xn


a1,n

a2,n
...

am,n

=


b1

b2
...

bm

 ,

dans laquelle on reconnaît maintenant, dans le membre de gauche, une combinaison linéaire des colonnes
de la matrice associée au système, qui est donnée, rappelons-le, par

A =


a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n
...

...
. . .

...
am,1 am,2 · · · am,n

 .

Récrivons la même chose de façon plus compacte, en commençant par définir le vecteur associé au second
membre,

b :=


b1

b2
...

bm

 ,

et récrivons la matrice du système comme une famille de colonnes,

A = [
a1 a2 · · · an

]
,

où, la k-ème colonne est le vecteur de Rm donné par

ak :=


a1,k

a2,k
...

am,k

 .

Donc la recherche de solutions (x1, x2, . . . , xn) au système (∗) est équivalente à demander si le membre de
droite b appartient à la partie deRm engendrée par les colonnes de A, c’est-à-dire si on peut écrire b comme
une combinaison linéaire des colonnes de A :

x1a1 +x2a2 +·· ·+xnan = b .

Dans cette formulation, les inconnues x1, . . . , xn jouent le rôle de coefficients de la combinaison linéaire.

Une dernière définition permettra de faire encore un pas dans la description du système (∗).

36 NumChap: chap-systemes-formulation-vect, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

botafogo.saitis.net

3.1. Systèmes d’équations linéaires : formulation vectorielle

Définition 3.1. Soit A une matrice de taille m ×n, dont la k-ème colonne est notée ak ∈Rm ,

A = [
a1 a2 · · · an

]
,

et soit x un vecteur de Rn ,

x =

x1
...

xn

 .

Le produit de A par x est le vecteur Ax ∈Rm défini par la combinaison linéaire

Ax := x1a1 +·· ·+xnan .

Le produit d’une matrice A de taille m ×n par un vecteur x ∈Rn crée donc un vecteur Ax ∈Rm . Cette trans-
formation est l’exemple standard de ce que l’on appellera plus tard une application linéaire, puisqu’elle
satisfait à la propriété suivante :

Lemme 3.2. Soit A une matrice de taille m ×n. Alors pour tous x,y ∈Rn et pour tout scalaire λ ∈R,

A(x+λy) = Ax+λAy .

Cette propriété constitue la linéarité de A.

Preuve: Notons la matrice A = [a1 · · ·an], et les vecteurs

x =


x1

x2
...

xn

 et y =


y1

y2
...

yn

 .

Alors,

A(x+λy) = [
a1 a2 · · · an

]


x1 +λy1

x2 +λy2
...

xn +λyn

= (x1 +λy1)a1 +·· ·+ (xn +λyn)an

= (
x1a1 +·· ·+xn an

)+ (
λy1a1 +·· ·+λyn an

)= (
x1a1 +·· ·+xn an

)+λ(
y1a1 +·· ·+ yn an

)
= Ax+λAy .

NumChap: chap-systemes-formulation-vect, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) 37

botafogo.saitis.net

3.1. Systèmes d’équations linéaires : formulation vectorielle

Point clé : Équivalence entre SEL usuel et forme vectorielle d’un SEL

Avec les notations introduites ci-dessus, on peut maintenant écrire le système

(∗)


a1,1x1 + a1,2x2 + ·· · + a1,n xn = b1 ,
a2,1x1 + a2,2x2 + ·· · + a2,n xn = b2 ,

...
...

am,1x1 + am,2x2 + ·· · + am,n xn = bm ,

de façon équivalente sous une forme purement vectorielle :

(∗) : Ax = b ,

où A est la matrice du SEL (∗) et b est le vecteur formé du second membre de (∗).

L’existence d’une solution x du SEL (∗) équivaut à dire qu’il existe au moins une façon d’écrire le
membre de droite b comme combinaison linéaire des colonnes de A.

On finit cette section avec la preuve de l’unicité de la forme échelonnée réduite.

Lemme 3.3.⋆ Si A = [a1 . . . an] et B = [b1 . . . bn] sont deux matrices échelonnées réduites de taille m×n
et ligne-équivalentes, alors A = B.

Preuve: On va procéder par récurrence sur la quantité de colonnes n.
Si n = 1, le résultat est clair. En effet, dans ce cas A et B sont des vecteurs colonnes avec m lignes. Or, il existe deux
matrices échelonnées réduites de taille m ×1 :

0 =


0
0
...
0

 et e1 =


1
0
...
0

 .

Si A = 0 = B ou A = e1 = B , on obtient ce que l’on veut. Il reste à montrer que le cas A = e1 et B = 0 est absurde. On
note que les ensembles de solutions des matrices augmentées

0 0
0 0
...

...
0 0

 et


1 0
0 0
...

...
0 0


sont différents, vu pour le premier c’est R et pour le deuxième c’est {0}, ce qui nous dit que e1 et 0 ne sont pas ligne-
équivalentes. Comme A et B sont ligne-équivalentes, le cas A = e1 et B = 0 est absurde, comme on voulait démontrer.
On suppose désormais que n > 1. En ajoutant une décoration sur les matrices A et B , on écrit

A = [E |b] et B = [E ′|b′] ,

où b,b′ sont des vecteurs colonnes donnés par la dernière colonne de A et B , respectivement, et E ,E ′ sont les ma-
trices de taille m × (n −1) formées des premières n −1 colonnes de A et B , respectivement. Comme A et B sont ligne-
équivalentes, alors les matrices E et E ′ le sont aussi. En plus, comme A et B sont échelonnées réduites, alors E et E ′ le
sont aussi. Par l’hypothèse de la récurrence, E = E ′, i.e.

A = [E |b] et B = [E |b′] .

Il suffit de montrer que b = b′. On suppose que b ̸= b′ et on montrera un absurde. On note S A et SB , respectivement,
les ensembles de solutions des matrices augmentées

[A|0] et [B |0] .

38 NumChap: chap-systemes-formulation-vect, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

botafogo.saitis.net

3.2. Sur le nombre de solutions d’un système d’équations linéaires (bis)

Comme A et B sont ligne-équivalentes, S A = SB . On définit la matrice D = [(a1 −b1) . . . (an −bn)]. Si (x1, . . . , xn) ∈ S A =
SB , alors par définition (x1, . . . , xn) est aussi une solution de la matrice augmentée [D|0], i.e.

(b−b′)xn = Dx = 0,

ce qui veut dire xn = 0, vu que b ̸= b′. En conséquence, xn n’est une variable libre ni pour [A|0] ni pour [B |0]. En

conséquence, b et b′ contiennent un pivot, qui doit être dans la première ligne nulle de E et E ′, respectivement.

Comme E = E ′, cela nous dit que b = b′, ce qui contredit l’inégalité b ̸= b′. En conséquence, b = b′, comme on voulait

démontrer.

3.2 Sur le nombre de solutions d’un système d’équations linéaires (bis)

Comme première application de la formulation vectorielle d’un système d’équations linéaires de taille m ×
n, revisitons le Théorème “0,1,∞”, en donnant une preuve plus transparente que celle vue précédemment :

Théorème 3.4. Soit A une matrice de taille m ×n, b ∈ Rm un second membre, et soit S(∗) l’ensemble
des vecteurs x ∈Rn solutions de

(∗) : Ax = b .

Si S(∗) n’est pas vide, alors soit il contient exactement un vecteur, soit il en contient une infinité.

Preuve: (La preuve est la même que dans la première version, mais formulée dans un langage vectoriel.) Supposons
que S(∗) n’est pas vide, et qu’il contient plus d’un élément. On a donc deux vecteurs x,y ∈Rn distincts, tels que

Ax = b , Ay = b .

Considérons un scalaire λ quelconque, et définissons

z := y+λ(x−y) .

Si λ est différent de 0 et 1, alors z est différent de x et de y . Vérifions que z est aussi solution de (∗). En effet, par la
linéarité démontrée dans le lemme,

Az = A
(
y+λ(x−y)

)= Ay︸︷︷︸
=b

+λ(Ax− Ay︸ ︷︷ ︸
=b−b=0

) = b .

On peut donc, en choisissant λ, créer une infinité de nouvelles solutions.

La formulation vectorielle permet d’interpréter géométriquement la preuve donnée ci-dessus. En effet, on sait de la
géométrie analytique que le vecteur z = y+λ(x−y) a son extrémité située sur la droite passant y, dirigée par x−y :

x

y

z
x−y

L’infinité de solutions vient du fait qu’il existe une infinité de vecteurs ayant tous leur extrémité sur cette droite.

NumChap: chap-systemes-formulation-vect, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) 39

botafogo.saitis.net

3.3. Systèmes d’équations linéaires homogènes et inhomogènes

3.3 Systèmes d’équations linéaires homogènes et inhomogènes

Dans l’étude des systèmes de taille m ×n du type

(∗) : Ax = b ,

il sera important de distinguer ceux dont le second membre b est nul.

Définition 3.5. Soit b ∈Rm .

• Si b = 0, le système (∗) est dit homogène :

Ax = 0 .

• Si b ̸= 0, le système (∗) est dit inhomogène.

3.3.1 Solutions des systèmes homogènes

Commençons par une remarque importante : tout système homogène est compatible. En effet, il possède
toujours la solution triviale, donnée par le vecteur nul 0 ∈ Rn , puisque le produit d’une matrice par le vec-
teur nul donne toujours le vecteur nul :

A0 = 0 .

On remarque que le “0” du membre de gauche est le vecteur nul deRn , alors que le “0” du membre de droite
est le vecteur nul de Rm !

Remarque 3.6. Par définition, étant donné une matrice A de taille m ×n, le système d’équations linéaires
homogène Ax = 0 admet une solution non triviale si et seulement si les colonnes de A forment une famille
liée de Rm . ⋄
Exemple 3.7. Étudions le système de taille 3×3 homogène donné par

1 0 2
0 3 0
4 0 5

x1

x2

x3

=
0

0
0

 .

L’opération L3 ← L3 −4L1 donne 1 0 2
0 3 0
0 0 −3

x1

x2

x3

=
0

0
0

 ,

qui correspond au système triangulaire


x1 + 2x3 = 0,

3x2 = 0,
− 3x3 = 0,

dont l’unique solution est (x1, x2, x3) = (0,0,0). On conclut que dans ce cas, il n’y a pas d’autre solution que
la solution triviale. ⋄

Mais un système homogène peut posséder des solutions autres que la solution triviale. En fait, dès qu’il
possède une solution autre que la triviale, on sait qu’il doit en posséder une infinité.

40 NumChap: chap-systemes-formulation-vect, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

botafogo.saitis.net

3.3. Systèmes d’équations linéaires homogènes et inhomogènes

Exemple 3.8. Le système de taille 3×3 homogène1 1 0
2 8 −2
2 5 −1

x1

x2

x3

=
0

0
0


est équivalent à 1 1 0

0 3 −1
0 0 0

x1

x2

x3

=
0

0
0

 .

On voit que x3 est libre, et donc que le système possède une infinité de solutions, décrites par

S =


x1

x2

x3

= t

−1
1
3

∣∣∣t ∈R
 .

On retrouve bien-sûr la solution triviale en prenant t = 0, mais toute valeur t ̸= 0 donne une solution non-
triviale.

Remarquons encore que l’ensemble S ci-dessus n’est autre que la partie de R3 engendrée par le vecteur

non-nul v =
(−1

1
3

)
: S = Vect{v}. On peut donc interpréter S comme l’ensemble de tous les vecteurs situés sur

la droite dirigée par v, passant par l’origine de R3. ⋄

Informel 3.9. Remarquons que quand on travaille dans les réels, l’équation (avec a ̸= 0)

ax = 0

ne possède que “x = 0” comme solution. Ici, un système homogène

Ax = 0

peut posséder une infinité de solutions non-nulles (même si A contient des coefficients différents de
zéro).

Exemple 3.10. Considérons le système homogène de taille 2×4 suivant :

(
1 1 1 1
1 0 −1 0

)
x1

x2

x3

x4

=
(
0
0

)
.

Deux opérations élémentaires (L1 ← L1 −L2, suivie de L1 ↔ L2) mènent à la forme réduite

(
1 0 −1 0
0 1 2 1

)
x1

x2

x3

x4

=
(
0
0

)
,

qui correspond à

(∗)

{
x1 − x3 = 0,

x2 + 2x3 + x4 = 0,

dans lequel x3 = s et x4 = t sont libres. On a donc

S =




x1

x2

x3

x4

=


s

−2s − t
s
t

∣∣∣s, t ∈R

 .

NumChap: chap-systemes-formulation-vect, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) 41

botafogo.saitis.net

3.3. Systèmes d’équations linéaires homogènes et inhomogènes

⋄

3.3.2 Systèmes homogènes et indépendance linéaire

Par définition, le problème de savoir si une famille {v1, . . . ,vp } ⊆ Rn est libre ou liée revient à étudier les
familles de coefficients α1, . . . ,αp pour lesquelles la condition

α1v1 +·· ·+αp vp = 0

peut être satisfaite. D’un point de vue calculatoire, ce problème peut être reformulé comme suit.

Définissons la matrice de taille n ×p,
A := [

v1 · · · vp
]

,

et introduisons le vecteur

α=

α1
...
αp

 ∈Rp .

Alors {v1, . . . ,vp } est libre si et seulement si le système homogène

Aα= 0

ne possède que la solution triviale : α= 0.

Exemple 3.11. Soient

v1 =
1

2
3

 , v2 =
 0

1
−4

 , v3 =
 7
−2
3

 .

La famille F = {v1,v2,v3} ⊆R3 est-elle libre ou liée ?

Le système Aα= 0 correspondant est 1 0 7
2 1 −2
3 −4 3

α1

α2

α3

=
0

0
0

 ,

qui est équivalent à 1 0 7
0 1 −16
0 0 41

α1

α2

α3

=
0

0
0

 ,

qui ne possède que la solution triviale. Donc F est libre. ⋄

Cette façon de traiter l’indépendance linéaire permet d’énoncer un résultat général sur l’indépendance li-
néaire :

Théorème 3.12. Dans Rn , toute famille de plus de n vecteurs est liée.

Preuve: Soit F = {v1, . . . ,vp } ⊆Rn , avec p > n. On peut ranger ces vecteurs dans une matrice de taille n ×p, qui a plus
de colonnes que de lignes :

A := [v1 . . . vp] =


a1,1 a1,2 · · · a1,p

a2,1 a2,2 · · · a2,p
...

...
. . .

...
an,1 an,2 · · · an,p

 ,

42 NumChap: chap-systemes-formulation-vect, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

botafogo.saitis.net

3.3. Systèmes d’équations linéaires homogènes et inhomogènes

où ai , j , i = 1, . . . ,n, sont les composantes du vecteur v j .

Maintenant, étudions la dépendance en considérant la relation linéaire

α1v1 +·· ·+αp vp = 0 .

Celle-ci correspond au système Aα= 0, qui a pour matrice augmentée
a1,1 a1,2 · · · a1,p 0
a2,1 a2,2 · · · a2,p 0

...
...

. . .
...

...
an,1 an,2 · · · an,p 0

 .

Puisque p > n, sa forme réduite doit contenir au moins une colonne ne contenant pas de pivot, et donc le système

possède au moins une variable libre. Ceci implique, comme le second membre est nul, qu’il existe une infinité de

solutions non-triviales, et donc que F est liée.

3.3.3 Solutions des systèmes d’équations linéaires inhomogènes

Fixons maintenant un b ∈Rm non-nul, et considérons le système d’équations linéaires inhomogène

(∗) : Ax = b .

À l’opposé des systèmes homogènes (qui ont toujours au moins la solution triviale), il n’y a aucune garantie
concernant l’existence d’une solution. Mais pour que la discussion ci-dessous ne soit pas vide, supposons
que ce système est compatible : S(∗) ̸= ;. Notre but ci-dessous sera décrire une propriété générale de l’en-
semble S(∗).

Le résultat suivant va nous montrer que les solutions de ce système sont intimement liées à celle du système
homogène associé, qui est celui avec la même matrice A, mais dans lequel on remplace b par 0 :

(∗)h : Ax = 0 .

Théorème 3.13. Supposons déjà connue une solution de (∗), que l’on nommera particulière, et que
l’on notera vp . Alors toute autre solution de (∗), v ∈ S(∗), peut s’écrire comme

v = vp +vh ,

où vh est une certaine solution du problème homogène (∗)h associé.

Preuve: Si v ∈ S(∗), alors
Av = b .

Mais puisque vp ∈ S(∗), on a aussi
Avp = b .

En soustrayant ces deux dernières expressions, on obtient

Av− Avp = b−b = 0 .

Par linéarité, ceci implique que
A(v−vp) = 0 .

Ainsi, en définissant vh := v−vp , cette dernière dit bien que vh est solution du problème homogène associé : Avh = 0.

Puisque v = vp +vh , ceci démontre le résultat.

Ce théorème peut être résumé comme suit : si on connaît seulement une solution du système (∗), et si
on sait complètement résoudre le système homogène associé (∗)h , alors on connaît toutes les solutions du
système (∗). Plus concrètement, pour résoudre (∗), on pourra procéder comme suit :

NumChap: chap-systemes-formulation-vect, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) 43

botafogo.saitis.net

3.3. Systèmes d’équations linéaires homogènes et inhomogènes

1) Chercher une solution particulière vp de (∗).

2) Résoudre le système homogène associé (∗)h , c’est-à-dire trouver l’ensemble S(∗)h .

3) Combiner les deux, pour produire

S(∗) =
{

v = vp +vh |vh ∈ S(∗)h

}
.

Interprétation géométrique :

0

vh

vp v

S(∗)

S(∗)h

Voyons comment cette structure peut s’observer sur un exemple concret.

Exemple 3.14. Considérons le système de taille 3×3 suivant :

(∗)


x1 + 3x2 + x3 = 1,

2x1 + x2 − 3x3 = 7,
−x1 + 5x2 + 7x3 = −9,

qui correspond à

A =
 1 3 1

2 1 −3
−1 5 7

 , b =
 1

7
−9

 .

Remarquons que le vecteur

vp :=
 2

0
−1


est solution du système. En effet,

Avp =
 1 3 1

2 1 −3
−1 5 7

 2
0
−1

=
 1

7
−9

= b .

On a donc une solution particulière vp . On sait maintenant, par le théorème, que l’on aura toutes les autres
solutions en résolvant le système homogène associé, c’est-à-dire

(∗)h :

 1 3 1
2 1 −3
−1 5 7

x1

x2

x3

=
0

0
0

 .

En procédant comme d’habitude, on obtient

S(∗)h =


x1

x2

x3

= t

 2
−1
1

 ∣∣∣ t ∈R
 .

44 NumChap: chap-systemes-formulation-vect, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

botafogo.saitis.net

3.4. Applications linéaires entre Rn et Rm : introduction

On sait donc, par le théorème, que toutes les solutions du problème inhomogène sont données par

S(∗) =
{

v = vp +vh |vh ∈ S(∗)h

}
=


x1

x2

x3

=
 2

0
−1

+ t

 2
−1
1

 ∣∣∣ t ∈R
 .

Bien-sûr, on observe cette structure aussi si on résout le système avec la technique habituelle. En partant
de la matrice augmentée,  1 3 1 1

2 1 −3 7
−1 5 7 −9

 ,

dont l’échelonnage mène à identifier la variable libre x3 = t , on trouve

x1 = 4+2t ,

x2 =−1− t ,

x3 = t .

Vectoriellement, on peut écrire l’ensemble des solutions comme

S(∗) =


x1

x2

x3

=
 4
−1
0

+ t

 2
−1
1

 ∣∣∣ t ∈R
 .

On voit donc encore une fois la structure “solution particulière + toutes les solutions du problème homo-
gène associé”. ⋄

3.4 Applications linéaires entre Rn et Rm : introduction

Plus haut, nous avons défini le membre de droite d’un système de taille m×n, à savoir “Ax”, comme le pro-
duit d’une matrice A de taille m ×n par le vecteur x ∈Rn . Ce produit étant défini comme une combinaison
linéaire des colonnes de A, Ax est un vecteur de Rm .

La multiplication par une matrice de taille m ×n est donc une opération qui transforme les vecteurs de Rn

en des vecteurs de Rm . C’est un cas particulier d’une application (ou fonction) de Rn dans Rm :

Rn →Rm

x 7→ Ax .

Si nécessaire, quelques notions générales sur les fonctions sont rappeléesici.

3.4.1 Applications : le point de vue général

Plus généralement, une application n’est pas forcément définie à l’aide d’une matrice. On utilisera souvent
la lettre “T ” pour représenter une application générique :

T :Rn →Rm

x 7→ T (x) .

NumChap: chap-systemes-formulation-vect, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) 45

https://botafogo.saitis.net/analyse-1/index.html?section=m_fonctions_defs_inj_surj
botafogo.saitis.net

3.4. Applications linéaires entre Rn et Rm : introduction

Rn Rm

x

T (x)

T

Le vecteur y = T (x) est appelé image de x (par T), et x est une préimage de y.

Considérons un instant une équation du type suivant

(∗) : T (x) = b ,

où le membre de droite b ∈ Rm est fixé. L’existence d’au moins une solution x ∈ Rn , pour cette équation,
revient à demander si b fait partie des éléments de l’ensemble d’arrivée qui sont “atteints” par l’application,
c’est-à-dire pour lesquels il existe au moins une préimage. Ceci mène à la définition suivante :

Définition 3.15. L’ensemble image de T :Rn →Rm est défini par

Img(T) := {
y ∈Rm : ∃x ∈Rn t.q. T (x) = y

}
.

Rn

Img(T)

Rm

x

x′
x′′

T (x) = T (x′)

T (x′′)

y′

T

On a donc, pour l’équation (∗) ci-dessus :

• Si b ̸∈ Img(T), alors (∗) ne possède aucune solution.

• Si b ∈ Img(T), alors (∗) possède au moins une solution.

3.4.2 Définition de la linéarité

Définition 3.16. Une application

T :Rn →Rm

x 7→ T (x)

est dite linéaire si elle satisfait si T (x+λx′) = T (x)+λT (x′) pour tous x,x′ ∈Rn et λ ∈R.

Remarque 3.17. Si T :Rn →Rm est une application linéaire, alors T (0) = 0. En effet, la définition d’applica-
tion linéaire nous dit que

T (0) = T (0+1.0) = T (0)+1.T (0) = T (0)+T (0).

Si l’on considère la somme du membre initial et du membre final de l’identité précédente avec −T (0), on
conclut que 0 = T (0). ⋄

46 NumChap: chap-systemes-formulation-vect, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

botafogo.saitis.net

3.4. Applications linéaires entre Rn et Rm : introduction

Remarque 3.18. On laisse comme exercice la preuve du fait qu’une application T :Rn →Rm est linéaire si et
seulement si elle satisfait aux deux propriétés suivantes :

1) T (x+x′) = T (x)+T (x′) pour tous x,x′ ∈Rn ;

2) T (λx) =λT (x) pour tous λ ∈R et x ∈Rn .

Voir sinon la Remarque 4.37. ⋄
Exemple 3.19. Considérons l’application T :R3 →R2 définie ainsi :x1

x2

x3

= x 7→ T (x) :=
(−x1 +3x2 +5x3

x3 +7x1

)
.

Montrons, “à la main”, uniquement à l’aide de la définition de linéarité, que T est linéaire. Pour ce faire,

prenons un x =
x1

x2

x3

 et un scalaire λ. On utilise la définition de T pour calculer

T (λx) = T

λx1

λx2

λx3


=

(
(−λx1)+3(λx2)+5(λx3)

(λx3)+7(λx1)

)
=λ

(−x1 +3x2 +5λx3

x3 +7x1

)
=λT (x) .

Ensuite, pour toute paire x,y,

T (x+y) = T

x1 + y1

x2 + y2

x3 + y3


=

(−(x1 + y1)+3(x2 + y2)+5(x3 + y3)
(x3 + y3)+7(x1 + y1)

)
=

(−x1 +3x2 +5x3

x3 +7x1

)
+

(−y1 +3y2 +5y3

y3 +7y1

)
= T (x)+T (y) .

On a donc bien montré que T est linéaire. ⋄
Nous avons déjà vu que si T :Rn →Rm , et s’il existe une matrice de taille m ×n telle que

T (x) = Ax ∀x ∈Rn ,

alors T est linéaire . Mais a priori, une application peut être linéaire sans forcément être associée à une
matrice.

Exemple 3.20. Si on reprend l’application T de l’exemple précédent, on peut remarquer que

T (x) =
(−x1 +3x2 +5x3

x3 +7x1

)
=

(−1 3 5
7 0 1

)
︸ ︷︷ ︸

=:A

x1

x2

x3

= Ax .

Ainsi, T est linéaire. ⋄

NumChap: chap-systemes-formulation-vect, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) 47

botafogo.saitis.net

3.5. Matrice d’une application linéaire entre Rn et Rm

Pour montrer qu’une application n’est pas linéaire, il suffit de montrer qu’une des deux conditions qui dé-
finit la linéarité n’est pas satisfaite, en exhibant un contre-exemple. On pourra donc

• soit trouver un x∗ et un scalaire λ tel que T (λx∗) ̸=λT (x∗),

• soit trouver deux vecteurs x∗,y∗ tels que T (x∗+y∗) ̸= T (x∗)+T (y∗).

Exemple 3.21. Considérons l’application T :R2 →R3 définie par

(
x1

x2

)
= x 7→ T (x) :=

x1x2

−x2

x1

 .

L’apparition de la multiplication “x1x2” indique que cette application n’est probablement pas linéaire. Comme

contre-exemple, prenons λ= 2, et x∗ =
(
1
3

)
. On a

T (λx∗) = T

(
2

(
1
3

))
= T

(
2
6

)
=

12
−6
2

 ,

alors que

λT (x∗) = 2T

(
1
3

)
= 2

 3
−3
1

=
 6
−6
2

 .

On a donc T (λx∗) ̸=λT (x∗), ce qui implique que T n’est pas linéaire. ⋄

Point clé : Équivalence entre SEL et applications linéaires

Résoudre un SEL

(∗)


a1,1x1 + a1,2x2 + ·· · + a1,n xn = b1 ,
a2,1x1 + a2,2x2 + ·· · + a2,n xn = b2 ,

...
...

am,1x1 + am,2x2 + ·· · + am,n xn = bm ,

est équivalent à trouver toutes les préimages de b ∈Rm par l’application linéaire T :Rn →Rm don-
née par T (x) = Ax pour x ∈ Rn , où A est la matrice du SEL (∗) et b est le vecteur formé du second
membre du (∗).

3.5 Matrice d’une application linéaire entre Rn et Rm

3.5.1 Résultat principal

Dans cette section, nous allons appliquer quelques-unes des notions relatives aux applications linéaires
T :Rn →Rm .

Nous avions vu que toute application T :Rn →Rm de la forme T (x) = Ax est linéaire, et nous savons depuis
la dernière section du dernier chapitre que la réciproque est vraie :

48 NumChap: chap-systemes-formulation-vect, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

botafogo.saitis.net

3.5. Matrice d’une application linéaire entre Rn et Rm

Théorème 3.22. Si T :Rn →Rm est linéaire, alors il existe une unique matrice A de taille (m ×n) telle
que

T (x) = Ax , ∀x ∈Rn .

De plus, la matrice A est celle dont les colonnes sont les images par T des vecteurs de la base canonique
(voir Sous-section 2.3.2)

A = [
T (e1) · · ·T (en)

]
.

Exemple 3.23. Considérons l’application linéaire T :R3 →R2 déjà considérée précédemment :x1

x2

x3

= x 7→ T (x) :=
(−x1 +3x2 +5x3

x3 +7x1

)
.

En calculant les images des vecteurs de base,

T (e1) = T

1
0
0

=
(−1+3 ·0+5 ·0

0+7 ·1

)
=

(−1
7

)
,

T (e2) = T

0
1
0

=
(
0+3 ·1+5 ·0

0+7 ·0

)
=

(
3
0

)
,

T (e3) = T

0
0
1

=
(
0+3 ·0+5 ·1

1+7 ·0

)
=

(
5
1

)
,

ce qui donne la matrice associée à T :

A =
(−1 3 5

7 0 1

)
.

⋄
Exemple 3.24. Considérons l’application T :R3 →R :x1

x2

x3

= x 7→ T (x) := x2 −3x1 .

(On montre facilement que cette application est linéaire.) En calculant les images des vecteurs de base,

T (e1) = T

1
0
0

= 0−3 ·1 =−3,

T (e2) = T

0
1
0

= 1−3 ·0 = 1,

T (e3) = T

0
0
1

= 0−3 ·0 = 0,

ce qui donne la matrice de taille 1×3 associée à T :

A = [
T (e1)T (e2)T (e3)

]= (−3 1 0
)

.

NumChap: chap-systemes-formulation-vect, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) 49

botafogo.saitis.net

3.6. Résumé du chapitre sur la formulation vectorielle des systèmes d’équations linéaires

En effet,

T (x) = Ax = (−3 1 0
)x1

x2

x3

=−3x1 +x2 .

⋄
Remarque 3.25. Les applications linéaires T :Rn →Rm définies jusqu’ici ont toujours été définies en compo-
santes, c’est-à-dire en définissant les composantes de T (x) ∈Rm à l’aide des composantes de x ∈Rn , comme
dans les deux exemples précédents.

Il faut garder à l’esprit que pour l’instant, ces composantes sont toujours des composantes associées à la
base canonique.

En général, comme on verra plus tard, une application n’a pas besoin d’être définie à l’aide de composantes,
et on pourra effectivement lui associer une matrice à partir de choisir une base, une notion que l’on va
introduire dans les prochains chapitres. ⋄

3.5.2 Pour la suite...

Nous aurons encore beaucoup à dire sur les applications linéaires, qui sont les vraies “fonctions” étudiées
en algèbre linéaire (un peu comme les fonctions continues sont les fonctions les plus étudiées en analyse).

Mais avant d’en dire plus, nous allons faire un pause, dans le chapitre suivant, et reprendre tout ce que nous
avons fait jusqu’ici, en adoptant un point de vue beaucoup plus général, celui des espaces vectoriels abstraits.
Nous introduirons plus de choses dans ce cadre, en particulier à propos des applications linéaires d’un
espace vectoriel dans un autre. Plus tard, nous appliquerons alors ces notions lorsque nous reviendrons
plus en profondeur sur les applications linéaires du type x 7→ T (x) = Ax.

3.6 Résumé du chapitre sur la formulation vectorielle des systèmes d’équa-
tions linéaires

PRODUIT MATRICE ET VECTEUR :

a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n
...

...
. . .

...
am,1 am,2 · · · am,n




x1

x2
...

xn


 := x1

a1,1

a2,1
...

am,1


 + x2

a1,2

a2,2
...

am,2


 +·· ·+ xn

a1,n

a2,n
...

am,n






A

}

x

MATRICE DÉFINIE PAR COLONNES :

a1 =
a1,1

a2,1
...

am,1


,a2 =

a1,2

a2,2
...

am,2


, · · · ,an =

a1,n

a2,n
...

am,n


 ⇒ [a1 a2 · · · an] :=

a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n
...

...
. . .

...
am,1 am,2 · · · am,n




50 NumChap: chap-systemes-formulation-vect, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

botafogo.saitis.net

3.6. Résumé du chapitre sur la formulation vectorielle des systèmes d’équations linéaires

FORMULATION VECTORIELLE DU SEL :

(∗)


a1,1x1 + a1,2x2 + ·· · + a1,n xn = b1 ,
a2,1x1 + a2,2x2 + ·· · + a2,n xn = b2 ,

...
...

am,1x1 + am,2x2 + ·· · + am,n xn = bm ,

⇔


a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n
...

...
. . .

...
am,1 am,2 · · · am,n


︸ ︷︷ ︸

A


x1

x2
...

xn


︸ ︷︷ ︸

x

=


b1

b2
...

bm


︸ ︷︷ ︸

b

FAIT FONDAMENTAL :

Ax = b COMPATIBLE ⇔ b EST CL DES COLONNES DE A

SEL HOMOGÈNE :

Ax = 0 −−−→ AU MOINS UNE SOLUTION : x = 0 (SOLUTION TRIVIALE)

CONSÈQUENCE FONDAMENTALE :

Ax = 0 ADMET SOLUTION NON TRIVIALE ⇔ COLONNES DE A FORMENT FAMILLE LIÉE

SEL INHOMOGÈNE ET SEL HOMOGÈNE ASSOCIÉ :

(∗) : Ax = b AVEC b ̸= 0 −−−→ SEL HOMOGÈNE ASSOCIÉ (∗)h : Ax = 0

SOLUTION GÉNÉRALE DU SEL INHOMOGÈNE VIA SEL HOMOGÈNE ASSOCIÉ :

SI vp ∈Rn SOLUTION PARTICULIÈRE DE (∗) ⇒ SOLUTION GÉNÉRALE DE (∗) EST v = vp +vh

AVEC vh SOLUTION DE (∗)h

,
THÉORÈME :

{v1, . . . ,vp } ⊆Rn AVEC p > n EST LIÉE (VOIR THM. 3.12)

APPLICATION LINÉAIRE (AL) :

T :Rn →Rm APPLICATION LINÉAIRE ≡ T (x+λx′) = T (x)+λT (x′) , ∀x,x′ ∈Rn ,λ ∈R

MATRICE (CANONIQUE) D’UNE AL T :Rn →Rm :

[T] := [
T (e1) · · ·T (en)

] −−−→ T (x) = [T]x , ∀x ∈Rn

NumChap: chap-systemes-formulation-vect, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) 51

botafogo.saitis.net

Chapitre 4

Définitions abstraites I : espaces vectoriels,
sous-espaces vectoriels et applications
linéaires entre espaces vectoriels

4.1 Motivation

On a pu apprécier, dans les dernières sections, à quel point l’introduction de la notion abstraite de vecteur
s’est avérée utile, non seulement dans la description des systèmes linéaires, mais aussi dans l’avantage qu’ils
représentent d’un point de vue calculatoire : on peut les manipuler un peu comme de simples nombres ,
sans se soucier du fait qu’ils représentent, a priori, des objets de grandes dimensions.

Les vecteurs nous ont également permis de développer le début de la théorie des applications linéaires
T :Rn →Rm , qui nous occuperont pour la plupart de ce que nous allons faire jusqu’à la fin de ce cours.

Mais avant de poursuivre cette étude, nous allons généraliser tout ce que nous avons fait jusqu’ici, pour
l’utiliser dans d’autres situations.

En effet, il est profitable, dans beaucoup de situations qui vont bien au-delà de ce que nous avons vu jusqu’à
maintenant, d’avoir une structure vectorielle abstraite qui permette de manipuler des objets à l’aide d’une
addition vectorielle et d’une multiplication par un scalaire, telle que les propriétés classiques de l’arith-
métique (commutativité, distributivité, etc) soient satisfaites. Cette structure, qui généralise la notion de
vecteur dans Rn , est ce qu’on appelle un espace vectoriel, et constitue le sujet de ce chapitre.

Les espaces vectoriels offrent un cadre de travail sur lequel nous redéfinirons naturellement tout ce que
nous avons fait dans le cas de Rn . Nous introduirons également de nouvelles notions, qui seront après uti-
lisées dans le cas particulier des espaces Rn .

Informel 4.1. Attention : le contenu de ce chapitre est abstrait ! La difficulté principale, pour le no-
vice, est d’accepter le fait que l’on va parler de “vecteurs” sans dire exactement ce qu’ils sont ; il faudra
s’habituer à travailler avec ces objets en utilisant uniquement les propriétés qui les définissent, et qui
sont décrites dans la définition de la section suivante.

52 NumChap: chap-espaces-vectoriels, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

botafogo.saitis.net

4.2. Définition et exemples

Objectifs de ce chapitre

À la fin de ce chapitre vous devriez être capable de

(O.1) connaître et manipuler des espaces vectoriels (abstraits), ainsi que les propriétés basiques;

(O.2) connaître et manipuler des sous-espaces vectoriels ;

(O.3) déterminer si une famille de vecteurs est libre (aussi appelée linéaire indépendante) ou liée
(aussi appelée linéaire dépendante) ;

(O.4) déterminer le sous-espace vectoriel engendré par une famille de vecteurs ;

(O.5) connaître la définition d’application linéaire, ainsi que quelques propriétés basiques.

(O.6) calculer le noyau et image d’une application linéaire ;

(O.7) déterminer si une application linéaire est injective, sujective, ou bijective.

Nouveau vocabulaire dans ce chapitre

• espace vectoriel
• sous-espace vectoriel
• sous-espace vectoriel engendré
• famille génératrice
• vecteurs colinéaires
• famille liée (ou linéairement dépendante)
• famille libre (ou linéairement indépen-

dante)
• application linéaire
• noyau d’une application linéaire
• image d’une application linéaire
• projection sur une droite du plan
• réflexion à travers une droite du plan
• rotation autour de l’origine du plan

4.2 Définition et exemples

Commençons par introduire la généralisation abstraite de la notion de vecteur rencontrée dans les chapitres
précédents :

Définition 4.2. Un espace vectoriel est un ensemble non-vide, noté souvent V , dont les éléments
sont appelés vecteurs, notés souvent u, v, w, . . . , muni d’une addition et d’une multiplication par
un scalaire, satisfaisant aux propriétés suivantes :

(EV.1) u + v = v +u pour tous u, v ∈V (commutativité) ;

(EV.2) u + (v +w) = (u + v)+w pour tous u, v, w ∈V (associativité) ;

(EV.3) il existe un élément 0V ∈V , appelé vecteur nul et souvent écrit simplement 0, tel que pour tout
v ∈V ,

v +0V = 0V + v = v ;

(EV.4) pour tout v ∈V , il existe un vecteur −v , appelé vecteur opposé de v , tel que

v + (−v) = (−v)+ v = 0V ;

(EV.5) λ(u + v) =λu +λv pour tous λ ∈R, u, v ∈V (distributivité I) ;

(EV.6) (λ+µ)v =λv +µv pour tous λ,µ ∈R, v ∈V (distributivité II) ;

(EV.7) λ(µv) = (λµ)v =µ(λv) pour tous λ,µ ∈R, v ∈V (associativité mixte) ;

(EV.8) 1v = v pour tout v ∈V .

NumChap: chap-espaces-vectoriels, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) 53

botafogo.saitis.net

4.2. Définition et exemples

Remarque 4.3. Ce que l’on vient de définir est généralement appelé espace vectoriel réel, car les scalaires
utilisés pour multiplier les vecteurs sont des nombres réels. Par la commutativité (EV.1) on voit que les
axiomes (EV.3) et (EV.4) peuvent se simplifier : il suffit de les remplacer par les conditions v + 0V = v et
v + (−v)) = 0V pour tout v ∈V , respectivement. ⋄

Donc un espace vectoriel est simplement un ensemble d’objets abstraits appelés vecteurs, dans lequel un
“+” permet d’additionner ces vecteurs, et dans lequel on peut multiplier les vecteurs par des scalaires.

Informel 4.4. Cela peut prendre du temps de s’habituer à ce niveau d’abstraction, et d’imaginer
que ce genre de structure existe ailleurs que dans le cadre des “flèches de Rn”. C’est surtout à la
fin du cours qu’on se rendra compte de l’utilité de cette généralisation, lorsqu’on pourra résoudre
des problèmes concrets en appliquant des méthodes algébriques/géométriques (par exemple : la
méthode des moindres carrés) dans un espace vectoriel abstrait.

Voyons quelques-uns des principaux exemples d’espaces vectoriels.

4.2.1 Espaces Rn

Le premier exemple d’espace vectoriel que nous avons rencontré est bien-sûr celui où V est formé de tous
les vecteurs de Rn . Dans ce cas l’addition et la multiplication par un scalaire avaient été définis de façon
naturelle, à savoir composante par composante (voir Proposition 2.3). C’est souvent le même procédé qui
est utilisé dans des cas plus généraux.

4.2.2 Espaces de fonctions

Dans ce premier exemple, nous allons voir comment des ensembles de fonctions peuvent aussi être vus
comme des espaces vectoriels.

Soit I ⊆ R un intervalle (borné ou non, I peut même être la droite toute entière), et soit V l’ensemble de
toutes les fonctions définies sur I , à valeurs réelles :

V = {
fonctions f : I →R

}
.

Remarque 4.5. Une fonction f ∈ V est définie une fois que l’on a défini la valeur du réel f (t) pour chaque
t ∈ I . Ainsi, deux fonctions f , g ∈ V sont égales, ce qu’on écrit f = g , si et seulement si elles prennent la
même valeur en tout point, c’est-à-dire si

f (t) = g (t) , ∀t ∈ I .

⋄
• Définissons une addition sur V . Pour ce faire, nous devons associer à toute paire f , g ∈V une nouvelle

fonction f +g ∈V . On doit donc définir le réel (f +g)(t) pour tout t ∈ I , ce que l’on fait naturellement
en posant

(f + g)(t) := f (t)+ g (t) , ∀t ∈ I .

• Définissons la multiplication par un scalaire : si f ∈V et λ ∈R, alors λ f ∈V est la fonction λ f : I →R

définie comme suit :

(λ f)(t) :=λ f (t) , ∀t ∈ I .

54 NumChap: chap-espaces-vectoriels, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

botafogo.saitis.net

4.2. Définition et exemples

Nous devons maintenant vérifier que V est bien un espace vectoriel. Pour cela, nous aurons besoin de la
fonction nulle 0 : I →R, comme étant la fonction qui vaut zéro en tout point,

0(t) := 0, ∀t ∈ I ,

et l’opposé d’une fonction f ∈V , notée − f ∈V , est la fonction

(− f)(t) :=− f (t) , ∀t ∈ I .

Théorème 4.6. Muni de l’addition et de la multiplication par un scalaire (définies ci-dessus), V est un
espace vectoriel.

Preuve: On vérifie une à une chacune des propriétés qui définissent un espace vectoriel. (On remarquera qu’à chaque
fois, c’est une propriété des réels qui fait le travail !)

(EV.1) Soient f , g ∈V . Si on fixe t ∈ I , on peut écrire

(f + g)(t) = f (t)+ g (t) = g (t)+ f (t) = (g + f)(t) .

Comme cette identité est vraie pour tout t ∈ I , cela implique bien que f + g = g + f .

(EV.2) Soient f , g ,h ∈V . Si on fixe t ∈ I , alors(
f + (g +h)

)
(t) = f (t)+ (g +h)(t)

= f (t)+ (
g (t)+h(t)

)
= (

f (t)+ g (t)
)+h(t)

= (f + g)(t)+h(t) = (
(f + g)+h

)
(t) .

Comme cette identité est vraie pour tout t ∈ I , cela implique bien que f + (g +h) = (f + g)+h.

(EV.3) Par la définition de la fonction nulle, on a bien-sûr que f +0 = f pour toute f ∈V , puisque

(f +0)(t) = f (t)+0(t) = f (t) , ∀t ∈ I .

(EV.4) Avec l’opposé − f défini plus haut, pour tout t ∈ I ,(
f + (− f)

)
(t) = f (t)+ (− f)(t) = f (t)− f (t) = 0 = 0(t) ,

ce qui implique que f + (− f) = 0.

(EV.5) Soient f , g ∈V , et soit λ ∈R. Pour tout t ∈ I , on a(
λ(f + g)

)
(t) =λ(

(f + g)(t)
)

=λ(f (t)+ g (t))

=λ f (t)+λg (t)

= (λ f)(t)+ (λg)(t)

= (λ f +λg)(t) ,

ce qui implique λ(f + g) =λ f +λg .

(EV.6) Soient λ,µ ∈R, et f ∈V . On a, pour tout t ∈ I ,(
(λ+µ) f

)
(t) = (λ+µ) f (t)

=λ f (t)+µ f (t)

= (λ f)(t)+ (µ f)(t)

= (λ f +µ f)(t) ,

ce qui implique bien que (λ+µ) f =λ f +µ f .

NumChap: chap-espaces-vectoriels, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) 55

botafogo.saitis.net

4.2. Définition et exemples

(EV.7) Soient λ,µ ∈R, f ∈V . On a, pour tout t ∈ I , (
λ(µ f)

)
(t) =λ(

(µ f)(t)
)

=λ(
µ f (t)

)
= (λµ) f (t)

= (µλ) f (t)

=µ(
λ f (t)

)
=µ(

(λ f)(t)
)

= (
µ(λ f)

)
(t) ,

ce qui implique bien que λ(µ f) = (λµ) f =µ(λ f).

(EV.8) Soit f ∈V . On a, pour tout t ∈ I ,
(1 f)(t) = 1 · f (t) = f (t) ,

ce qui implique bien 1 f = f .

Informel 4.7. La preuve est étonnamment longue, mais ne présente aucune subtilité ! (La seule dif-
ficulté, peut-être, est de comprendre pourquoi il est nécessaire de faire tout ça !)

4.2.3 Espaces de polynômes

Les fonctions polynomiales (que l’on appelle aussi polynômes) sont des fonctions très particulières mais
fournissent un cas important d’espace vectoriel, jouant un rôle important dans de nombreuses applica-
tions. On rappelle qu’une fonction polynomiale (à coefficients réels) est une application p : R→ R pour
laquelle il existe a0, . . . , an ∈R tels que

p(t) = a0 +a1t +a2t 2 +·· ·+an t n , t ∈R . (4.1)

On appelle a0, . . . , an ∈ R les coefficients de p. Comme d’habitude, pour le polynôme p précédent on peut
définir aussi les coefficients am = 0 pour tout entier m > n. Par exemple, la fonction nulle 0 est ainsi une
fonction polynomiale avec tous les coefficients zéro.
On rappelle le résultat fondamental suivant.

Théorème 4.8. Soient p et q deux polynôme à coefficients réels :

p(t) = a0 +a1t +a2t 2 +·· ·+ap t p et q(t) = b0 +b1t +b2t 2 +·· ·+bq t q .

Alors, p(t) = q(t) pour tout t ∈ I (où I est un intervalle ouvert) si et seulement si ai = bi pour tout i .

Preuve: Voir par exemple ici.

Si le polynôme p satisfait (4.1) et an ̸= 0 pour un entier non négatif n, on dit que p a degré n. On définit que
le degré du polynôme nul est −∞, et donc inférieur à tout entier n⩾ 0.

On définit P l’ensemble de tous les polynômes à coefficients réels. Pour n ⩾ 0 entier, on définit Pn l’en-
semble de tous les polynômes à coefficients réels de degré au plus égal à n. On additionne et multiplie
(par des scalaires) des polynômes de degré au plus égal à n comme on l’a fait pour les fonctions.

Théorème 4.9. Munis de l’addition et de la multiplication par un scalaire, P et Pn sont des espaces
vectoriels.

Preuve: (voir exercices)

56 NumChap: chap-espaces-vectoriels, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

https://botafogo.saitis.net/analyse-1/index.html?section=m_integrale_fonctions_rationnelles&element=theoreme&numero=1
botafogo.saitis.net

4.2. Définition et exemples

4.2.4 Espace des matrices

On rappelle qu’une matrice de taille m ×n à coefficients réels est un tableau rectangulaire formé de m
lignes et n colonnes de la forme

A =

 A1,1 · · · A1,n
...

. . .
...

Am,1 · · · Am,n


avec Ai , j ∈ R pour tous 1⩽ i ⩽m et 1⩽ j ⩽ n. Les éléments ai , j sont appelés les coefficients de la matrice
A. On noteMm×n(R) l’ensemble formé de toutes les matrices de taille m×n à coefficients réels. Pour réduire
l’écriture, si une matrice A ∈Mm×n(R) a des coefficients Ai , j (i = 1, . . . ,m, j = 1, . . . ,n), on écrira souvent tout
simplement

A = (Ai , j)i=1,...,m
j=1,...,n

, ou même A = (Ai , j)

si le rang des indices i et j est clair. Pour simplifier, on omettra souvent la virgule dans les indices des
coefficients, i.e. on écrira souvent Ai j au lieu de Ai , j .
Une matrice de taille n×n est dite carrée de taille n. On écrira souventMn(R) au lieu deMn×n(R) l’ensemble
formé de toutes les matrices carrées de taille n à coefficients réels.
On rappelle les définitions d’addition et de multiplication par un scalaire, introduites précédemment :

• Si A,B ∈Mm×n(R),

A =

 A1,1 · · · A1,n
...

. . .
...

Am,1 · · · Am,n

 , B =

 B1,1 · · · B1,n
...

. . .
...

Bm,1 · · · Bm,n

 ,

on définit A+B ∈Mm×n(R) comme la matrice dont les coefficients sont les nombres Ai , j +Bi , j :

A+B :=

 A1,1 +B1,1 · · · A1,n +B1,n
...

. . .
...

Am,1 +Bm,1 · · · Am,n +Bm,n

 .

• Pour un scalaire λ ∈ R, on définit λA ∈ Mm×n(R) comme la matrice dont les coefficients sont les
nombres λAi , j :

λA :=

λA1,1 · · · λA1,n
...

. . .
...

λAm,1 · · · λAm,n

 .

Théorème 4.10. Muni de l’addition et de la multiplication par un scalaire (définies ci-dessus),
Mm×n(R) est un espace vectoriel.

Preuve: En exercice ! L’élément nul “0” est la matrice de taille m × n dont tous les éléments sont égaux à zéro, et

l’opposé d’une matrice A est la matrice dont tous les éléments sont les opposés de ceux de A.

4.2.5 Autres exemples

La structure d’espace vectoriel apparaît dans de nombreuses situations.

Exemple 4.11. Soit V l’ensemble des suites de réels, dans lequel une suite est notée simplement x = (xn)n⩾0.
En définissant une multiplication par un scalaire λ ∈R,

λx := (λxn)n⩾0 ,

et l’addition
x+y := (xn + yn)n⩾0 ,

on peut vérifier (en exercice) que V a une structure d’espace vectoriel. ⋄

NumChap: chap-espaces-vectoriels, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) 57

botafogo.saitis.net

4.3. Colinéarité et indépendance linéaire

4.3 Colinéarité et indépendance linéaire

Une fois que l’on est dans un espace vectoriel V bien défini, on peut importer n’importe quelle notion vec-
torielle, rencontrée dansRn , dans V . Ceci permettra de profiter de ces notions pour résoudre des problèmes
dans un cadre abstrait, ayant parfois des conséquences pratiques surprenantes.

Arrêtons-nous sur quelques-unes de ces notions, qui seront empruntées directement de ce que nous avons
fait dans Rn .

4.3.1 Colinéarité

Définition 4.12. Soit V un espace vectoriel. Deux vecteurs u, v ∈V sont colinéaires si l’un d’eux peut
s’écrire comme un multiple de l’autre.

Exemple 4.13. Les matrices A,B ∈M2×3(R) définies par

A =
(
1 0 2
0 −3 1

2

)
, B =

(−2 0 −4
0 6 −1

)
sont colinéaires, puisque B =−2A. Par contre,

A′ =
(
1 1 2
1 −3 1

2

)
, B =

(
0 7 2
0 −2 −1

)
ne sont pas colinéaires, parce qu’il n’existe aucun λ ∈R tel que A =λB ou tel que B =λA. ⋄
Exemple 4.14. Soient f , g :R→R les fonctions

f (t) := sin(t) g (t) := cos(t) t ∈R .

Montrons que f et g ne sont pas colinéaires. On le démontre par l’absurde : supposons qu’il existe λ ∈R tel
que g =λ f , c’est-à-dire tel que

cos(t) =λsin(t) , ∀t ∈R .

En écrivant cette relation pour le choix particulier t = π
4 , on obtient

p
2

2
=λ ·

p
2

2
,

qui implique λ= 1. Mais, pour le choix t = π
2 , on obtient

0 =λ ·1,

qui implique λ= 0. On conclut qu’il ne peut pas exister de scalaire λ qui fonctionne pour tous les t ∈R. On
conclut que f et g ne sont pas colinéaires. ⋄

4.3.2 Combinaisons linéaires et indépendance linéaire

Si v1, . . . , vp est une famille de vecteurs d’un espace vectoriel V , et si λ1, . . . ,λp sont des scalaires, on peut
considérer la combinaison linéaire

λ1v1 +·· ·+λp vp .

On peut alors généraliser la notion d’indépendance linéaire :

58 NumChap: chap-espaces-vectoriels, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

botafogo.saitis.net

4.3. Colinéarité et indépendance linéaire

Définition 4.15. Soient v1, . . . , vp des vecteurs d’un espace vectoriel V . La famille {v1, . . . , vp } est dite

(LD) liée (ou linéairement dépendante) s’il existe des coefficients λ1,λ2, . . . ,λp , dont au moins un
n’est pas nul, tels que

λ1v1 +·· ·+λp vp = 0V ;

(LI) libre (ou linéairement indépendante) si elle n’est pas liée, i.e si l’unique combinaison linéaire
nulle,

λ1v1 +·· ·+λp vp = 0V

est celle pour laquelle λ1 =λ2 = ·· · =λp = 0.

Exemple 4.16. Considérons les matrices

A =
(
1 0
0 −1

)
, B =

(
0 1
1 0

)
, C =

(
1 −1
0 1

)
,

et montrons que la famille {A,B ,C } est libre. Pour ce faire, considérons la relation linéaire

λ1 A+λ2B +λ3C = 0,

qui signifie en fait

λ1

(
1 0
0 −1

)
+λ2

(
0 1
1 0

)
+λ3

(
1 −1
0 1

)
=

(
0 0
0 0

)
,

c’est-à-dire (
λ1 +λ3 λ2 −λ3

λ2 −λ1 +λ3

)
=

(
0 0
0 0

)
.

Deux matrices sont égales si et seulement si tous leurs coefficients sont égaux, donc cette dernière égalité
entre matrices 2×2 est équivalente à

(∗)


λ1 + λ3 = 0,

λ2 − λ3 = 0,
λ2 = 0,

−λ1 + λ3 = 0.

Ce système ne possédant que la solution triviale, λ1 = λ2 = λ3 = 0, on en conclut que {A,B ,C } est libre
ou, en d’autres termes, qu’aucune de ces matrices ne peut s’écrire comme combinaison linéaire des deux
autres. ⋄
Exemple 4.17. Dans l’espace V de toutes les fonctions de R dans R, considérons pour tout k = 0,1, . . . , p, le
polynôme fk (t) := t k , c’est-à-dire que

f0(t) := 1, f1(t) := t , f2(t) := t 2 , · · · , fp (t) := t p .

Lemme 4.18. La famille { f0, f1, . . . , fp } ⊆Pp est libre.

Preuve: Soient λ0,λ1, . . . ,λp des scalaires. On a

λ0 f0 +λ1 f1 +·· ·+λp fp = 0

si et seulement si
λ0 +λ1t +λ2t 2 +·· ·+λp t p = 0, ∀t ∈R .

On va maintenant utiliser le Théorème 4.8. Ce résultat implique, en prenant I = R, que λ0 = λ1 = ·· · = λp = 0, et donc

que la famille { f0, f1, . . . , fp } est libre. ⋄
⋄

NumChap: chap-espaces-vectoriels, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) 59

botafogo.saitis.net

4.4. Sous-espaces vectoriels

Exemple 4.19. Dans l’espace V de toutes les fonctions de R dans R, considérons la famille { f , g ,h}, où pour
tout t ∈R,

f (t) := 7, g (t) := cos(2t) , h(t) := cos2(t) .

Pour savoir { f , g ,h} est libre ou liée, on considère la relation linéaire

λ1 f +λ2g +λ3h = 0 ,

qui signifie
7λ1 +λ2 cos(2t)+λ3 cos2(t) = 0 ∀t ∈R .

Or si on se souvient de la relation trigonométrique

cos2(α) = 1+cos(2α)

2
,

on peut écrire

h(t) = cos2(t) = 1

2
+ 1

2
cos(2t) = 1

14
f (t)+ 1

2
g (t) .

Donc h = 1
14 f + 1

2 g , ce qui montre que la famille { f , g ,h} est liée. ⋄

4.4 Sous-espaces vectoriels

Définition 4.20. Un sous-ensemble non vide W ⊆V est un sous-espace vectoriel de V si

(SEV.1) 0V ∈W ;

(SEV.2) si w, w ′ ∈W et λ ∈R, alors w +λw ′ ∈W .

On dit aussi qu’un sous-espace vectoriel est un sous-ensemble de V qui est stable par addition et par mul-
tiplication par des scalaires. Schématiquement :

V

W

"stable"

Remarque 4.21. V , vu comme sous-ensemble de lui-même, peut être considéré comme un sous-espace
vectoriel. ⋄

Proposition 4.22. Soit W un sous-espace vectoriel de V . Alors, W est un espace vectoriel avec la somme
et le produit par scalaires de V .

60 NumChap: chap-espaces-vectoriels, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

botafogo.saitis.net

4.4. Sous-espaces vectoriels

Preuve: On voit d’abord que la somme de V appliquée à deux éléments w et w ′ de W est dans W , car (SEV.2) nous

dit que w +w ′ = w +1.w ′ ∈ W . De la même façon, le produit par scalaires de V appliqué à λ ∈ R et w ∈ W est dans

W , vu que (SEV.2) nous dit que w = 0V +1.w ∈W . En outre, les axiomes (EV.1)-(EV.2) et (EV.5)-(EV.8) sont vérifiés pour

les éléments de V , donc a fortiori pour les éléments de W . La condition (SEV.1) et l’axiome (EV.3) pour V implique

aussi que 0V est le vecteur nul de W , i.e. l’axiome (EV.3) pour W est vérifié. Finalement, étant donné w ∈ W , alors

0V + (−1)w =−w ∈W . L’axiome (EV.4) pour V implique alors le même axiome (EV.4) pour W .

Exemple 4.23. Soit V l’espace vectoriel des fonctions réelles sur l’intervalle I = [a,b]. Considérons

W := {
f ∈V | f (a) = f (b)

}
.

Donc les éléments de W sont les fonctions sur [a,b] dont le graphe a un point initial à même hauteur que
le point final :

x

y

a
b

g ∈W

f ∈W

h ∉W

Montrons que W est un sous-espace vectoriel de V .

1) D’abord, la fonction nulle 0 est évidemment dans W , puisque 0(a) = 0(b) = 0.

2) Ensuite, si f ∈W et λ ∈R, alors

(λ f)(a) =λ f (a) =λ f (b) = (λ f)(b) ,

et donc λ f ∈W .

3) Finalement, si f , g ∈W , alors

(f + g)(a) = f (a)+ g (a) = f (b)+ g (b) = (f + g)(b) ,

et donc f + g ∈W .

Sur le même espace vectoriel V (des fonctions réelles définies sur [a,b]), les sous-ensembles suivants sont
aussi des sous-espaces vectoriels :

• Les fonctions paires (si [a,b] est symétrique).

• Les fonctions impaires (si [a,b] est symétrique).

• Les fonctions continues sur [a,b].

• Les fonctions continues sur [a,b], dérivables sur]a,b[.

⋄
Exemple 4.24. Si V est l’espace de toutes les fonctions réelles définies sur R, et si Pn est l’ensemble de tous
les polynômes de degré au plus égal à n, alors Pn est un sous-espace vectoriel de V . (Voir exercices.) ⋄
Exemple 4.25. Dans V = R2, considérons le sous-ensemble W des vecteurs situés sur la droite dirigée par

v =
(
2
1

)
, passant par l’origine :

NumChap: chap-espaces-vectoriels, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) 61

botafogo.saitis.net

4.4. Sous-espaces vectoriels

(1)

(2)

v

W
V =R2

Intuitivement, il est clair que cet ensemble W est “stable” : si on multiplie un vecteur de W par un scalaire,
on obtient un vecteur qui est aussi dans W , et si on additionne deux vecteurs de W , alors on obtient un
vecteur qui est aussi dans W : “on ne sort pas de W ” en additionnant ou en multipliant par des scalaires.

Plus rigoureusement, montrons que W est un sous-espace vectoriel de V =R2.
Preuve: Par définition, W = Vect{v} : w ∈W si et seulement s’il existe un scalaire λ tel que w =λv.

(SEV.1) Le vecteur nul 0 est évidemment dans W puisque 0 = 0v.

(SEV.2) Si w,w′ ∈ W , alors il existe λ,λ′ ∈ R tels que w = λv et w′ = λ′v, et soit µ ∈ R. Alors clairement w+µw′ ∈ W
puisque

w+µw′ =λv+µλ′v = (λ+µλ′)v ,

ce qui entraîne w+µw′ ∈W .

⋄
⋄

Exemple 4.26. Dans V =R3, considérons le plan W = Vect{v1,v2} dirigé par les vecteurs

v1 =
 2

0
−1

 , v2 =
−5

3
7

 .

Par définition, tout vecteur w ∈W est de la forme

w =λ1v1 +λ2v2 , λ1,λ2 ∈R .

On affirme que W est un sous-espace vectoriel de R3.
Preuve: Clairement, W est formé de tous les vecteurs qui sont combinaisons linéaires de v1,v2, donc w ∈ W si et
seulement s’il existe des scalaires λ1,λ2 tels que

w =λ1v1 +λ2v2 .

En d’autres termes : W = Vect{v1,v2}.

(SEV.1) Clairement, 0 ∈W (prendre λ1 =λ2 = 0).

62 NumChap: chap-espaces-vectoriels, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

botafogo.saitis.net

4.4. Sous-espaces vectoriels

(SEV.2) Si w,w′ ∈W , de la forme w =λ1v1 +λ2v2, w′ =λ′
1v1 +λ′

2v2, et µ ∈R, alors

w+µw′ = (λ1v1 +λ2v2)+µ(λ′
1v1 +λ′

2v2)

= (λ1v1 +λ2v2)+ (µλ′
1v1 +µλ′

2v2)

= (λ1 +µλ′
1)v1 + (λ2 +µλ′

2)v2 ,

et donc w+µw′ ∈W .

⋄
⋄

Les deux derniers exemples sont des cas particuliers d’un procédé très général permettant de construire des
sous-espaces vectoriels.

Définition 4.27. Soit V un espace vectoriel, et soient v1, . . . , vp des vecteurs de V . On définit la partie
engendrée (ou l’ensemble engendré) par v1, . . . , vp , noté Vect{v1, . . . , vp }, comme l’ensemble formé
de toutes les combinaisons linéaires possibles des vecteurs v1, . . . , vp .
On dit que {v1, . . . , vp } ⊆ V est une famille génératrice de V (ou que {v1, . . . , vp } ⊆ V engendre V) si
Vect{v1, . . . , vp } =V .

Lemme 4.28. Pour toute famille {v1, . . . , vp } ⊆ V d’un espace vectoriel V , la partie engendrée W =
Vect{v1, . . . , vp } est un sous-espace vectoriel de V .

Preuve: Fonctionne exactement comme les deux preuves dans les exemples ci-dessus.

(SEV.1) La combinaison linéaire dont tous les coefficients sont nuls, donne l’élément nul :

0V = 0v1 +·· ·+0vp ∈W .

(SEV.2) Étant donné w ∈W et w ′ ∈W , on a que

w =λ1v1 +·· ·+λp vp ,

w ′ =λ′
1v1 +·· ·+λ′

p vp .

Alors, pour λ ∈R,

w +λw ′ = (λ1v1 +·· ·+λp vp)+λ(λ′
1v1 +·· ·+λ′

p vp) = (λ1 +λλ′
1)v1 +·· ·+ (λp +λλ′

p)vp ∈W .

En raison du résultat précédent, la partie engendrée par une famille {v1, . . . , vp } est aussi appelée le sous-
espace vectoriel engendré par {v1, . . . , vp }.

Exemple 4.29. Si V est l’espace de toutes les fonctions de R dans R, et si f0, f1, f2 ∈ V sont définies par
fk (t) := t k pour tout t ∈R, alors

W = Vect{ f0, f1, f2} =P2

est le sous-espace vectoriel de V contenant toutes les combinaisons linéaires

p =λ0 f0 +λ1 f1 +λ2 f2 ,

c’est-à-dire tous les polynômes p de degré plus petit ou égal à 2 :

NumChap: chap-espaces-vectoriels, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) 63

botafogo.saitis.net

4.5. Applications linéaires

⋄
Exemple 4.30. Si V est l’espace de toutes les fonctions de R dans R, et si f1, f2 ∈V sont définies par

f1(t) = sin(t) , f2(t) = cos(t) , t ∈R ,

alors W = Vect{ f1, f2} est le sous-espace vectoriel de V contenant toutes les combinaisons linéaires :

⋄

4.5 Applications linéaires

Dans cette section, nous généralisons la notion d’application linéaire, au cas d’une application d’un espace
vectoriel V (de départ) dans un espace vectoriel V ′ (d’arrivée) :

V V ′

v

T (v)

T

Étant des espaces vectoriels, V et V ′ possèdent chacun un zéro ; on les notera 0V ∈ V et 0V ′ ∈ V ′ pour les
distinguer. Par contre, l’addition dans ces espaces sera toujours notée “+” pour ne pas trop alourdir les
notations .

64 NumChap: chap-espaces-vectoriels, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

botafogo.saitis.net

4.5. Applications linéaires

4.5.1 Généralités sur les applications

Rappelons rapidement, dans ce cadre général, quelques notions élémentaires de la théorie des applications
(ou fonctions) T : V → V ′. Si nécessaire, on pourra aller voir ici, pour d’autres exemples à propos de ces
notions. Pour tout V , on notera idV : V →V l’application identité de V qui associe v à tout v ∈V .

On rappelle que, étant donné deux applications T : V → V ′ et S : V ′ → V ′′, la composition S ◦T est l’appli-
cation définie par

S ◦T : V →V ′′

v 7→ (S ◦T)(v) := S
(
T (v)

)
.

De façon graphique, on a

V
V ′

V ′′

v

T (v)

S
(
T (v)

)
T S

S ◦T

Informel 4.31. Attention, même si on lit le symbole “S◦T ” de gauche à droite, en disant “S composée
avec T ”, c’est pourtant T que l’on applique en premier, suivie de S !

Rappelons que pour v ∈V , l’élément v ′ = T (v) ∈V ′ est appelé l’image de v , et v est une préimage de v ′. En
outre,

Définition 4.32. L’ensemble image d’une application T : V → V ′ est défini par l’ensemble des élé-
ments de l’ensemble d’arrivée qui possèdent au moins une préimage :

Img(T) := {
v ′ ∈V ′ |∃v ∈V tel que T (v) = v ′} .

V

Img(T)

V ′

v1

v2
v3

T (v1) = T (v2)

T (v3)

v ′

T

NumChap: chap-espaces-vectoriels, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) 65

https://botafogo.saitis.net/analyse-1/index.html?section=m_fonctions_defs_inj_surj
botafogo.saitis.net

4.5. Applications linéaires

Définition 4.33. Une application T : V →V ′ est

(SUR) surjective si tout élément de l’ensemble d’arrivée V ′ possède au moins une préimage, c’est-à-
dire si Img(T) =V ′ ;

(INJ) injective si des éléments distincts ont des images distinctes, c’est-à-dire si v1 ̸= v2 implique
T (v1) ̸= T (v2) ;

(BIJ) bijective si elle est à la fois injective et surjective ;

(INV) inversible s’il existe une application S : V ′ →V tel que S ◦T = idV et T ◦S = idV ′ .

Remarquons que :

• Lorsque T : V →V ′ est surjective, alors pour tout b ∈V ′, l’équation

T (v) = b

possède au moins une solution v ∈V .

• Une application n’est pas injective s’il existe au moins une paire de vecteurs distincts v1 ̸= v2, tels que
T (v1) = T (v2) :

V V ′

v1

v2

T (v1) = T (v2)

T

Lorsque T : V →V ′ est injective, alors pour tout b ∈V ′, si l’équation

T (v) = b

possède une solution v ∈ V , cette solution est unique. En effet, s’il y avait deux solutions, v1, v2 ∈ V ,
alors T (v1) = T (v2) = b, qui par l’injectivité implique v1 = v2.

• On remarque que les conditions S ◦T = idV et T ◦S = idV ′ dans la définition d’application inversible
s’expriment de façon équivalente comme

S
(
T (v)

)= v , ∀v ∈V ,

T
(
S(v ′)

)= v ′ , ∀v ′ ∈V ′ ,

respectivement. L’application S est dans ce cas unique, elle s’appelle l’application réciproque (ou
inverse) de T , et elle est notée T −1.

V V ′

v = T −1(v ′)

v ′ = T (v)

T

T −1

66 NumChap: chap-espaces-vectoriels, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

botafogo.saitis.net

4.5. Applications linéaires

On voit que l’inversibilité et bijectivité d’une application sont en fait deux conditions équivalentes :

Lemme 4.34. Soit T : V →V ′ une application. Alors les conditions suivantes sont équivalentes :

(BIJ) T est bijective,

(INV) T est inversible.

Preuve: On suppose d’abord que T est bijective. Étant donné v ′ ∈ V ′, comme T est surjective, v ′ possède au moins
une préimage : il existe un v∗ ∈V tel que

T (v∗) = v ′ .

Mais comme T est aussi injective, il ne peut pas exister, à part v∗, d’autre vecteur dont l’image soit égale à v ′. Par ce
procédé, on associe à tout v ′ ∈ V ′ un unique v∗ ∈ V tel que T (v∗) = v ′. On note S : V ′ → V l’application qui à chaque
v ′ associe son unique préimage v∗. Par construction, on a

T
(
S(v ′)

)= v ′ , ∀v ′ ∈V ′ ,

S
(
T (v)

)= v , ∀v ∈V ,

ce qui nous dit que T est inversible.
Réciproquement, si T est inversible, soit S : V ′ → V l’application inverse. Étant donné v ′ ∈ V ′ quelconque, l’identité
T ◦S = idV ′ nous dit que T (S(v ′)) = v ′, ce qui implique que v ′ ∈ Img(T). En conséquence, T est surjective. En outre,
soient v1, v2 ∈V tels que T (v1) = T (v2). L’identité S ◦T = idV nous dit que

v1 = S
(
T (v1)

)= S
(
T (v1)

)= v2,

ce qui implique que T est injective. En conséquence, T est bijective.

4.5.2 Définition d’application linéaire

Généralisons maintenant la notion d’application linéaire, que nous avions précédemment définie seule-
ment dans le cas T :Rn →Rm :

Définition 4.35. Soient V et V ′ des espaces vectoriels. Une application T : V →V ′ est dite linéaire si

T (v1 +λv2) = T (v1)+λT (v2)

pour tous v1, v2 ∈V et tout scalaire λ ∈R.

Remarque 4.36. De même que dans la Remarque 3.17, la linéarité implique que le vecteur nul est toujours
envoyé sur le vecteur nul :

T (0V) = 0V ′ .

En effet, en écrivant 0V = 0V +1.0V et en utilisant la linéarité,

T (0V) = T (0V +1.0V) = T (0V)+1.T (0V) = (1+1)T (0V) .

Si l’on somme à chaque membre −T (0V) on trouve bien que T (0V) = 0V ′ . ⋄
Remarque 4.37. On remarque qu’une application T : V → V ′ est linéaire si et seulement si les deux condi-
tions suivantes sont satisfaites :

1) T (v1 + v2) = T (v1)+T (v2) pour tous v1, v2 ∈V ,

2) T (λv) =λT (v) pour tout v ∈V et tout scalaire λ ∈R.

NumChap: chap-espaces-vectoriels, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) 67

botafogo.saitis.net

4.5. Applications linéaires

En effet, on voit bien que les deux conditions précédentes impliquent que T (v1 +λv2) = T (v1)+λT (v2)
pour tous v1, v2 ∈ V et tout scalaire λ ∈ R, i.e. T est une application linéaire. Réciproquement, si T est une
application linéaire, alors

T (v1 + v2) = T (v1 +1.v2) = T (v1)+1.T (v2) = T (v1)+T (v2)

pour tous v1, v2 ∈V , ce qui donne 1). En outre,

T (λv) = T (0V +λ.v) = T (0V)+λ.T (v) = 0V ′ +λT (v) =λT (v)

pour tous v ∈V et λ ∈R, ce qui donne 2).
On peut aussi mettre les deux conditions précédentes en une seule : une application T : V →V ′ est linéaire
si et seulement si pour tous v1, v2 ∈V , et pour tous scalaires α,β,∈R,

T (αv1 +βv2) =αT (v1)+βT (v2) .

⋄
Nous avons déjà vu plusieurs exemples d’applications linéaires dans le cas T : Rn → Rm . Rappelons le plus
important :

Exemple 4.38. Si A est une matrice réelle m ×n, alors l’application

T :Rn →Rm

x 7→ T (x) := Ax

est linéaire. ⋄
Exemple 4.39. Soit V l’espace des fonctions f : [a,b] →R, soit V ′ =R2, et soit T : V →V ′ définie ainsi : pour
tout f ∈V ,

T (f) :=
(

f (a)
f (b)

)
.

Alors T est linéaire. En effet, si f , g ∈V , α,β ∈R, alors

T (f +λg) =
(
(f +λg)(a)
(f +λg)(b)

)
=

(
f (a)+λg (a)
f (b)+λg (b)

)
=

(
f (a)
f (b)

)
+λ

(
g (a)
g (b)

)
= T (f)+λT (g) .

⋄
Exemple 4.40. Soit V =C ([a,b]) l’espace des fonctions (à valeurs réelles) continues sur [a,b], et soit V ′ =R2.
Soit c ∈]a,b[un point fixé et soit T : V →V ′ définie ainsi : pour tout f ∈V ,

T (f) :=


∫ c

a
f (t)d t∫ b

c
f (t)d t

 .

Alors T est linéaire et surjective. (voir exercices) ⋄

Lemme 4.41. Soient T : V →V ′ et S : V ′ →V ′′ des applications linéaires.

(COM) La composition S ◦T : T →V ′′ est une application linéaire.

(INV) Si T est bijective, alors sa réciproque T −1 : V ′ →V est aussi linéaire.

68 NumChap: chap-espaces-vectoriels, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

botafogo.saitis.net

4.5. Applications linéaires

Preuve: Pour démontrer que la composition S ◦T : T →V ′′ est une application linéaire, on note que

(S ◦T)(v1 +λv2) = S
(
T (v1 +λv2)

)= S
(
T (v1)+λT (v2)

)= S
(
T (v1)

)+λS
(
T (v2)

)= (S ◦T)(v1)+λ(S ◦T)(v2),

pour tous v1, v2 ∈ V et λ ∈ R, où l’on a utilisé dans la deuxième égalité que T est une application linéaire et dans la
troisième égalité que S est une application linéaire.
On va montrer que si T est bijective alors T −1 : V ′ →V est aussi linéaire. Or, pour v ′

1, v ′
2 ∈V ′ et λ ∈R, on a

T
(
T −1(v ′

1)+λT −1T (v ′
2)

)= T
(
T −1(v ′

1)
)+λT

(
T −1(v ′

2)
)= v ′

1 +λv ′
2 = T

(
T −1(v ′

1 +λv ′
2)

)
,

où l’on a utilisé que T est une application linéaire dans la première égalité, et que T et T −1 sont des applications
réciproques dans la deuxième et dernière égalités. On rappelle que l’injectivité de T veut dire que T (v1) = T (v2) pour
v1, v2 ∈V implique v1 = v2. En conséquence, l’identité démontrée et l’injectivité de T impliquent que

T −1(v ′
1)+λT −1(v ′

2) = T −1(v ′
1 +λv ′

2),

comme on voulait prouver.

4.5.3 Noyau d’une application linéaire

Lorsqu’une application T : V →V ′ est linéaire, plusieurs choses peuvent être dites à son sujet.

Comme 0V est toujours envoyé sur 0V ′ , il se pourrait aussi que d’autres éléments de V soient aussi envoyés
sur 0V ′ :

Définition 4.42. Le noyau d’une application T : V → V ′ est l’ensemble de toutes les préimages de
0V ′ :

Ker(T) := {
v ∈V |T (v) = 0V ′

}
.

V

Ker(T)

V ′

v1

v2

v3

0V ′

T

On a vu plus haut que le noyau contient toujours le zéro de V . On peut en dire un peu plus :

Lemme 4.43. Une application linéaire T : V →V ′ est injective si et seulement si son noyau ne contient
que le zéro : Ker(T) = {0V ′}.

Preuve: Supposons d’abord que T est injective. Considérons un v ∈ Ker(T), c’est-à-dire tel que T (v) = 0V ′ . Comme on
sait que T (0V) = 0V ′ , on a donc T (v) = T (0V), et l’injectivité implique que v = 0V . Donc Ker(T) = {0V }.

Supposons maintenant que Ker(T) = {0V ′ }. Considérons v1, v2 ∈ V tels que T (v1) = T (v2). Par linéarité, ceci implique

T (v1 − v2) = 0V ′ , et donc v1 − v2 ∈ Ker(T), et donc v1 − v2 = 0V , ce qui implique v1 = v2. Donc T est injective.

Exemple 4.44. Soit T : V →R2 l’application linéaire définie plus haut ; pour f : [a,b] →R,

T (f) :=
(

f (a)
f (b)

)
.

NumChap: chap-espaces-vectoriels, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) 69

botafogo.saitis.net

4.5. Applications linéaires

Le noyau de cette application est formé de toutes les fonctions f pour lesquelles

T (f) = 0 =
(
0
0

)
,

c’est-à-dire
Ker(T) = {

f : [a,b] →R : f (a) = f (b) = 0
}

.

Ce noyau contient en particulier la fonction identiquement nulle bien-sûr, mais aussi une infinité de fonc-
tions non-nulles :

x

y

a
b

Ker(T)

Donc T n’est pas injective. ⋄

Finalement, notons que le noyau et l’image sont des sous-ensembles stables de V et V ′, respectivement :

Lemme 4.45. Si T : V →V ′ est une application linéaire, alors

(i) Ker(T) est un sous-espace vectoriel de V ;

(ii) Img(T) est un sous-espace vectoriel de V ′.

Preuve: On a vu que T (0V) = 0V ′ (voir Remarque 4.36), ce qui signifie que 0V ∈ Ker(T) et 0V ′ ∈ Img(T).
Pour montrer que Ker(T) est un sous-espace vectoriel de V , étant donné v1, v2 ∈ Ker(T) et λ ∈R, alors la linéarité de T
implique

T (v1 +λv2) = T (v1)︸ ︷︷ ︸
=0V ′

+λT (v2)︸ ︷︷ ︸
=0V ′

= 0V ′ ,

et donc v1 +λv2 ∈ Ker(T).
Pour montrer que Img(T) est un sous-espace vectoriel de V ′, étant donné w1, w2 ∈ Img(T) et λ ∈R, il suffit de montrer
que w1 +λW2 ∈ Img(T). Or, la définition d’image nous dit qu’il existe v1, v2 ∈ V tels que w1 = T (v1) et w2 = T (v2). La
linéarité de T implique

w1 +λw2 = T (v1)+λT (v2) = T (v1 +λv2) ∈ Img(T) ,

comme on voulait démontrer.

4.5.4 Applications linéaires de Rn dans Rm injectives, surjectives et bijectives

Dans cette dernière sous-section, on va présenter des critères d’injectivité et de surjectivité des application
linéaires de Rn dans Rm , basés sur la forme échelonnée réduite de la matrice canonique associée à l’appli-
cation linéaire.

Lorsque T :Rn →Rm est linéaire, on sait qu’il existe une unique matrice A de taille m ×n telle que

T (x) = Ax .

70 NumChap: chap-espaces-vectoriels, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

botafogo.saitis.net

4.5. Applications linéaires

Comme T est entièrement déterminée par sa matrice A, on écrira souvent Ker(A) au lieu de Ker(T) et Img(A)
au lieu de Img(T).

Rappelons qu’une application T : Rn → Rm est injective si des éléments de Rn distincts ont des images
distinctes :

x,x′ ∈Rn ,x ̸= x′ ⇒ T (x) ̸= T (x′) ,

ou alors, ce qui est équivalent, si
T (x) = T (x′) =⇒ x = x′ .

Pour les applications qui sont linéaires, T (x) = Ax, on sait que l’injectivité peut se caractériser à l’aide du
noyau

Ker(A) = {
x ∈Rn : Ax = 0

}
,

d’après le Lemme 4.43. En plus, en raison du fait qu’une application linéaire est entièrement déterminée
par sa matrice, on dit qu’une matrice A de taille m ×n est injective si l’application linéaire T : Rn → Rm

donnée par T (x) = Ax est injective.

Comme Ker(A) n’est autre que l’ensemble des solutions du système homogène Ax = 0, et comme on sait
qu’il y a toujours la solution triviale, le noyau n’est jamais vide : 0 ∈ Ker(A).

Nous avons vu qu’une application linéaire est injective si et seulement si son noyau ne contient que le vec-
teur nul :

Ker(A) = {0} .

Et comme on sait que l’unicité de la solution du problème homogène caractérise l’indépendance des co-
lonnes de A, l’injectivité peut se formuler en termes de l’indépendance des colonnes de la matrice de T . De
façon plus générale on a le résultat suivant :

Théorème 4.46. Soit T : Rn → Rm une application linéaire. Les conditions suivantes sont équiva-
lentes :

(i) T est injective ;

(ii) Ker(T) = {0} ;

(iii) le système linéaire [T]x = 0 admet uniquement la solution triviale x = 0 ;

(iv) les colonnes de la matrice canonique de [T] forment une famille libre de Rm ;

(v) la forme échelonnée réduite de la matrice canonique de [T] est n’a pas de variables libres ;

(vi) la forme échelonnée réduite de la matrice canonique de [T] possède un pivot par colonne.

Preuve: On a montré dans le Lemme 4.43 que les conditions (i) et (ii) sont équivalentes.
On va montrer que les conditions (ii) et (iii) sont équivalentes. D’après le Théorème 3.22 on a que T (x) = [T]x pour
tout x ∈ Rn , ce qui implique que l’ensemble de solutions du système linéaire T (x) = [T]x = 0 est précisément Ker(T).
En conséquence, Ker(T) = {0} si et seulement si le système linéaire T (x) = [T]x = 0 admet uniquement la solution
triviale x = 0.
On prouve maintenant que les conditions (iii) et (iv) sont équivalentes. On notera [T] = [c1 . . .cn], avec ci la i -ème
colonne de [T]. Alors, par définition, [T]x = x1c1 + ·· ·+ xn cn , ce qui nous dit que le système linéaire [T]x = 0 admet
uniquement la solution triviale x = 0 si et seulement si la famille {c1, . . . ,cn]} est libre.
On montre maintenant que les conditions (iii) et (v) sont équivalentes. Pour le faire on va montrer que la condition (v)
implique (iii), et que la négation de (v) implique la négation de (iii). Soit A la forme échelonnée réduite de [T]. D’après
le Théorème 1.16, les systèmes linéaires [T]x = 0 et Ax = 0 ont les mêmes ensembles de solutions S. Alors, si A n’admet
pas de variables libres, alors S = {0}, ce qui nous dit que [T]x = 0 admet uniquement la solution triviale x = 0. Pour
l’autre implication, on note que si A admet au moins une variable libre, alors S est infini, ce qui nous dit que [T]x = 0
admet des solutions autres que la solution triviale x = 0.

Finalement, on note que les conditions (v) et (vi) sont équivalentes, vu qu’une variable libre du système linéaire [A]x =
0 est précisément celle qui correspond à une colonne sans pivot de la forme échelonnée réduite.

NumChap: chap-espaces-vectoriels, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) 71

botafogo.saitis.net

4.5. Applications linéaires

Exemple 4.47. Soit T :R3 →R3 l’application linéaire décrite par la matrice

A =
1 1 0

2 8 −2
2 5 −1

 .

On veut déterminer si l’application linéaire est injective ou non. Pour le faire, on calcule la forme échelonnée
réduite de A via

A =
1 1 0

2 8 −2
2 5 −1

 L2 ← L2 −2L1
L3 ← L3 −2L1−→

1 1 0
0 6 −2
0 3 −1

 L2←L2−2L3−→
1 1 0

0 0 0
0 3 −1

 L2↔L3−→
1 1 0

0 3 −1
0 0 0


L2← 1

3 L2−→
1 1 0

0 1 −1
3

0 0 0

 L1←L1−L2−→
1 0 1

3
0 1 −1

3
0 0 0

 .

Comme la troisième colonne de la forme échelonnée réduite A′ de A n’a pas de pivot, l’application linéaire
T n’est pas injective. La forme échelonnée réduite nous permet aussi de déterminer le noyau de T , vu que
le noyau correspond à l’ensemble des solutions de Ax = 0, qui coïncide avec l’ensemble des solutions de
A′x = 0 :

Ker(T) =


x1

x2

x3

∣∣∣x1 =−x3/3, x2 = x3/3

=


−x3/3
x3/3

x3

∣∣∣x3 ∈R
=

x3

−1/3
1/3

1

∣∣∣x3 ∈R
= Vect


−1/3

1/3
1

 .

Comme ce noyau contient des vecteurs non-nuls (tout choix de x3 ̸= 0 donne une solution non-triviale),
T n’est pas injective. Ceci signifie aussi que les colonnes de A sont linéairement dépendantes. En effet, en
prenant par exemple la solution correspondant à x3 = 3, on peut écrire

(−1)

1
2
2

+1

1
8
5

+3

 0
−2
−1

=
0

0
0

 .

⋄
Rappelons la définition de l’ensemble image d’une application : c’est l’ensemble des points de l’ensemble
d’arrivée qui possèdent au moins une préimage,

Img(T) := {
y ∈Rm : ∃x ∈Rn t.q. T (x) = y

}
.

Rappelons aussi que T : Rn → Rm est surjective si Img(T) = Rm . En raison du fait qu’une application li-
néaire est entièrement déterminée par sa matrice, on dit qu’une matrice A de taille m ×n est surjective si
l’application linéaire T :Rn →Rm donnée par T (x) = Ax est surjective.

Soit A la matrice de l’application linéaire T . Écrivons maintenant la matrice canonique A = [T] d’une appli-
cation linéaire T :Rn →Rm à l’aide de ses colonnes :

A = [a1 · · ·an] .

Puisque Ax est une combinaison linéaire des colonnes de A, Img(A) représente tous les vecteurs de Rm que
l’on peut obtenir à l’aide de combinaisons linéaires des colonnes de A :

Img(A) = Vect{a1, . . . ,an} .

On peut donc se souvenir de l’ensemble image de T (x) = Ax comme le sous-ensemble Col(A) de Rm engen-
dré par les colonnes de A :

Img(T) = Img(A) = Col(A) .

72 NumChap: chap-espaces-vectoriels, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

botafogo.saitis.net

4.5. Applications linéaires

On a donc une formulation équivalente de la surjectivité :

Théorème 4.48. Soit T : Rn → Rm une application linéaire. Les conditions suivantes sont équiva-
lentes :

(i) T est surjective ;

(ii) Img(T) =Rm ;

(iii) pour tout b ∈Rm , le système linéaire [T]x = b est compatible ;

(iv) les colonnes de la matrice canonique de [T] forment une famille génératrice de Rm ;

(v) la forme échelonnée réduite de la matrice canonique de [T] est n’a pas de lignes nulles ;

(vi) la forme échelonnée réduite de la matrice canonique de [T] possède un pivot par ligne.

Preuve: L’équivalence des conditions (i) et (ii) est par définition.

On va montrer que les conditions (ii) et (iii) sont équivalentes. D’après le Théorème 3.22 on a que T (x) = [T]x pour
tout x ∈ Rn , ce qui implique que, étant donné b ∈ Rm , l’ensemble de solutions du système linéaire T (x) = [T]x = b est
précisément l’ensemble d’antécédents de b ∈Rm . En conséquence, b ∈Rm admet une préimage par T si et seulement
si le système linéaire [T]x = b est compatible, ce qui montre l’équivalence des conditions (ii) et (iii).

On prouve maintenant que les conditions (iii) et (iv) sont équivalentes. On notera [T] = [c1 . . .cn], avec ci la i -ème
colonne de [T]. Comme, par définition, [T]x = x1c1 + ·· ·+ xn cn , étant donné b ∈ Rm , le système linéaire [T]x = b est
compatible si et seulement si b ∈ Vect{c1, . . . ,cn}. En conséquence, le système linéaire [T]x = b est compatible pour
tout b ∈Rm si et seulement si Vect{c1, . . . ,cn} =Rm , i.e. la famille {c1, . . . ,cn} des colonnes de [T] est génératrice.

On montre maintenant que les conditions (iii) et (v) sont équivalentes. Pour le faire on va montrer que la condition
(v) implique (iii), et que la négation de (v) implique la négation de (iii). Soit A la forme échelonnée réduite de [T].
D’après le Théorème 1.16, en effectuant des opérations élémentaires sur les lignes on voit que le système linéaire
[T]x = b est compatible pour tout b ∈ Rm si et seulement si Ax = b′ est compatible pour tout b′ ∈ Rm . Alors, si A n’a
pas de lignes nulles, alors le système linéaire Ax = b′ est compatible pour tout b′ ∈Rm , ce qui nous dit que le système
linéaire [T]x = b est compatible pour tout b ∈Rm . Pour l’autre implication, on note que si A admet une ligne nulle, ce
qui nous dit en particulier que la dernière ligne de A est nulle, alors le système linéaire Ax = b′ n’est pas compatible
si la dernière coordonnée de b′ ∈ Rm est non nulle. En conséquence, il existe un b ∈ Rm tel que [T]x = 0 n’est pas
compatible, comme on voulait démontrer.

Finalement, on note que les conditions (v) et (vi) sont équivalentes, vu qu’il existe une ligne nulle dans la forme éche-

lonnée réduite si et seulement si une ligne de la forme échelonnée réduite n’a pas de pivot.

Exemple 4.49. Montrons que l’application T :R3 →R3 associée à la matrice

A =
2 0 −1

1 −1 0
3 2 1


est surjective et injective. Pour ce faire, on va calculer la forme échelonnée réduite de A. On voit bien que

A =
2 0 −1

1 −1 0
3 2 1

 L1↔L2−→
1 −1 0

2 0 −1
3 2 1

 L2 ← L2 −2L1
L3 ← L3 −3L1−→

1 −1 0
0 2 −1
0 5 1

 L3←L3−2L2−→
1 −1 0

0 2 −1
0 1 3


L2↔L3−→

1 −1 0
0 1 3
0 2 −1

 L1 ← L1 +L2
L3 ← L3 −2L2−→

1 0 3
0 1 3
0 0 −7

 L3←− 1
7 L3−→

1 0 3
0 1 3
0 0 1

 L1 ← L1 −3L3
L2 ← L2 −3L3−→

1 0 0
0 1 0
0 0 1

 .

Comme chaque ligne de la forme échelonnée réduite de A possède un pivot, l’application linéaire T asso-
ciée à A est surjective : Img(T) = R3. Elle aussi injective, vu que la chaque colonne de la forme échelonnée
réduite de A possède un pivot. ⋄

NumChap: chap-espaces-vectoriels, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) 73

botafogo.saitis.net

4.5. Applications linéaires

Exemple 4.50. L’application T :R2 →R4 associée à une matrice

A =


a α

b β

c γ

d δ


ne peut pas être surjective, puisque ce n’est pas possible qu’une matrice de taille 4×2 ait un pivot par ligne.
De façon équivalente, deux vecteurs de R4 ne suffisent jamais pour engendrer R4. ⋄

Théorème 4.51. Soit T :Rn →Rm une application linéaire.

(INJ) Si T est injective, alors n⩽m.

(SUR) Si T est sujective, alors n⩾m.

(BIJ) Si T est bijective, alors n = m.

Preuve: Pour montrer le premier énoncé, on note que si T est une application linéaire injective, le Théorème 4.46
nous dit que [T] possède un pivot par colonne, ce qui implique que la quantité de colonnes est inférieure ou égal à la
quantité de lignes de [T], i.e. n⩽m.
Pour montrer le deuxième énoncé, on note que si T est une application linéaire surjective, le Théorème 4.48 nous dit
que [T] possède un pivot par ligne, ce qui implique que la quantité de lignes est inférieure ou égal à la quantité de
colonnes de [T], i.e. n⩾m.

Pour montrer le dernière résultat, on utilise qu’un application linéaire bijective est injective et surjective, ce qui im-

plique n⩽m et n⩾m par les items précédents, i.e. n = m.

Théorème 4.52. Soit T : Rn → Rm une application linéaire. Les conditions suivantes sont équiva-
lentes :

(i) T est bijective ;

(ii) n = m et T est injective ;

(iii) n = m et T est surjective ;

(iv) pour tout b ∈Rm , le système linéaire [T]x = b est compatible déterminé.

Preuve: On montre d’abord que (i) implique les items (ii) et (iii). Le dernier item du Théorème 4.51 nous dit que si T
est bijective, alors n = m. En outre, la définition d’application bijective nous dit que T est injective et surjective, ce qui
montre que (ii) et (iii) sont des conséquences de la condition (i).
On montre maintenant que la condition (ii) implique (i). Comme T est injective, la forme échelonnée réduite de [T]
admet un pivot par colonne. En outre, comme n = m, la forme échelonnée réduite de [T] est carrée, et la condition
sur les pivots dans chaque colonne nous dit alors que la forme échelonnée réduite admet aussi un pivot par ligne,
ce qui implique que T est sujective, d’après le Théorème 4.48, et en conséquence T est bijective, comme on voulait
démontrer.
On va prouver maintenant que la condition (iii) implique (v). Comme T est surjective, la forme échelonnée réduite de
[T] admet un pivot par ligne. En outre, comme n = m, la forme échelonnée réduite de [T] est carrée, et la condition
sur les pivots dans chaque ligne nous dit alors que la forme échelonnée réduite admet aussi un pivot par colonne,
ce qui implique que T est injective, d’après le Théorème 4.46, et en conséquence T est bijective, comme on voulait
démontrer.

Finalement, on montre que les conditions (i) et (iv) sont équivalentes. On va montrer d’abord que la condition (i)

implique la condition (iv). Si T est bijective, alors elle est surjective, et d’après le Théorème 4.48, pour tout b ∈ Rm , le

système linéaire [T]x = b est compatible. En plus, comme T est bijective, alors elle est injective, et d’après le Théorème

4.46, le système linéaire [T]x = 0 admet uniquement la solution triviale x = 0. Le Théorème 3.13 nous dit maintenant

que le système linéaire [T]x = b admet une unique solution, comme on voulait démontrer. Pour finir, on va prouver

que la condition (iv) implique la condition (i). D’après le Théorème 4.48, l’application T est surjective, tandis que la

74 NumChap: chap-espaces-vectoriels, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

botafogo.saitis.net

4.6. Transformations géométriques⋆

condition (iv) appliquée à b = 0 et le Théorème 4.46 nous disent que T est injective. En conséquence, T est bijective,

comme on voulait démontrer.

4.6 Transformations géométriques⋆

Dans cette section, on laisse de côté la théorie générale pour considérer quelques exemples importants
d’applications linéaires T :R2 →R2, tous de nature géométrique.

Sur ces exemples, on illustrera certaines des notions vues dans les sections précédentes (ensemble image,
application linéaire injective, surjective, etc.), en leur donnant un sens géométrique. On considérera aussi
le matrices canoniques associées à ces applications.

4.6.1 Projection sur un axe de R2

Fixons une droite d ⊊ R2 dans le plan, passant par l’origine, et considérons la transformation consistant à
projeter un vecteur x ∈R2 orthogonalement sur d :

Cette opération définit une application

projd :R2 7→R2

x 7→ projd (x) .

Quelques remarques à propos de cette application :

Par définition de la projection, tout vecteur v appartenant à d (ou plutôt : colinéaire à un vecteur directeur
quelconque de d) ne change pas lorsqu’il est projeté :

projd (v) = v .

Ceci implique en particulier que d ⊆ Img(projd). Mais par définition, Img(projd) ⊆ d , et donc

Img(projd) = d .

Puisque d est un sous-ensemble stricte de R2 , ceci implique que projd n’est pas surjective.

Ensuite, projd n’est pas injective, puisqu’il existe une infinité de vecteurs différents dont la projection sur d
est la même :

NumChap: chap-espaces-vectoriels, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) 75

botafogo.saitis.net

4.6. Transformations géométriques⋆

(1)

(2)

d

Insistons sur le fait que les propriétés décrites ci-dessus ont toutes été obtenues sans calculs.

Maintenant, la nature géométrique de la projection permet de montrer sans peine qu’elle est linéaire. En
effet, si l’on multiplie x par un scalaire λ, sa projection est multipliée par le même λ :

(1)

(2)

d

projd (x)

projd (λx) =λprojd (x)

x

λx

En d’autres termes :
projd (λx) =λprojd (x) .

Ensuite, si on additionne deux vecteurs et qu’ensuite on projette leur somme, on obtient le même résultat
que si on les avait d’abord projetés séparément pour ensuite les additionner :

(1)

(2)

d

projd (x)

projd (y)
x

y

x+y

Plus précisément :
projd (x+y) = projd (x)+projd (y) .

Maintenant, puisque projd est linéaire, elle peut être représentée à l’aide d’une matrice. Celle-ci est donnée
par

A = [projd] = [
projd (e1)projd (e2)

]
.

76 NumChap: chap-espaces-vectoriels, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

botafogo.saitis.net

4.6. Transformations géométriques⋆

(1)

(2)

d

projd (e1)
projd (e2)

e1

e2

θ

Si on suppose que d fait un angle θ avec e1 (dans le sens anti-horaire), on trouve

projd (e1) = cos(θ)

(
cos(θ)
sin(θ)

)
,

projd (e2) = sin(θ)

(
cos(θ)
sin(θ)

)
,

et donc la matrice canonique de projd est

[projd] =
(

cos2(θ) cos(θ)sin(θ)
cos(θ)sin(θ) sin2(θ)

)
.

Comme les colonnes sont toutes deux colinéaires au vecteur directeur de d , elles n’engendrent pas R2, ce
qui reflète le fait que projd n’est ni injective, ni surjective.

4.6.2 Réflexion à travers un axe de R2

Reprenons encore une droite d ⊊R2 passant par l’origine, et considérons cette fois la transformation consis-
tant à réfléchir un vecteur x ∈R2 à travers d . La réflexion de x à travers d sera notée refld (x) :

Cette opération définit une application

refld :R2 7→R2

x 7→ refld (x) .

Quelques remarques :

NumChap: chap-espaces-vectoriels, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) 77

botafogo.saitis.net

4.6. Transformations géométriques⋆

• Par construction, tout vecteur v appartenant à d (ou plutôt : colinéaire à un vecteur directeur quel-
conque de d) est invariant sous l’action de la réflexion :

refld (v) = v .

• Clairement, le réfléchi du réfléchi de x est x lui-même :

refld (refld (x)) = x ,

ce qui implique que refld est bijective et qu’elle est égale à sa réciproque :

refld
−1 = refld .

En conséquence, refld est bijective. Étant surjective, Img(refld) =R2.

Comme pour la projection, on montre sans peine que refld est une application linéaire. Calculons sa matrice
canonique :

[refld] = [
refld (e1)refld (e2)

]
.

Si encore une fois on suppose que d fait un angle θ avec la direction e1, alors on remarque que la réflexion
de e1 à travers d le transforme en un vecteur unitaire faisant un angle de 2θ avec l’horizontale :

(1)

(2)

drefld (e1)

e1θ

2θ

On a donc

refld (e1) =
(
cos(2θ)
sin(2θ)

)
.

Ensuite, la réflexion de e2 à travers d le transforme en un vecteur unitaire faisant un angle de θ− (π2 −θ) =
2θ− π

2 avec l’horizontale :

(1)

(2)

d

refld (e2)

e2

θ

π/2−θ
π−2θ

78 NumChap: chap-espaces-vectoriels, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

botafogo.saitis.net

4.6. Transformations géométriques⋆

On a donc

refld (e2) =
(
cos(2θ− π

2)
sin(2θ− π

2)

)
,=

(
sin(2θ)
−cos(2θ)

)
.

Ainsi, la matrice canonique de refld est donnée par

[refld] =
(
cos(2θ) sin(2θ)
sin(2θ) −cos(2θ)

)
.

4.6.3 Rotation d’angle θ autour de l’origine dans R2

Considérons une rotation d’angle θ autour de l’origine (dans le sens trigonométrique) :

Cette opération définit une application

rotθ :R2 7→R2

x 7→ rotθ(x) .

Quelques remarques :

• Si θ = 0 ou un multiple de 2π, la rotation correspond à l’identité.

• Puisque
rot−θ

(
rotθ(x)

)= x ,

la rotation d’angle θ est bijective, et sa réciproque est la rotation d’angle −θ :

rotθ
−1 = rot−θ .

En conséquence, rotθ est bijective. Étant surjective, Img(rotθ) =R2.

Une rotation (autour de l’origine) est clairement une transformation linéaire, et puisque

[
rotθ(e1)

]= (
cos(θ)
sin(θ)

)
,

[
rotθ(e2)

]
Bcan

=
(−sin(θ)

cos(θ)

)
,

sa matrice canonique est donnée par

[rotθ] =
(
cos(θ) −sin(θ)
sin(θ) cos(θ)

)
.

NumChap: chap-espaces-vectoriels, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) 79

botafogo.saitis.net

4.7. Résumé du chapitre sur les espaces vectoriels, les sous-espaces vectoriels et les applications linéaires

4.7 Résumé du chapitre sur les espaces vectoriels, les sous-espaces vectoriels
et les applications linéaires

ESPACE VECTORIEL (EV) V AVEC u + v ∈V ET λv ∈V TELS QUE :

(EV.1) u + v = v +u (commutativité)

(EV.2) u + (v +w) = (u + v)+w (associativité)

(EV.3) ∃0V ∈V : v +0V = v

(EV.4) ∀v ∈V ,∃− v ∈V : v + (−v) = 0V

(EV.5) λ(u + v) =λu +λv (distributivité I)

(EV.6) (λ+µ)v =λv +µv (distributivité II)

(EV.7) λ(µv) = (λµ)v =µ(λv) (associativité mixte)

(EV.8) 1v = v

EXEMPLES DE EV :

Rn , Mm×n(R) :=




A1,1 A1,2 · · · A1,n

A2,1 A2,2 · · · A2,n...
...

. . .
...

Am,1 Am,2 · · · Am,n


, Pn := {

a0 +a1t +·· ·+an t n
}
, . . .

PROPRIÉTÉS D’UN EV :

• 0V unique

• −v unique

• 0v = 0V

• λ0V = 0V

• (−1)v =−v

COMBINAISON LINÉAIRE (CL) de v1, . . . , vp ∈V :

λ1 v1 + · · · + λp vp = v

coefficients
(∈R)

vecteurs

COMBINAISON LINÉAIRE

VECTEURS COLINÉAIRES :

v ET w COLINÉAIRES ≡ v =λw OU w =λv

FAMILLE {v1, . . . , vp } ⊆V LIÉE (OU LINÉAIREMENT DÉPENDANTE) :

ON PEUT ÉCRIRE λ1v1 +·· ·+λp vp = 0V AVEC AU MOINS UN λi ̸= 0

FAMILLE {v1, . . . , vp } ⊆V LIBRE (OU LINÉAIREMENT INDÉPENDANTE) :

λ1v1 +·· ·+λp vp = 0V ⇒ λ1 = ·· · =λp = 0

PARTIE ENGENDRÉE PAR v1, . . . , vp ∈V :

Vect{v1, . . . , vp } = {
λ1v1+·· ·+λp vp :λ1, · · · ,λp ∈R}←− PARTIE ENGENDRÉE = ENSEMBLE DE TOUTES LES CL!

80 NumChap: chap-espaces-vectoriels, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

botafogo.saitis.net

4.7. Résumé du chapitre sur les espaces vectoriels, les sous-espaces vectoriels et les applications linéaires

FAMILLE {v1, . . . , vp } ⊆V GÉNÉRATRICE DE V :

Vect{v1, . . . , vp } =V

SOUS-ESPACE VECTORIEL (SEV) W ⊆V D’UN EV V :

(SEV.1) 0V ∈W ; (SEV.2) w +λw ′ ∈W, ∀w, w ′ ∈W

W ⊆V SEV ⇔ W ⊆V EV AVEC SOMME ET PRODUITS DE V

FAIT REMARQUABLE :

Vect{v1, · · · , vp } ⊆V EST SEV DE V

APPLICATION LINÉAIRE (AL) :

T : V →V ′ APPLICATION LINÉAIRE ≡ T (v +λu) = T (v)+λT (u) , ∀v,u ∈V ,λ ∈R

NOYAU ET IMAGE D’UNE AL T : V →V ′ :

Ker(T) := {
v ∈V |T (v) = 0V ′

}
Img(T) := {

T (v) : v ∈V
}

FAIT REMARQUABLE :

Ker(T) SEV DE V ET Img(T) SEV DE V ′ (VOIR LEMME 4.45)

INJECTIVITÉ DE T :Rn →Rm :

T :Rn →Rm INJECTIVE ⇔ FER DE [T] POSSÈDE 1 PIVOT PAR COLONNE

⇔ COLONNES DE [T] FAMILLE LIBRE

⇔ [T]x = 0 DÉTERMINÉ

⇒ n⩽m

SURJECTIVITÉ DE T :Rn →Rm :

T :Rn →Rm SURJECTIVE ⇔ FER DE [T] POSSÈDE 1 PIVOT PAR LIGNE

⇔ COLONNES DE [T] FAMILLE GÉNÉRATRICE

⇔ [T]x = b COMPATIBLE ∀b ∈Rm

⇒ n⩾m

BIJECTIVITÉ DE T :Rn →Rm :

T :Rn →Rm BIJECTIVE ⇔ n = m ET T INJECTIVE ⇔ n = m ET T SURJECTIVE

⇔ [T]x = b COMPATIBLE DÉTERMINÉ ∀b ∈Rm

NumChap: chap-espaces-vectoriels, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) 81

botafogo.saitis.net

Chapitre 5

Les opérations matricielles

5.1 Introduction

Dans ce chapitre on va étudier des opérations des matrices et leurs propriétés, qui nous permettent d’étu-
dier des opérations sur les applications linéaires et leur propriétés.

Objectifs de ce chapitre

À la fin de ce chapitre vous devriez être capable de

(O.1) calculer des opérations matricielles (e.g. produits matriciels, transpositions), ainsi que leurs
propriétés ;

(O.2) déterminer si une matrice est inversible et calculer l’inverse si elle existe ;

(O.3) connaître les matrices élémentaires et le lien avec le calcul de matrices inverses.

Nouveau vocabulaire dans ce chapitre

• produit matriciel
• matrice transposée
• matrice identité

• matrice inversible
• matrice élémentaire
• matrice anti/symétrique

5.2 Produit matriciel

Le produit de deux matrices est motivé par la composition d’applications linéaires.

Or lorsqu’on veut composer deux applications, il faut que les ensembles qui apparaissent dans leurs défini-
tions soient compatibles.

• Soit donc
T :Rn →Rm

une application linéaire, dont la matrice de taille m ×n est notée A. Si x ∈ Rn , la k-ème composante
(1⩽ k ⩽m) de T (x) est donnée par

(
T (x)

)
k = (Ax)k =

n∑
j=1

Ak, j x j .

• Soit ensuite
S :Rm →Rp

82 NumChap: chap-produit-matriciel, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

botafogo.saitis.net

5.2. Produit matriciel

une autre application linéaire, dont la matrice de taille p ×m est notée B . Si x ∈Rm , la k-ème compo-
sante (1⩽ k ⩽ p) de S(x) est donnée par

(
S(x)

)
k = (Bx)k =

m∑
j=1

Bk, j x j .

Puisque l’ensemble d’arrivée de T est l’ensemble de départ de S, on peut les composer :

Rn Rm
Rp

x

T (x)

S
(
T (x)

)
T S

S ◦T

On rappelle que la composition est définie par

S ◦T :Rn →Rp

x 7→ (S ◦T)(x) := S
(
T (x)

)
.

Comme on a vu dans le Lemme 4.41, la composée S ◦T est linéaire ; elle peut donc être représentée par une
matrice. Quelle est cette matrice?

Calculons la k-ème composante de (S ◦T)(x) :

(S ◦T)(x)k =
(
S
(
T (x)

))
k
= (

B(Ax)
)

k

=
m∑

j=1
Bk, j (Ax) j

=
m∑

j=1
Bk, j

n∑
ℓ=1

A j ,ℓxℓ

=
n∑
ℓ=1

(m∑
j=1

Bk, j A j ,ℓ︸ ︷︷ ︸
=:Ck,ℓ

)
xℓ .

On voit qu’après avoir interverti les sommes sur j et l , on a pu définir des coefficients Ck,ℓ, qui sont les
coefficients d’une matrice de taille p ×n, notée C , qui permet d’écrire

(S ◦T)(x)k =
n∑
ℓ=1

Ck,ℓxℓ = (C x)k .

On a donc trouvé la matrice associée à S ◦T , et on sait calculer ses coefficients en fonction de ceux de A et
B .

NumChap: chap-produit-matriciel, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) 83

botafogo.saitis.net

5.2. Produit matriciel

Définition 5.1. Soient B = (Bi , j) une matrice de taille p×m, et A = (Ai , j) une matrice de taille m×n.
Le produit matriciel de B par A est la matrice de taille p ×n, notée C = B.A ou C = B A, dont les
coefficients sont définis par

Ck,ℓ :=
m∑

j=1
Bk, j A j ,ℓ .

De façon équivalente, si l’on représente A par ses colonnes via A = [a1 · · ·an], où a1, . . . ,an ∈Rm , alors

C = B A = [Ba1︸︷︷︸
∈Rp

· · ·Ban︸︷︷︸
∈Rp

] .

L’expression ci-dessus pour le coefficient ckl montre que ce dernier se calcule en parcourant la k-ème ligne
de A et la l-ème colonne de B .

Point clé : la composition d’applications linéaires correspond au produit de matrices

La définition précédente du produit matriciel nous dit que, pour des applications linéaires T : Rn →
Rm et S :Rm →Rp ,

[S ◦T] = [S] [T] . (5.1)

Exemple 5.2. Calculons un produit B A =C , pour des matrices 4×4 :
1 2 −2 0
3 2 −2 1
−1 1 0 1
5 2 −1 6


︸ ︷︷ ︸

B


0 2 −1 5
3 1 5 −3
2 2 −1 1
0 7 1 2


︸ ︷︷ ︸

A

=


2 0 11 −3
2 11 10 9
3 6 7 −6
4 52 12 30


︸ ︷︷ ︸

C

.

Comme exemple, on a indiqué le calcul de

C2,3 =
4∑

j=1
B2, j A j ,3

= B2,1 A1,3 +B2,2 A2,3 +B2,3 A3,3 +B2,4 A4,3

= 3 · (−1)+2 ·5+ (−2) · (−1)+1 ·1 = 10 .

⋄

Informel 5.3. On peut multiplier deux matrices de tailles différentes, B A, mais ces tailles doivent
être compatibles. Plus précisément, le nombre de colonnes de B doit être égal au nombre de lignes
de A :

B . A = C

p ×m m ×n p × n

égaux!

84 NumChap: chap-produit-matriciel, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

botafogo.saitis.net

5.3. Transposition

Exemple 5.4. Le produit d’une matrice de taille 3×2 par une matrice de taille 2×4 est bien défini :a b
c d
e f


︸ ︷︷ ︸

3×2

(
1 2 3 4
5 6 7 8

)
︸ ︷︷ ︸

2×4

=
a +5b 2a +6b 3a +7b 4a +8b

c +5d 2c +6d 3c +7d 4c +8d
e +5 f 2e +6 f 3e +7 f 4e +8 f


︸ ︷︷ ︸

3×4

.

Par contre, dans l’ordre inverse, le produit

(
1 2 3 4
5 6 7 8

)
︸ ︷︷ ︸

2×4

a b
c d
e f


︸ ︷︷ ︸

3×2

n’est pas défini !

⋄
Quelques remarques :

• Un vecteur x ∈ Rn peut s’interpréter comme une matrice de taille n ×1. Donc la multiplication d’une
matrice de taille m×n par x ∈Rn , peut s’interpréter comme le produit matriciel d’une matrie de taille
m×n par une matrice de taille n×1, qui donne une Ax qui est una matrice de taille m×1, c’est-à-dire
un vecteur de Rm .

• Pour le produit d’une matrice de taille 1×n par une matrice de taille n ×1, on obtient une matrice de
taille 1×1, qui n’est autre qu’un réel :

(
x1 x2 . . . xn

)︸ ︷︷ ︸
1×n


y1

y2
...

yn


︸ ︷︷ ︸

n×1

= x1 y1 +·· ·+xn yn︸ ︷︷ ︸
∈R

.

• Par contre, le produit d’une matrice de taille m ×1 par une matrice de taille 1×n donne évidemment
une matrice de taille m ×n. Par exemple,a

b
c

(
x y z t

)=
ax ay az at

bx by bz bt
cx c y cz ct

 .

• Considérons le produit de la matrice A de taille m ×n par la matrice B de taille n ×p. Si l’on exprime
B à l’aide de ses p colonnes, qui sont des vecteurs de Rn

B = [b1 · · ·bp] ,

alors le produit AB peut s’écrire à l’aide de ses p colonnes :

AB = [Ab1 · · · Abp] ,

où chaque colonne Abk ∈Rm

5.3 Transposition

5.3.1 Définition générale

L’opération de transposition, pour une matrice, est une opération qui consiste à transformer ses colonnes
en lignes. Elle ne sera utilisée que plus tard dans le cours, mais nous la définissons déjà ici, et présentons
ses propriétés.

NumChap: chap-produit-matriciel, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) 85

botafogo.saitis.net

5.3. Transposition

Définition 5.5. Soit A une matrice de taille m ×n. La transposée de A, notée AT , est la matrice de
taille n ×m dont les éléments sont définis par

(AT)i , j := A j ,i . i = 1, . . . ,m, j = 1, . . . ,n .

Un matrice carrée A de taille n est dite symétrique si AT = A, et antisymétrique si AT =−A.

Exemple 5.6. Si A est une matrice de taille 2×3, donnée par

A =
(
α β γ

δ µ ε

)
,

alors AT est une matrice de taille 3×2, donnée par

AT =
α δ

β µ

γ ε

 .

⋄
Exemple 5.7. Pour une matrice carrée, la transposition revient à refléter ses coefficients à travers la diago-
nale :

A =


a b c d
e f g h
i j k l

m n o p

 =⇒ AT =


a e i m
b f j n
c g k o
d h l p

 .

⋄

Proposition 5.8. Pour toute paire de matrices A et B de la même taille et pour tout scalaire λ ∈R,

1) (AT)T = A ;

2) (A+λB)T = AT +λB T .

Preuve: Suivent de la définition.

5.3.2 Transposition de vecteurs

Pour des raisons de commodité, on utilisera souvent le fait suivant : si un vecteur de Rn est vu comme une
matrice de taille n ×1 (i.e. un vecteur colonne), on peut également lui appliquer l’opération de transposi-
tion, et le transformer en une matrice de taille 1×n (i.e., un vecteur ligne) :

x =


x1

x2
...

xn

 =⇒ xT = [x1 x2 · · ·xn] .

86 NumChap: chap-produit-matriciel, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

botafogo.saitis.net

5.4. Propriétés du produit et de la transposition de matrices

5.4 Propriétés du produit et de la transposition de matrices

Proposition 5.9. Le produit matriciel satisfait aux propriétés suivantes. (Ci-dessous, on suppose que
les tailles des matrices sont toujours compatibles.)

1) A(BC) = (AB)C (associativité) ;

2) A(B +C) = AB + AC (distributivité) ;

3) (A+B)C = AC +BC (distributivité) ;

4) A(λB) =λ(AB) = (λA)B ;

5) (AB)T = B T AT .

Preuve: Les premières propriétés seront vérifiées en exercices. Pour la dernière, considérons A de dimensions m ×n,
et B de dimensions n ×p, et calculons l’coefficient de (AB)T :(

(AB)T)
i , j = (AB) j ,i

=
n∑

k=1
A j ,k Bk,i

=
n∑

k=1
(AT)k, j (B T)i ,k

=
n∑

k=1
(B T)i ,k (AT)k, j

= (B T AT)i , j .

L’associativité signifie que l’on n’a pas besoin d’utiliser de parenthèses lorsqu’on multiplie plusieurs ma-
trices : les produits peuvent s’effectuer dans n’importe quel ordre. Donc au lieu de A(BC) ou (AB)C , on
peut simplement écrire ABC .

Ce qu’on n’a pas le droit de faire, par contre, c’est de changer l’ordre des matrices dans un produit : le
produit matriciel n’est pas commutatif. De fait, en général, même pour des matrices A,B de dimensions
compatibles,

AB ̸= B A .

En effet, commençons par remarquer que si A est m ×n, alors AB et B A sont toutes deux bien définies
seulement si B est n ×m. Mais alors AB est m×m et B A est n ×n, donc AB et B A sont de tailles différentes
dès que m ̸= n. Donc pour que les deux matrices AB et B A soient toutes les deux définies et égales, il faut
déjà que A et B soient carrées, de la même taille n ×n.

Or même si A et B sont carrées et de mêmes dimensions, en général AB ̸= B A.

Exemple 5.10. Avec A =
(
1 0
0 −1

)
, B =

(
0 −1
1 0

)
, on a

AB =
(
1 0
0 −1

)(
0 −1
1 0

)
=

(
0 −1
−1 0

)
,

B A =
(
0 −1
1 0

)(
1 0
0 −1

)
=

(
0 1
1 0

)
,

et donc AB ̸= B A. ⋄

Définition 5.11. Si A,B sont telles que AB = B A, on dit qu’elles commutent.

NumChap: chap-produit-matriciel, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) 87

botafogo.saitis.net

5.5. Inversion de matrices : définition et propriétés de base

Mentionnons encore une différence importante qui distingue le calcul matriciel du calcul réel. On sait que
dans les réels, un produit nul

ab = 0

implique qu’au moins un des nombres a,b est nul. Par contre, on peut avoir un produit matriciel nul,

AB = 0,

sans qu’aucune des matrices A,B ne soit identiquement nulle (voir exercices).

Définition 5.12. On rappelle que la matrice identité In est la matrice de taille n ×n définie par

In :=


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

 .

Noter que In = [idRn], i.e. la matrice identité In est la matrice canonique de l’application identité de
Rn .

L’action de In sur un vecteur n’a aucun effet :

In x = x , ∀x ∈Rn .

De plus, la matrice identité est l’élément neutre pour la multiplication des matrices, puisqu’on a, pour toute
matrice A de taille m ×n,

A In = Im A = A .

5.5 Inversion de matrices : définition et propriétés de base

5.5.1 Motivation

Un des axiomes qui définit le corps des nombres réels est qu’il existe pour tout réel a ̸= 0 un inverse, à savoir
un nombre noté a−1 tel que

aa−1 = a−1a = 1,

ou le nombre “1” est l’élément neutre pour la multiplication dans les réels (c’est-à-dire que x ·1 = 1 · x = x
pour tout x ∈R). C’est à l’aide de la notion d’inverse que l’on résout une équation du genre

ax = b ,

où a ̸= 0. En effet, en multipliant des deux côtés de l’équation par a−1, on trouve

a−1a︸ ︷︷ ︸
=1

x = a−1b ,

et donc x = a−1b.

Pour les matrices, on aimerait idéalement pouvoir résoudre un système linéaire

Ax = b

de la même façon. En effet, si on sait qu’il existe une matrice A−1 telle que A−1 A = In , alors en multipliant à
gauche des deux côtés de l’équation vectorielle ci-dessus,

A−1 A︸ ︷︷ ︸
=In

x = A−1b ,

88 NumChap: chap-produit-matriciel, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

botafogo.saitis.net

5.5. Inversion de matrices : définition et propriétés de base

qui donne x = A−1b.

Cette approche peut sembler élégante, mais elle présuppose qu’il existe une matrice A−1 telle que A−1 A =
In . Or une telle matrice n’existe pas toujours, comme nous verrons. En effet, pouvoir isoler x, dans l’équa-
tion “Ax = b”, en multipliant juste par une matrice bien choisie, mène à une solution unique x = A−1b, et
implique en particulier que la solution du système Ax = b est unique, ce qui n’arrive que dans certains cas
(Théorème “0,1,∞”).

Dans ce chapitre, on se propose donc de chercher des conditions sur A qui garantissent l’existence de A−1 ;
c’est le problème de l’inversibilité. Nous verrons aussi plusieurs façons d’obtenir une expression explicite
pour A−1.

5.5.2 Définition et propriétés

Voyons le problème d’un point de vue un peu plus général.

Soit T : Rn → Rm une application linéaire et soit A = [T] sa matrice canonique. Pouvoir isoler x dans T (x) =
Ax = b signifie, en termes d’application linéaire, que l’on cherche à récupérer la préimage de b. Pour que
cette préimage soit bien définie et unique pour tout b ∈Rm , il faut que T soit bijective.

Or nous avons vu dans le Théorème 4.52 qu’une application linéaire T : Rn → Rm ne peut être bijective
que si n = m. En plus, on a aussi vu dans le Lemme 4.41 que dans ce cas la réciproque T −1 : Rn → Rn est
également linéaire. On peut donc lui associer une unique matrice B = [T −1] :

T −1(y) = By .

Alors, les relations T ◦T −1 = idRn et T −1 ◦T = idRn avec (5.1) et [idRn] = In nous disent que

AB = [T][T −1] = [T ◦T −1] = [idRn] = In ,

B A = [T −1][T] = [T −1 ◦T] = [idRn] = In .
(5.2)

La matrice B sera appelée matrice inverse de A.

D’après la discussion précédente, on ne peut parler d’inverse que pour des matrices carrées, c’est à dire
ayant autant de lignes que de colonnes.

Définition 5.13. Soit A une matrice carrée de taille n.

• S’il existe une matrice carrée B de taille n telle que

AB = B A = In ,

on dit que A est inversible. La matrice précédente B est alors unique et appelée inverse de A ;
on la note A−1 (au lieu de B).

• Si A n’est pas inversible, elle est dite singulière.

Remarque 5.14. Puisque deux matrices A et B ne commutent a priori pas, la condition “AB = B A = In”
représente en fait deux conditions, à savoir AB = In et B A = In . ⋄
On remarque que la bijectivité d’une application linéaire est équivalente à l’inversibilité de sa matrice ca-
nonique.

Lemme 5.15. Une application linéaire T :Rn →Rn est bijective si et seulement si sa matrice canonique
[T] est inversible.

NumChap: chap-produit-matriciel, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) 89

botafogo.saitis.net

5.5. Inversion de matrices : définition et propriétés de base

Preuve: En effet, (5.2) nous dit que si T est bijective, alors A := [T] est une matrice inversible. Réciproquement, si
A := [T] est une matrice inversible, et soit B la matrice inverse, alors l’application linéaire S : Rn → Rn donnée par
S(x) = Bx pour x ∈Rn satisfait que

[idRn] = In = AB = [T][S] = [T ◦S] ,

[idRn] = In = B A = [S][T] = [S ◦T] ,

ce qui implique T ◦S = idRn et S ◦T = idRn , et en conséquence T est inversible, i.e. bijective.

Exemple 5.16. La matrice A =
(
1 2
3 4

)
est inversible. En effet, en définissant

B :=
(−2 1
3/2 −1/2

)
,

on remarque que

AB =
(
1 2
3 4

)(−2 1
3/2 −1/2

)
=

(
1 0
0 1

)
= I2 ,

et que

B A =
(−2 1
3/2 −1/2

)(
1 2
3 4

)
=

(
1 0
0 1

)
= I2 .

Donc A est inversible, et son inverse est A−1 = B . ⋄

Dans cet exemple, on a juste vérifié que A était inversible en vérifiant que le produit de A avec B donnait
bien la matrice identité. Mais en général, on aimerait des critères qui nous permettent d’étudier une matrice
donnée A, de savoir si elle est inversible ou pas, et si oui de calculer son inverse.

Informel 5.17. Par exemple, la matrice

A =



1 2 2 2 2 2 2
2 1 2 2 2 2 2
2 2 1 2 2 2 2
2 2 2 1 2 2 2
2 2 2 2 1 2 2
2 2 2 2 2 1 2
2 2 2 2 2 2 1


est-elle inversible ? Si oui, quel est son inverse ?

Exemple 5.18. La matrice A =
(
0 0
1 1

)
est singulière. En effet, quelle que soit B une matrice de taille 2×2, le

coefficient (AB)1,1 est toujours égal à 0, et donc AB ne peut pas être égale à I2. Cet exemple montre qu’il ne
suffit pas de ne pas être identiquement nulle pour ne pas être inversible. ⋄

Listons encore quelques propriétés de base de la matrice inverse.

90 NumChap: chap-produit-matriciel, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

botafogo.saitis.net

5.5. Inversion de matrices : définition et propriétés de base

Proposition 5.19. Soit A une matrice de taille n ×n inversible. Alors

1) l’inverse A−1 est unique ;

2) A−1 est aussi inversible, et (A−1)−1 = A ;

3) pour tout scalaire λ ̸= 0, λA est aussi inversible, et (λA)−1 = 1
λ A−1 ;

4) AT est aussi inversible, et (AT)−1 = (A−1)T .

De plus, si M est une autre matrice de taille n ×n inversible, alors AM est inversible, et

(AM)−1 = M−1 A−1 .

Preuve:

1) Supposons qu’il existe deux matrices C ,B telles que AC =C A = In , AB = B A = In . Alors

B = B In = B(AC) = (B A)C = In C =C .

2) En considérant A comme la “matrice de départ”, l’inversibilité signifie que A A−1 = A−1 A = In . Or ces deux
conditions peuvent aussi se lire en considérant A−1 comme la “matrice de départ”, et elles nous disent bien que
A−1 est inversible et que son inverse est égal à A.

3) Par simple vérification, en utilisant les propriétés de la multiplication d’une matrice par un scalaire,

(λA)
(

1
λ A−1

)
=

(
λ 1
λ

)
(A A−1) = In .

De même, (1
λ A−1)(λA) = In .

4) Par simple vérification,
AT (A−1)T = (A−1 A)T = IT

n = In .

De même, (A−1)T AT = In .

Finalement, si M est aussi inversible, alors

(AM)(M−1 A−1) = A(M M−1︸ ︷︷ ︸
=In

)A−1 = A A−1 = In ,

(M−1 A−1)(AM) = M−1(A A−1︸ ︷︷ ︸
=In

)M = M M−1 = In ,

et donc AM est inversible et son inverse est M−1 A−1.

5.5.3 Une application : inversion et résolution de systèmes de taille n ×n

Considérons un système de taille n ×n,
Ax = b ,

dans lequel la matrice A est inversible. On peut alors résoudre cette équation en multipliant les deux côtés
de l’inégalité ci-dessus par A−1,

A−1 A︸ ︷︷ ︸
=In

x = A−1b ,

qui donne directement la solution
x = A−1b .

Si cette méthode peut paraître élégante, elle a le désavantage (en plus de ne pouvoir être appliquée que
lorsque A est inversible) d’être plus coûteuse en termes de calcul, puisqu’elle requiert le calcul de l’inversè
de la matrice A.

NumChap: chap-produit-matriciel, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) 91

botafogo.saitis.net

5.6. Inversion de matrices carrées de taille 2×2

5.6 Inversion de matrices carrées de taille 2×2

Avant de nous attaquer au problème général d’une matrice de taille n ×n, attardons-nous sur le cas d’une
matrice de taille 2×2. Même si ce cas est le plus simple, il va nous permettre de présenter quelques notions
qui seront réutilisées dans d’autres chapitres.

Considérons une matrice de taille 2×2 quelconque :

A =
(

a b
c d

)
.

L’inversibilité de A va dépendre des valeurs des coefficients a,b,c,d bien-sûr, et l’avantage du cas 2×2 est
qu’il y a une condition facilement exprimable en fonction de ces coefficients.

Théorème 5.20. A =
(

a b
c d

)
est inversible si et seulement si son déterminant, c’est-à-dire le nombre

réel défini par
det(A) := ad −bc ,

est différent de zéro. De plus, lorsque det(A) ̸= 0, l’inverse de A est donné par

A−1 = 1

det(A)

(
d −b
−c a

)
.

Preuve: Supposons pour commencer que det(A) ̸= 0. Dans ce cas, la matrice A−1 de l’énoncé est bien définie, et on
vérifie par un calcul direct que A A−1 = A−1 A = I2. Comme l’inverse est unique, A−1 est bien l’inverse de A.

Pour montrer la réciproque, on remarque que

det(BB ′) = det(B)det(B ′)

pour toutes matrices B et B ′ de taille 2×2. En effet, si

B =
(
α β

γ δ

)
et B ′ =

(
α′ β′
γ′ δ′

)
,

alors

BB ′ =
(
αα′+βγ′ αβ′+βδ′
γα′+δγ′ γβ′+δδ′

)
,

ce qui nous dit que

det(BB ′) = (αα′+βγ′)(γβ′+δδ′)− (αβ′+βδ′)(γα′+δγ′)
=����αα′γβ′ +αα′δδ′+βγ′γβ′+���βγ′δδ′ −����αβ′γα′ −αβ′δγ′−βδ′γα′−���βδ′δγ′

= (αδ−βγ)(α′δ′−β′γ′) = det(B)det(B ′) .

Or, si A est inversible, alors A−1 A = I2, ce qui implique que

det(A−1)det(A) = det(A−1 A) = det(I2) = 1

et, en conséquence, det(A) ̸= 0, comme on voulait démontrer.

Exemple 5.21. À titre d’illustration, considérons la matrice de taille 2×2 déjà mentionnée au début du cha-
pitre :

A =
(
1 2
3 4

)
.

92 NumChap: chap-produit-matriciel, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

botafogo.saitis.net

5.6. Inversion de matrices carrées de taille 2×2

Son déterminant vaut det(A) = 1 ·4−2 ·3 =−2 ̸= 0, et donc A est inversible, et son inverse est donné par la
formule du théorème :

A−1 = 1

−2

(
4 −2
−3 1

)
=

(−2 1
3/2 −1/2

)
,

comme nous avions déjà vérifié.

Cette expression permet maintenant de résoudre n’importe quelle équation vectorielle impliquant A. En
effet, le système

(∗)

{
x1 + 2x2 = b1 ,

3x1 + 4x2 = b2

se formule comme Ax = b, (
1 2
3 4

)(
x1

x2

)
=

(
b1

b2

)
.

En multipliant des deux côtés par A−1, on obtient x = A−1b, qui donne(
x1

x2

)
=

(−2 1
3/2 1/2

)(
b1

b2

)
=

(−2b1 +b2
3
2 b1 + 1

2 b2

)
.

⋄
Exemple 5.22. Considérons quelques transformations linéaires dans le plan.

• Nous avions remarqué que la projection orthogonale sur une droite d (passant par l’origine) est une
transformation qui n’est ni injective ni surjective, donc pas bijective. On voit maintenant que ceci se
reflète dans sa matrice canonique, puisque

det
(
[projd]

)= det

(
cos2(θ) cos(θ)sin(θ)

cos(θ)sin(θ) sin2(θ)

)
= 0.

• La réflexion d’axe d était inversible, ce que nous voyons maintenant au niveau de sa matrice, puisque

det
(
[refld]

)= det

(
cos(2θ) sin(2θ)
sin(2θ) −cos(2θ)

)
=−1 ̸= 0.

De plus, on sait que refld
−1 = refld , ce que l’on vérifie au niveau de la matrice :

[refld]−1 = 1

−1

(−cos(2θ) −sin(2θ)
−sin(2θ) cos(2θ)

)
=

(
cos(2θ) sin(2θ)
sin(2θ) −cos(2θ)

)
= [refld] .

• Finalement, nous avions remarqué que la rotation d’angle α est inversible, ce qui au niveau de la
matrice se traduit par

det
(
[rotα]

)= det

(
cos(α) −sin(α)
sin(α) cos(α)

)
= 1 ̸= 0.

En utilisant la formule ci-dessus, on peut vérifier que son inverse correspond, comme on sait, à une
rotation de −α. En effet, à l’aide des propriétés de parité des fonctions trigonométriques,

[rotα]−1 = 1

1

(
cos(α) sin(α)
−sin(α) cos(α)

)
=

(
cos(−α) −sin(−α)
sin(−α) cos(−α)

)
= [rot−α] .

NumChap: chap-produit-matriciel, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) 93

botafogo.saitis.net

5.7. Inversion de matrices carrées de taille n ×n : matrices élémentaires et algorithme de Gauss-Jordan

⋄
Plus tard, nous verrons comment la notion de déterminant peut se généraliser à des matrices carrées de
tailles arbitraires, et comment celui-ci renseigne sur l’inversibilité d’une matrice. Pour l’instant, restons-en
à l’étude de l’inversibilité, sans déterminant, en nous tournant vers le cas n ×n.

5.7 Inversion de matrices carrées de taille n ×n : matrices élémentaires et al-
gorithme de Gauss-Jordan

5.7.1 Introduction

D’un point de vue très concret, le problème de l’inversibilité d’une matrice A de taille n×n peut se formuler
de la façon suivante.

Puisqu’on cherche donc une matrice B de taille n ×n telle que

AB = B A = In ,

si on écrit l’inconnue B en nommant ses colonnes,

B = [b1 · · ·bn] ,

alors le produit devient AB = [Ab1 · · · Abn], et comme la matrice identité peut aussi s’écrire In = [e1 · · ·en], la
contrainte AB = In s’écrit

[Ab1 · · · Abn] = [e1 · · ·en] .

Les colonnes de B doivent donc être solutions des n systèmes suivants :
(∗)1 : Ab1 = e1 ,
(∗)2 : Ab2 = e2 ,

...
(∗)n : Abn = en .

Si on met en route l’algorithme de Gauss pour résoudre chacun de ces systèmes, on se rend compte que
les opérations élémentaires faites pour résoudre le premier système Ab1 = e1 pourront être réutilisées dans
tous les systèmes suivants . On conclut que l’on peut en fait étudier la résolution de ces n systèmes en
parallèle, en se concentrant uniquement sur les coefficients de la matrice A.

Si on trouve des vecteurs b1, . . . ,bn solutions, respectivement, de (∗)1, . . . , (∗)n , alors on aura déjà une ma-
trice B = [b1 · · ·bn] satisfaisant AB = In .

Puisqu’on aimerait maintenir l’interprétation matricielle du résultat final, nous allons garder la trace des
opérations élémentaires effectuées successivement, afin d’obtenir notre premier critère d’inversibilité.

5.7.2 Matrices élémentaires

Nous avons précédemment introduit des opérations élémentaires de Type I, II et III, qui agissaient sur un
système de taille m ×n ou, de façon équivalente, sur sa matrice augmentée. Il se trouve que chaque opéra-
tion élémentaire, prise individuellement, peut se formuler à l’aide d’un produit matriciel.

Rappelons que In est la matrice identité de taille n ×n.

Définition 5.23. Une matrice de taille n ×n est dite élémentaire si elle s’obtient en effectuant une
(et une seule) opération élémentaire sur In .

94 NumChap: chap-produit-matriciel, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

botafogo.saitis.net

5.7. Inversion de matrices carrées de taille n ×n : matrices élémentaires et algorithme de Gauss-Jordan

Exemple 5.24. •
1 0 0

0 0 1
0 1 0

 est élémentaire, puisqu’on l’obtient à partir de I3 par l’opération de Type I

L2 ↔ L3.

•
1 0 0

0 −2 0
0 0 1

 est élémentaire, puisqu’on l’obtient à partir de I3 par l’opération de Type II L2 ↔−2L2.

•
1 3 4

0 1 0
0 0 1

 n’est pas élémentaire. (On peut l’obtenir à partir de I3, mais avec pas moins de deux opé-

rations élémentaires.)

⋄

Maintenant, pour effectuer une transformation E sur une matrice A de taille n ×p, on pourra simplement
considérer la matrice élémentaire E (n ×n) obtenue en effectuant E sur In , puis l’utiliser pour multiplier A
à gauche par E : le résultat E A est alors la matrice A sur laquelle on a effectué E .

Exemple 5.25. Considérons une matrice de taille 3×4

A =
a b c d

e f g h
i j k l

 .

Supposons que l’on veuille effectuer sur A l’opération élémentaire E donnée par “L1 ↔ L2”. Pour ce faire,
on commence par appliquer E à I3, qui donne

E =
0 1 0

1 0 0
0 0 1

 .

Puis, on multiplie A par E , à gauche :

E A =
0 1 0

1 0 0
0 0 1

a b c d
e f g h
i j k l

=
e f g h

a b c d
i j k l

 ,

qui est bien ce qu’on voulait. ⋄

Nous avions vu qu’une transformation élémentaire effectuée sur un système ne change pas son ensemble
de solutions, puisqu’on pouvait toujours revenir au système de départ en appliquant une transformation
réciproque. Une traduction de cette affirmation, dans le langage matriciel, est la suivante :

Lemme 5.26. Toute matrice élémentaire est inversible.

Pour le vérifier, écrivons explicitement les matrices élémentaires n ×n, ainsi que leurs inverses.

• Type I : La matrice élémentaire associée à l’opération Li ↔ L j , avec i < j , est

NumChap: chap-produit-matriciel, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) 95

botafogo.saitis.net

5.7. Inversion de matrices carrées de taille n ×n : matrices élémentaires et algorithme de Gauss-Jordan

Ti↔ j =

1 0 . . . 0 0 0 . . . 0 0 0 . . . 0 0
0 1 . . . 0 0 0 . . . 0 0 0 . . . 0 0
...

...
. . .

...
...

...
. . .

...
...

...
. . .

...
...

0 0 . . . 1 0 0 . . . 0 0 0 . . . 0 0
0 0 . . . 0 0 0 . . . 0 1 0 . . . 0 0
0 0 . . . 0 0 1 . . . 0 0 0 . . . 0 0
...

...
. . .

...
...

...
. . .

...
...

...
. . .

...
...

0 0 . . . 0 0 0 . . . 1 0 0 . . . 0 0
0 0 . . . 0 1 0 . . . 0 0 0 . . . 0 0
0 0 . . . 0 0 0 . . . 0 0 1 . . . 0 0
...

...
. . .

...
...

...
. . .

...
...

...
. . .

...
...

0 0 . . . 0 0 0 . . . 0 0 0 . . . 1 0
0 0 . . . 0 0 0 . . . 0 0 0 . . . 0 1





i -ème ligne

j -ème ligne

i -ème
colonne

j -ème
colonne

.

On remarque que Ti↔ j Ti↔ j = In , et donc

Ti↔ j
−1 = Ti↔ j .

• Type II : La matrice élémentaire associée à l’opération Li ←λLi , où λ ̸= 0, est

Di (λ) =

1 0 . . . 0 0 0 . . . 0 0
0 1 . . . 0 0 0 . . . 0 0
...

...
. . .

...
...

...
. . .

...
...

0 0 . . . 1 0 0 . . . 0 0
0 0 . . . 0 λ 0 . . . 0 0
0 0 . . . 0 0 1 . . . 0 0
...

...
. . .

...
...

...
. . .

...
...

0 0 . . . 0 0 0 . . . 1 0
0 0 . . . 0 0 0 . . . 0 1





i -ème ligne

i -ème
colonne

.

On remarque que Di (λ)Di (λ−1) = In , et donc

Di (λ)−1 = Di (λ−1) .

• Type III : La matrice élémentaire associée à l’opération Li ← Li +λL j est

96 NumChap: chap-produit-matriciel, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

botafogo.saitis.net

5.7. Inversion de matrices carrées de taille n ×n : matrices élémentaires et algorithme de Gauss-Jordan

Li , j (λ) =

1 0 . . . 0 0 0 . . . 0 0 0 . . . 0 0
0 1 . . . 0 0 0 . . . 0 0 0 . . . 0 0
...

...
. . .

...
...

...
. . .

...
...

...
. . .

...
...

0 0 . . . 1 0 0 . . . 0 0 0 . . . 0 0
0 0 . . . 0 1 0 . . . 0 λ 0 . . . 0 0
0 0 . . . 0 0 1 . . . 0 0 0 . . . 0 0
...

...
. . .

...
...

...
. . .

...
...

...
. . .

...
...

0 0 . . . 0 0 0 . . . 1 0 0 . . . 0 0
0 0 . . . 0 0 0 . . . 0 1 0 . . . 0 0
0 0 . . . 0 0 0 . . . 0 0 1 . . . 0 0
...

...
. . .

...
...

...
. . .

...
...

...
. . .

...
...

0 0 . . . 0 0 0 . . . 0 0 0 . . . 1 0
0 0 . . . 0 0 0 . . . 0 0 0 . . . 0 1





i -ème ligne

j -ème ligne

i -ème
colonne

j -ème
colonne

,

si i < j , et

Li , j (λ) =

1 0 . . . 0 0 0 . . . 0 0 0 . . . 0 0
0 1 . . . 0 0 0 . . . 0 0 0 . . . 0 0
...

...
. . .

...
...

...
. . .

...
...

...
. . .

...
...

0 0 . . . 1 0 0 . . . 0 0 0 . . . 0 0
0 0 . . . 0 1 0 . . . 0 0 0 . . . 0 0
0 0 . . . 0 0 1 . . . 0 0 0 . . . 0 0
...

...
. . .

...
...

...
. . .

...
...

...
. . .

...
...

0 0 . . . 0 0 0 . . . 1 0 0 . . . 0 0
0 0 . . . 0 λ 0 . . . 0 1 0 . . . 0 0
0 0 . . . 0 0 0 . . . 0 0 1 . . . 0 0
...

...
. . .

...
...

...
. . .

...
...

...
. . .

...
...

0 0 . . . 0 0 0 . . . 0 0 0 . . . 1 0
0 0 . . . 0 0 0 . . . 0 0 0 . . . 0 1





j -ème ligne

i -ème ligne

j -ème
colonne

i -ème
colonne

,

si i > j .

On remarque que Li , j (λ)Li , j (−λ) = In , et donc

Li , j (λ)−1 = Li , j (−λ) .

Lorsqu’on résout un système, on choisit une suite d’opérations élémentaires, dans le but d’arriver à une
forme échelonnée réduite du système. Notons ces opérations E (1),E (2), . . . ,E (k). L’application de ces opéra-
tions (d’abord E (1), puis E (2), etc.) correspondent à des multiplications successives de A à gauche par les

NumChap: chap-produit-matriciel, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) 97

botafogo.saitis.net

5.7. Inversion de matrices carrées de taille n ×n : matrices élémentaires et algorithme de Gauss-Jordan

matrices élémentaires qui leur correspondent :

Opération E (1) : E (1) A ,

Opération E (1) : E (2)E (1) A ,

...

Opération E (k) : E (k) · · ·E (2)E (1) A .

Comme on sait, une matrice possède une unique forme échelonnée réduite, et donc il est toujours possible
de bien choisir les matrices élémentaires E (j), de façon à ce que la matrice finale,

Ã = E (k) · · ·E (2)E (1) A ,

soit la forme échelonnée réduite de A. Une conséquence de cet argument est le résultat suivant, qui donne
aussi une autre preuve de l’équivalence entre les items (i) et (v) du Théorème 4.52, où l’on utilise qu’une
application linéaire est bijective si et seulement si sa matrice canonique est inversible (voir Lemme 5.15).

Théorème 5.27. Soit A une matrice de taille n ×n. Alors A est inversible si et seulement si on peut ré-
duire A à l’identité In à l’aide d’un produit de matrices élémentaires, c’est-à-dire s’il existe des matrices
élémentaires E (1), . . . ,E (k) telles que la forma échelonnée réduite

Ã = E (k) · · ·E (1) A

soit la matrice identité : Ã = In .

Preuve: Supposons que A est inversible. Alors T (x) := Ax est bijective, et par conséquent pour tout b ∈Rn , le système
Ax = b possède une unique solution. Ceci implique que sa forme échelonnée réduite ne présente aucune variable libre
(chaque pivot est situé immédiatement à droite du pivot de la ligne supérieure). Comme A est n ×n, ceci implique
que la forme échelonnée réduite de A est In .

Supposons ensuite qu’il existe des matrices élémentaires E (1), . . . ,E (k) telles que

E (k)E (k−1) · · ·E (1) A = In .

Rappelons que chaque E (j) est inversible. En multipliant la relation ci-dessus à gauche par (E (k))−1,

(E (k))−1E (k)︸ ︷︷ ︸
=In

E (k−1) · · ·E (1) A = (E (k))−1 In = (E (k))−1 .

En multipliant successivement, à gauche, par (E (k−1))−1, . . . , (E (1))−1, on arrive à

A = (E (1))−1 · · · (E (k))−1 .

Comme chacune des matrices (E (j))−1 est inversible, A est un produit de matrices inversibles, et donc elle aussi est
inversible. Son inverse est donné par

A−1 = (
(E (1))−1 · · · (E (k))−1)−1

= (
(E (k))−1)−1 · · ·((E (1))−1)−1

= E (k) · · ·E (1) .

Comme conséquence de ce qui a été fait dans la preuve :

Corollaire 5.28. Une matrice A de taille n ×n est inversible si et seulement si elle peut s’écrire comme
un produit de matrices élémentaires.

98 NumChap: chap-produit-matriciel, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

botafogo.saitis.net

5.7. Inversion de matrices carrées de taille n ×n : matrices élémentaires et algorithme de Gauss-Jordan

5.7.3 L’algorithme

L’argument développé dans la preuve du précédent théorème fournit un algorithme pour déterminer si une
matrice est inversible et, dans le cas où elle est inversible, de calculer son inverse.

Reprenons l’expression
[Ab1 · · · Abn] = [e1 · · ·en] .

Pour résoudre n’importe lequel de ces systèmes, Ab j = e j , on applique successivement des opérations élé-
mentaires en multipliant à gauche par les matrices correspondantes E (1), . . . ,E (k), jusqu’à obtenir, du côté
gauche, la forme échelonnée réduite de A :

Ab j = e j ,

E (1) Ab j = E (1)e j ,

E (2)E (1) Ab j = E (2)E (1)e j ,

...

E (k) · · ·E (2)E (1) A︸ ︷︷ ︸
=Ã

b j = E (k) · · ·E (2)E (1)e j .

Si Ã = In , le théorème ci-dessus dit que A est inversible ; de plus la j -ème colonne de son inverse est donnée
par

b j = E (k) · · ·E (1)e j ,

qui n’est autre que la j -ème colonne de la matrice E (k) · · ·E (1).
On peut résumer ce procédé dans l’algorithme suivant, appelé algorithme de Gauss-Jordan (pour l’étude
de l’inversibilité d’une matrice).

Algorithme de Gauss-Jordan pour déterminer l’inversibilité d’une matrice

(GJ.1) Commencer par considérer la matrice de taille n ×2n[
A | In

]
.

(GJ.2) En effectuant des opérations élémentaires sur les lignes, calculer la forme échelonné réduite
de la matrice [A | In] de taille n ×2n :[

A | In
]−→ ·· · −→ [

Ã |C]
.

(GJ.3) À partir de la forme échelonnée réduite [Ã |C] :

(GJ.3.i) si Ã = In , alors A est inversible, et A−1 =C ;

(GJ.3.ii) si Ã ̸= In , alors A est singulière.

Exemple 5.29. Considérons A =
(
1 2
2 4

)
, et étudions son inversibilité à l’aide de l’algorithme ci-dessus. On

pose donc [
A | I2

]= (
1 2 1 0
2 4 0 1

)
.

Comme il suffit d’une seule transformation pour réduire A, E (1) = (L2 → L2 −2L1), on a

[
Ã |C]= (

1 2 1 0
0 0 −2 1

)
.

NumChap: chap-produit-matriciel, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) 99

botafogo.saitis.net

5.7. Inversion de matrices carrées de taille n ×n : matrices élémentaires et algorithme de Gauss-Jordan

Comme Ã ̸= I2, A est singulière. (On voit aussi que det(A) = 0, qui montre également que A n’est pas inver-
sible.) ⋄

Exemple 5.30. Étudions l’inversibilité de A =
0 1 2

1 0 3
4 −3 8

 . On pose

[
A | I3

]=
 0 1 2 1 0 0

1 0 3 0 1 0
4 −3 8 0 0 1

 .

Appliquons successivement des opérations élémentaires afin de réduire A du côté gauche ; on applique
chaque opération sur toute la matrice, y compris sur le côté droit.

Commençons par L3 ← L3 −4L2, suivie de L3 ← L3 +3L1 :

 0 1 2 1 0 0
1 0 3 0 1 0
0 0 2 3 −4 1

 .

Ensuite, L1 ↔ L2,  1 0 3 0 1 0
0 1 2 1 0 0
0 0 2 3 −4 1

 ,

puis L2 ← L2 −L3,  1 0 3 0 1 0
0 1 0 −2 4 −1
0 0 2 3 −4 1

 ,

L3 ← 1
2 L3,  1 0 3 0 1 0

0 1 0 −2 4 −1
0 0 1 3/2 −2 1/2

 ,

et enfin L1 ← L1 −3L3 :  1 0 0 −9/2 7 −3/2
0 1 0 −2 4 −1
0 0 1 3/2 −2 1/2

 .

On a donc obtenu

[
Ã |C]=

 1 0 0 −9/2 7 −3/2
0 1 0 −2 4 −1
0 0 1 3/2 −2 1/2

 .

Comme Ã = I3, A est inversible, et son inverse est ce qu’on voit du côté droit :

A−1 =
−9/2 7 −3/2

−2 4 −1
3/2 −2 1/2

 .

(Exercice : Pourquoi pas vérifier, à la main, que A A−1 = A−1 A = I3 !) ⋄

100 NumChap: chap-produit-matriciel, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

botafogo.saitis.net

5.8. Résumé du chapitre sur les opérations matricielles

5.8 Résumé du chapitre sur les opérations matricielles

PRODUIT MATRICIEL :

B . [a1 · · ·an] :=
[∈Rp︷︸︸︷

Ba1 · · ·
∈Rp︷︸︸︷

Ban

]
p ×m m ×n p × n

égaux!

FAIT FONDAMENTAL :

T :Rn →Rm ET S :Rm →Rp AL ⇒ [S ◦T] = [S] [T]

PROPRIÉTÉS DU PRODUIT :

• A(BC) = (AB)C (associativité)

• A(B +C) = AB + AC (distributivité)

• (A+B)C = AC +BC (distributivité)

• A(λB) =λ(AB) = (λA)B

TRANSPOSITION :

A1,1 A1,2 · · · A1,n

A2,1 A2,2 · · · A2,n
...

...
. . .

...
Am,1 Am,2 · · · Am,n




T

:=
A1,1 A2,1 · · · Am,1

A1,2 A2,2 · · · Am,2
...

...
. . .

...
A1,n A2,n · · · Am,n




A SYMÉTRIQUE ≡ A = AT A ANTISYMÉTRIQUE ≡ A =−AT

PROPRIÉTÉS DE TRANSPOSITION :

• (AT)T = A • (A+λB)T = AT +λB T • (AB)T = B T AT

MATRICE IDENTITÉ :

In :=


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

 −−−→ In = [idRn]

PROPRIÉTÉS DE MATRICE IDENTITÉ :

• Im A = A = A In , ∀A ∈Mm×n(R)

NumChap: chap-produit-matriciel, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) 101

botafogo.saitis.net

5.8. Résumé du chapitre sur les opérations matricielles

MATRICE INVERSIBLE :

A INVERSIBLE ≡∃B TELLE QUE AB = B A = In −−→ B UNIQUE : A−1 := B

SI A,B INVERSIBLES :

• A−1 INVERSIBLE ET (A−1)−1 = A

• λA INVERSIBLE ET (λA)−1 = 1
λ A−1,∀λ ̸= 0

• AT INVERSIBLE ET (AT)−1 = (A−1)T

• AB INVERSIBLE ET (AB)−1 = B−1 A−1

INVERSE DE MATRICE 2×2 :

(
a b
c d

)
INVERSIBLE ⇔ ad −bc ̸= 0 −−→

(
a b
c d

)−1

= 1

ad −bc

(
d −b
−c a

)

MATRICES ÉLÉMENTAIRES :

(OEL.I) Li ↔ L j (i < j) :

Ti↔ j :=

1 0 . . . 0 0 0 . . . 0 0 0 . . . 0 0
0 1 . . . 0 0 0 . . . 0 0 0 . . . 0 0
...

...
. . .

...
...

...
. . .

...
...

...
. . .

...
...

0 0 . . . 1 0 0 . . . 0 0 0 . . . 0 0
0 0 . . . 0 0 0 . . . 0 1 0 . . . 0 0
0 0 . . . 0 0 1 . . . 0 0 0 . . . 0 0
...

...
. . .

...
...

...
. . .

...
...

...
. . .

...
...

0 0 . . . 0 0 0 . . . 1 0 0 . . . 0 0
0 0 . . . 0 1 0 . . . 0 0 0 . . . 0 0
0 0 . . . 0 0 0 . . . 0 0 1 . . . 0 0
...

...
. . .

...
...

...
. . .

...
...

...
. . .

...
...

0 0 . . . 0 0 0 . . . 0 0 0 . . . 1 0
0 0 . . . 0 0 0 . . . 0 0 0 . . . 0 1





i -ème ligne

j -ème ligne

i -ème
colonne

j -ème
colonne

⇒ T −1
i↔ j = Ti↔ j

(OEL.II) Li ←λLi (λ ̸= 0) :

Di (λ) :=

1 0 . . . 0 0 0 . . . 0 0
0 1 . . . 0 0 0 . . . 0 0
...

...
. . .

...
...

...
. . .

...
...

0 0 . . . 1 0 0 . . . 0 0
0 0 . . . 0 λ 0 . . . 0 0
0 0 . . . 0 0 1 . . . 0 0
...

...
. . .

...
...

...
. . .

...
...

0 0 . . . 0 0 0 . . . 1 0
0 0 . . . 0 0 0 . . . 0 1




i -ème ligne

i -ème
colonne

⇒ Di (λ)−1 = Di (λ−1)

102 NumChap: chap-produit-matriciel, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

botafogo.saitis.net

5.8. Résumé du chapitre sur les opérations matricielles

(OEL.III) Li ← Li +λL j

Li , j (λ) :=

1 0 . . . 0 0 0 . . . 0 0 0 . . . 0 0
0 1 . . . 0 0 0 . . . 0 0 0 . . . 0 0
...

...
. . .

...
...

...
. . .

...
...

...
. . .

...
...

0 0 . . . 1 0 0 . . . 0 0 0 . . . 0 0
0 0 . . . 0 1 0 . . . 0 λ 0 . . . 0 0
0 0 . . . 0 0 1 . . . 0 0 0 . . . 0 0
...

...
. . .

...
...

...
. . .

...
...

...
. . .

...
...

0 0 . . . 0 0 0 . . . 1 0 0 . . . 0 0
0 0 . . . 0 0 0 . . . 0 1 0 . . . 0 0
0 0 . . . 0 0 0 . . . 0 0 1 . . . 0 0
...

...
. . .

...
...

...
. . .

...
...

...
. . .

...
...

0 0 . . . 0 0 0 . . . 0 0 0 . . . 1 0
0 0 . . . 0 0 0 . . . 0 0 0 . . . 0 1





i -ème ligne

j -ème ligne

i -ème
colonne

j -ème
colonne

, i < j

Li , j (λ) :=

1 0 . . . 0 0 0 . . . 0 0 0 . . . 0 0
0 1 . . . 0 0 0 . . . 0 0 0 . . . 0 0
...

...
. . .

...
...

...
. . .

...
...

...
. . .

...
...

0 0 . . . 1 0 0 . . . 0 0 0 . . . 0 0
0 0 . . . 0 1 0 . . . 0 0 0 . . . 0 0
0 0 . . . 0 0 1 . . . 0 0 0 . . . 0 0
...

...
. . .

...
...

...
. . .

...
...

...
. . .

...
...

0 0 . . . 0 0 0 . . . 1 0 0 . . . 0 0
0 0 . . . 0 λ 0 . . . 0 1 0 . . . 0 0
0 0 . . . 0 0 0 . . . 0 0 1 . . . 0 0
...

...
. . .

...
...

...
. . .

...
...

...
. . .

...
...

0 0 . . . 0 0 0 . . . 0 0 0 . . . 1 0
0 0 . . . 0 0 0 . . . 0 0 0 . . . 0 1





j -ème ligne

i -ème ligne

j -ème
colonne

i -ème
colonne

, i > j

⇒ Li , j (λ)−1 = Li , j (−λ)

INVERSE DE MATRICE n ×n :

[
A | In

]−→ ·· · −→ [
Ã |C]︸ ︷︷ ︸
FER

Ã = In ⇒ A INVERSIBLE ET A−1 =C

Ã ̸= In ⇒ A NON INVERSIBLE

NumChap: chap-produit-matriciel, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) 103

botafogo.saitis.net

Chapitre 6

Déterminant

6.1 Introduction

La théorie du déterminant, que nous allons aborder dans ce chapitre, est un sujet central en algèbre linéaire.
Nous ne le présenterons pas dans sa forme la plus générale, et ne démontrerons pas tous les résultats. Notre
but sera de présenter les propriétés de base du déterminant, et de voir leurs conséquences.

Objectifs de ce chapitre

À la fin de ce chapitre vous devriez être capable de

(O.1) calculer le déterminant d’une matrice carrée, en particulier, au moyen des opérations élé-
mentaires ;

(O.2) connaître et utiliser des propriétés du déterminant, en particulier le lien avec l’inversibilité ;

(O.3) calculer l’aire d’un parallélogramme et le volume d’un parallélépipède au moyen du déter-
minant.

Nouveau vocabulaire dans ce chapitre

• déterminant
• application bilinéaire/multilinéaire
• application alternée
• application antisymétrique
• application normalisée

• sous-matrice principale
• matrice triangulaire supérieure/inférieure
• matrice diagonale
• matrices semblables
• matrice complémentaire

6.2 Déterminant des matrices de taille 2×2 revisité

6.2.1 Propriétés algébriques du déterminant des matrices de taille 2×2

Nous avons déjà rencontré le déterminant lorsque nous avons étudié l’inversibilité pour les matrices 2×2.
En effet, nous avons vu qu’une matrice

A =
(

a b
c d

)
est inversible si et seulement si son déterminant, qui est le nombre défini par

det(A) := ad −bc ,

104 NumChap: chap-determinant, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

botafogo.saitis.net

6.2. Déterminant des matrices de taille 2×2 revisité

est non-nul.

Pouvoir savoir si une matrice de taille 2×2 est inversible ou pas, simplement en calculant un nombre et en
vérifiant s’il est nul ou pas, représente certainement un résultat intéressant du point de vue théorique, mais
l’étendre au cas n ×n ne sera pas sans difficulté.

En effet, dans le cas n × n, nous avons vu quelques caractérisations équivalentes de l’inversibilité, mais
toutes étaient de nature plus calculatoire, et toutes impliquaient plus ou moins l’étude d’un système li-
néaire.

Pour motiver ce que nous allons faire dans le cas de matrices de taille n ×n, nous allons revenir sur le cas
de matrices de taille 2×2, et regarder de plus près cette fonction A 7→ det(A), pour nous rendre compte de
certaines caractéristiques, et sans du tout nous préoccuper de l’inversibilité.

Pour le reste de cette section et le début de la section suivante, nous utiliserons plutôt la notation “det2”
au lieu de siplement det pour remarquer le fait que l’on travaille avec des matrices de taille 2×2.

En plus, plutôt que de voir une matrice de taille 2× 2 comme un tableau de 4 nombres rangés dans une
grille, voyons la comme la donnée de deux colonnes :

A =
(

a b
c d

)
= [a1 a2] ,

où

a1 =
(

a
c

)
,a2 =

(
b
d

)
.

Ainsi, le déterminant peut être vu comme une fonction sur les paires de vecteurs de R2, définie ainsi :

det2

((
a
c

)
,

(
b
d

))
:= ad −bc ,

et considérerons l’application

det2 :R2 ×R2 →R

(a,b) 7→ϕ(a,b) := a1b2 −a2b1 .

Les propriétés suivantes découlent entièrement de sa définition :

Proposition 6.1. L’application det2 définie ci-dessus jouit des propriétés suivantes :

(ANT) det2 est antisymétrique : det2(a,b) =−det2(b,a) pour tous a,b ∈R2 ;

(ALT) det2 est alternée : det2(a,a) = 0 pour tout a ∈R2 ;

(BIL) det2 est bilinéaire :

(BIL.1) pour tout b ∈R2 fixé, l’application a 7→ det2(a,b) est linéaire, i.e.

det2(a+λa′,b) = det2(a,b)+λdet2(a′,b)

pour tout λ ∈R et a,a′ ∈R2 ;

(BIL.2) pour tout a ∈R2 fixé, l’application b 7→ det2(a,b) est linéaire, i.e.

det2(a,b+λb′) = det2(a,b)+λdet2(a,b′)

pour tout λ ∈R et b,b′ ∈R2 ;

(NOR) det2 est normalisée : det2(e1,e2) = 1.

Preuve: Toutes les propriétés sont vérifiées directement par le calcul :

NumChap: chap-determinant, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) 105

botafogo.saitis.net

6.2. Déterminant des matrices de taille 2×2 revisité

(ANT) det2(a,b) = a1b2 −a2b1 =−(a2b1 −a1b2) =−det2(b,a) ;

(ALT) det2(a,a) = a1a2 −a2a1 = 0 ;

(BIL.1) det2(a+λa′,b) = (a1 +λa′
1)b2 − (a2 +λa′

2)b1 = (a1b2 −a2b1)+λ(a′
1b2 −a′

2b1) = det2(a,b)+λdet2(a′,b) ;

(BIL.2) det2(a,b+λb′) = a1(b2 +λb′
2)−a2(b1 +λb′

1) = (a1b2 −a2b1)+λ(a1b′
2 −a2b′

1) = det2(a,b)+λdet2(a,b′) ;

(NOR) det2(e1,e2) = 1 ·1−0 ·0 = 1.

Remarque 6.2. On note que, si ϕ : R2 ×R2 → R est une application bilinéaire, alors (ANT) et (ALT) pour ϕ
sont équivalentes. En effet, si (ANT) est vraie, alors ϕ(a,a) = −ϕ(a,a), et donc ϕ(a,a) = 0. Réciproquement,
si (ALT) est vraie, alors ϕ(a+b,a+b) = 0, mais la bilinéarité implique

ϕ(a+b,a+b) =ϕ(a,a)︸ ︷︷ ︸
=0

+ϕ(a,b)+ϕ(b,a)+ϕ(b,b)︸ ︷︷ ︸
=0

,

ce qui nous dit que ϕ(b,a) =−ϕ(a,b). ⋄

Il se trouve que les propriétés (BIL), (ALT) et (NOR) énoncées dans la proposition caractérisent entièrement
la fonction det2 :

Lemme 6.3. Soitϕ :R2×R2 →Rune application qui satisfait aux trois propriétés (BIL), (ALT) et (NOR).
Alors, ϕ(a,b) = det2(a,b) = a1b2 −a2b1 pour tous a,b ∈R2.

Preuve: On écrit d’abord

a = a1e1 +a2e2 et b = b1e1 +b2e2.

Alors,

ϕ(a,b) =ϕ(a1e1 +a2e2,b)

= a1ϕ(e1,b)+a2ϕ(e2,b)

= a1ϕ(e1,b1e1 +b2e2)+a2ϕ(e2,b1e1 +b2e2)

= a1b1ϕ(e1,e1)︸ ︷︷ ︸
=0

+a1b2ϕ(e1,e2)+a2b1ϕ(e2,e1)+a2b2ϕ(e2,e2)︸ ︷︷ ︸
=0

= a1b2ϕ(e1,e2)+a2b1ϕ(e2,e1)

= a1b2ϕ(e1,e2)−a2b1ϕ(e1,e2)

= (a1b2 −a2b1)ϕ(e1,e2)︸ ︷︷ ︸
=1

= a1b2 −a2b1 = det2(a,b),

où l’on a utilisé (BIL.1) dans la deuxième égalité, (BIL.2) dans la quatrième égalité, (ALT) dans la cinquième égalité,
(ANT) dans la sixième égalité (mais l’on remarque que (ANT) est une conséquence de (BIL) et de (ALT)), et (NOR) dans
l’avant-dernière égalité.

Nous verrons dans la section suivante que ces caractéristiques définissent de façon unique le déterminant
en dimensions supérieures : nous introduirons une fonction sur les familles de n vecteurs de Rn , en im-
posant quelques propriétés semblables à celles énoncées ci-dessus, et énoncerons un résultat qui garantit
qu’il existe une seule fonction ayant ces propriétés ; c’est ce que nous appellerons le déterminant.

6.2.2 L’interprétation géométrique du déterminant des matrices de taille 2×2

Dans le plan, considérons deux vecteurs v,w, et considérons le parallélogramme qu’ils définissent :

106 NumChap: chap-determinant, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

botafogo.saitis.net

6.2. Déterminant des matrices de taille 2×2 revisité

L’aire de ce parallélogramme, notée Aire(v,w), est reliée au déterminant de la matrice de taille 2×2 dont les
colonnes sont v et w :

Théorème 6.4. L’aire du parallélogramme est donnée par

Aire(v,w) =
∣∣∣det2

(
[v w]

)∣∣∣= |v1w2 − v2w1| .

Preuve: On montre d’abord que si A = [v w] une matrice carrée de taille 2 et soit A′ = [v′ w′] une matrice obtenue de
A en effectuant des opérations élémentaires sur les colonnes de type I et III (i.e. transposer des colonnes, et ajouter à
une colonne le multiple d’une autre colonne, resp.), alors

Aire(v,w) = Aire(v′,w′).

En effet, comme une opération élémentaire sur les colonnes de type I sur une matrice carrée A de taille 2 équivaut à
échanger des colonnes, on voit que le parallélogramme définis par les colonnes de A coïncide avec le parallélogramme
définis par les colonnes de la matrice A′ obtenue en échangeant les colonnes, et donc les aires coïncident aussi.
Pour une opération élémentaire sur les colonnes de type III sur une matrice carrée A, il suffit de montrer que l’aire du
parallélogramme formé par les vecteurs v et w est la même que l’aire du parallélogramme formé par les vecteurs v et
w+λv, où λ ∈ R est un scalaire. Pour le faire, on rappelle que l’aire d’un parallélogramme est égale au produit de la
base par la hauteur. Les parallélogrammes indiqués ci-dessous ont la même base v et une hauteur identique h, donc
la même aire.

0

B
B ′

A

C C ′v

w w+λv

λv

λv

v

w w+λv h

On démontre la résultat du théorème d’abord pour le cas où la matrice A n’est pas inversible, i.e. det(A) = 0. Dans ce
cas, les colonnes de A sont obligatoirement colinéaires, et l’aire du parallélogramme formé par ces vecteurs est alors
nulle. L’assertion est donc vraie dans ce cas.
On suppose désormais que la matrice A est inversible, i.e. det(A) ̸= 0. On écrit

A =
(

a b
c d

)
.

Si a = 0 et b = 0, alors ad −bc = 0. La contraposée nous dit alors que, comme det(A) = ad −bc ̸= 0, alors a ̸= 0 ou b ̸= 0.
On s’intéresse d’abord au cas a ̸= 0, le cas b ̸= 0 se traite de la même manière en effectuant une permutation de la
première et la deuxième colonnes, une opération élémentaire qui ne modifie pas la valeur absolue du déterminant ni
l’aire du parallélogramme associé, d’après l’item précédent. Or, en n’effectuant que des opérations élémentaires sur
les colonnes de type III, on trouve

A =
(

a b
c d

)
C2←C2− b

a C1−→
(

a 0
c ad−bc

a

)
C1←C1− ca

ad−bc C2−→
(

a 0
0 ad−bc

a

)
,

NumChap: chap-determinant, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) 107

botafogo.saitis.net

6.3. Déterminant des matrices de taille n ×n

où Ci ←Ci +λC j désigne l’opération élémentaire qui additionne à la i -ème colonne le produit de λ ∈ R par la j -ème
colonne. D’après l’item précédent, on a que

Aire

((
a
c

)
,

(
b
d

))
= Aire

((
a
0

)
,

(
0

ad−bc
a

))
.

Comme le dernier parallélogramme est un rectangle, on a que

Aire

((
a
0

)
,

(
0

ad−bc
a

))
= |a|.

∣∣∣ ad −bc

a

∣∣∣= |ad −bc| = ∣∣det2(A)
∣∣.

En utilisant ces égalités on trouve que

Aire

((
a
c

)
,

(
b
d

))
= ∣∣det2(A)

∣∣,
comme on voulait démontrer.

6.3 Déterminant des matrices de taille n ×n

6.3.1 La définition récursive du déterminant

Pour chaque entier n⩾ 2, on va définir une application

detn :Mn×n(R) →R

de façon récursive, avec det2 donnée par le déterminant défini dans la section précédente. Avant de donner
la définition du déterminant, on aurait besoin de la notion suivante.

Définition 6.5. Si A est une matrice de taille m × n et si (i , j) est une paire d’indice (1 ⩽ i ⩽ m,
1 ⩽ j ⩽ n), alors la sous-matrice principale associée à la paire (i , j) est la matrice A[i | j] de taille
(m −1)× (n −1) obtenue à partir de A en traçant la i -ème ligne et la j -ème colonne.

Exemple 6.6. Si A =
1 2 3

4 5 6
7 8 9

, alors

A[1|2] =
(
4 6
7 9

)
, A[3|1] =

(
2 3
5 6

)
, A[2|2] =

(
1 3
7 9

)
.

⋄

Définition 6.7. Pour chaque entier n⩾ 3, on définit l’application

detn :Mn×n(R) →R

de façon récursive par

detn(A) =
n∑

k=1
(−1)k+1 A1,k detn−1

(
A[1|k]

)
.

108 NumChap: chap-determinant, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

botafogo.saitis.net

6.3. Déterminant des matrices de taille n ×n

Théorème 6.8. Pour tout entier n ⩾ 3 l’application déterminant detn peut se calculer à l’aide de
detn−1 par l’une quelconque des relations suivantes : si A est de taille n ×n,

(DL) développement selon la i -ème ligne de A :

detn(A) =
n∑

k=1
(−1)k+i Ai ,k detn−1

(
A[i |k]

)
,

(DC) développement selon la j -ème colonne de A :

detn(A) =
n∑

k=1
(−1)k+ j Ak, j detn−1

(
A[k| j]

)
.

Preuve: Il s’agit d’une conséquence du Théorème 6.13. Il suffit de démontrer que toutes les expressions du détermi-

nant ci-dessus satisfont aux propriétés du Théorème 6.13.

Remarque 6.9. Le théorème précédent nous donne plusieurs façons de calculer explicitement le détermi-
nant de manière récursive, en calculant detn à l’aide de detn−1, jusqu’à revenir sur det2. ⋄
Exemple 6.10. Considérons la matrice de taille 3×3

A =
 1 2 −3

4 5 6
−7 8 9

 .

Pour calculer det3(A), le théorème dit que nous avons pas moins de 6 façons équivalentes de procéder. Par
exemple, en développant selon la première ligne,

det3(A) =
3∑

k=1
(−1)k+1 A1,k det2

(
A[1|k]

)
=(−1)1+1 A1,1det2

(
A[1|1]

)+ (−1)2+1 A1,2det2
(

A[1|2]
)+ (−1)3+1 A1,3det2

(
A[1|3]

)
=det2

((
5

8

)
,

(
6

9

))
−2det2

((
4

−7

)
,

(
6

9

))
−3det2

((
4

−7

)
,

(
5

8

))
=(5 ·9−8 ·6)−2(4 ·9− (−7) ·6)−3(4 ·8− (−7) ·5)

=−360.

Ou alors, en développant selon la 3-ème colonne,

det3(A) =
3∑

k=1
(−1)k+3 Ak,3det2

(
A[k|3]

)
=(−1)1+3 A1,3det2

(
A[1|3]

)+ (−1)2+3 A2,3det2
(

A[2|3]
)+ (−1)3+3 A3,3det2

(
A[3|3]

)
=(−3)det2

((
4

−7

)
,

(
5

8

))
−6det2

((
1

−7

)
,

(
2

8

))
+9det2

((
1

4

)
,

(
2

5

))
=−3(4 ·8− (−7) ·5)−6(1 ·8− (−7) ·2)+9(1 ·5−4 ·2)

=−360.

⋄

6.3.2 Une caractérisation du déterminant à partir de ses propriétés algébriques⋆

On veut étudier des propriétés algébriques des applications

ϕ :Mn×n(R) →R .

NumChap: chap-determinant, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) 109

botafogo.saitis.net

6.3. Déterminant des matrices de taille n ×n

Comme une matrice A de taille n ×n peut être décrite de façon équivalente par ses colonnes a1, . . . ,an ∈Rn

via

A = [a1 · · ·an] ,

on peut regarder l’application précédente ϕ de façon équivalente

ϕ :Rn ×·· ·×Rn︸ ︷︷ ︸
n facteurs

→R ,

en posant

ϕ(a1, . . . ,an) =ϕ(A) .

En particulier, pour des vecteurs a1, . . . ,an ∈Rn , le déterminant de a1, . . . ,an est défini par

detn(a1, . . . ,an) := detn(A) ,

où A = [a1 · · ·an] est la matrice de taille n ×n définie par les colonnes a1, . . . ,an ∈Rn .

Nous allons étudier des propriétés de l’application déterminant detn semblables à celles du cas n = 2. Nous
verrons après un résultat général qui dit que l’application déterminant est la seule application vérifiant
toutes ces propriétés. Commençons par définir les propriétés, qui généralisent celles du cas de matrices de
taille 2×2.

Définition 6.11. Une application

ϕ :Mn×n(R) →R ou de façon ϕ :

n facteurs︷ ︸︸ ︷
Rn ×·· ·×Rn →R

A 7→ϕ(A) équivalente (a1, . . . ,an) 7→ϕ(a1, . . . ,an)

est dite

(MUL) multilinéaire si elle est linéaire en chacun de ses vecteurs, i.e. si pour tout k = 1,2, . . . ,n et pour
tous vecteurs a1, . . . ,ak−1,ak+1, . . . ,an fixés, l’application

Rn →R

x 7→ϕ(a1, . . . ,ak−1,x,ak+1, . . . ,an)

est linéaire, ou, de façon équivalente,

ϕ


A1,1 · · · A′

1,k +λA′′
1,k · · · A1,n

...
. . .

...
. . .

...
An,1 · · · A′

n,k +λA′′
n,k · · · An,n



=ϕ


A1,1 · · · A′

1,k · · · A1,n
...

. . .
...

. . .
...

An,1 · · · A′
n,k · · · An,n

+λϕ


A1,1 · · · A′′

1,k · · · A1,n
...

. . .
...

. . .
...

An,1 · · · A′′
n,k · · · An,n

 ;

(ALT) alternée si ϕ(a1, . . . ,an) = 0 dès que deux des vecteurs ai et a j avec i ̸= j sont égaux, ou, de
façon équivalente, ϕ(A) = 0 si deux colonnes de A sont égales ;

(NOR) normalisée si ϕ(e1, . . . ,en) = 1, ou, de façon équivalente, ϕ(In) = 1.

Remarque 6.12. Un application multilinéaire ϕ : Rn ×·· ·×Rn → R pour n = 2 est précisément une applica-
tion bilinéaire.

110 NumChap: chap-determinant, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

botafogo.saitis.net

6.4. Propriétés du déterminant

On peut montrer, exactement comme on l’a fait dans le cas n = 2 (section précédente), qu’une application
multilinéaire ϕ :Rn ×·· ·×Rn →R est alternée si et seulement si elle est antisymétrique, i.e. si l’on échange
deux vecteurs, on change le signe de la fonction :

ϕ(a1, . . . ,ai , . . . ,a j , . . . ,an) =−ϕ(a1, . . . ,a j , . . . ,ai , . . . ,an) ,

ou, de façon équivalente, si B ∈Mn×n(R) est obtenue de A ∈Mn×n(R) en transposant deux colonnes, alors
ϕ(B) =−ϕ(A). ⋄

Théorème 6.13. Pour chaque entier n⩾ 2, l’application déterminant

detn :Mn×n(R) →R

définie dans la sous-section précédente vérifie la condition (MUL) de multilinéarité, (ALT) d’alternance
et (NOR) de normalisation dans la Définition 6.11. En général, pour tout c ∈ R, il existe une unique
application

Φn,c :Mn×n(R) →R

qui vérifie (MUL), (ALT) etΦn,c (In) = c. De façon explicite,Φn,c (A) = c.detn(A) pour tout A ∈Mn×n(R).

Preuve: Le fait que detn satisfait aux propriétés (MUL), (ALT) et (NOR) suit d’un argument par récurrence en em-

ployant la définition récursive de l’application déterminant. La preuve de l’unicité de l’application Φn,c vérifiant

(MUL), (ALT) et Φn,c (In) = c est omise. Pour montrer que Φn,c (A) = c.detn(A) pour tout A ∈Mn×n(R), on note que

l’application A 7→ c.detn(A) satisfait aux conditions (MUL), (ALT) et l’image de In est c.detn(In) = c.1 = c.

Remarque 6.14. Le théorème précédent nous dit que l’application déterminant est univoquement caracté-
risée par les propriétés (MUL), (ALT) et (NOR). ⋄

Pour simplifier la notation, désormais on va écrire souvent det(a1, . . . ,an) au lieu de detn(a1, . . . ,an), pour
a1, . . . ,an ∈Rn et det(A) au lieu de detn(A) pour A ∈Mn×n(R).

Informel 6.15. Dans la littérature, le déterminant de A est parfois noté |A|. Nous utiliserons rarement
cette notation, car elle rappelle la valeur absolue, et donne donc l’impression qu’un déterminant doit
toujours être une quantité positive, ce qui n’est pas du tout le cas bien-sûr.

6.4 Propriétés du déterminant

6.4.1 Le calcul du déterminant à partir des propriétés

Les propriétés énoncées dans le Théorème 6.8 se traduisent en nos premières moyens de calcul du déter-
minant.

NumChap: chap-determinant, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) 111

botafogo.saitis.net

6.4. Propriétés du déterminant

Règles de calcul récursif du déterminant

(DET.2) On a det

(
a b
c d

)
= ad −bc .

(DET.n) Pour une matrice carrée A de taille n > 2 :

(DL) développement selon la i -ème ligne de A :

det(A) =
n∑

k=1
(−1)k+i Ai ,k det

(
A[i |k]

)
,

(DC) développement selon la j -ème colonne de A :

det(A) =
n∑

k=1
(−1)k+ j Ak, j det

(
A[k| j]

)
.

Par ces relations de récurrence, le déterminant d’une matrice de taille n ×n peut toujours se calculer en
passant par le calcul de n déterminants de sous-matrices de taille (n −1)× (n −1). Mais à leur tour, le dé-
terminant de chacune de ces matrices de taille (n −1)× (n −1) passe par le calcul de n −1 matrices de taille
(n−2)×(n−2), etc. Ainsi, si Nn représente le nombre d’opérations nécessaires pour calculer le déterminant
d’une matrice de taille n ×n, on a

Nn = nNn−1

= n(n −1)Nn−2

= n(n −1)(n −2)Nn−3

...

= n(n −1)(n −3) · · ·4 ·3 ·N2 = n!

2
N2 .

Ainsi, le nombre d’opérations augmente factoriellement avec n, ce qui rend un calcul de déterminant, a
priori, très coûteux pour des grandes matrices.

Exemple 6.16. Prenons une matrice de taille 10×10, par exemple

A =



8 8 1 0 6 1 9 7 5 5
1 3 3 9 7 4 7 1 5 5
8 5 6 7 8 3 0 8 9 7
5 5 4 7 3 8 3 4 5 8
9 6 8 5 5 3 6 4 3 6
1 8 9 5 3 7 4 3 5 3
5 4 1 3 9 6 8 9 3 2
5 2 1 9 9 5 6 0 4 5
7 3 6 8 6 0 6 7 3 6
3 8 2 2 6 6 3 5 9 6


.

Par ce que nous avons dit plus haut, le calcul de det(A) requiert environ 10! (factorielle) opérations, ce qui est
de l’ordre de 3′628′800. Avec une matrice de taille 100×100, le nombre d’opérations est de l’ordre de 10158 ; il
faudrait à n’importe quel ordinateur, même très puissant, un temps bien supérieur à l’âge de l’univers pour
effectuer ce calcul (source : Rappaz-Picasso.)

Remarque : La matrice ci-dessus a été générée aléatoirement. ⋄

112 NumChap: chap-determinant, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

https://onlinemathtools.com/generate-random-matrix
botafogo.saitis.net

6.4. Propriétés du déterminant

Donc en général, ce n’est pas très efficace de calculer un déterminant en utilisant les relations de récursion.
En revanche, ce qu’on peut faire est d’utiliser les relations de récurrence, ainsi que les propriétés de base
des fonctions detn , pour dériver d’autres propriétés générales du déterminant. Celles-ci fourniront des mé-
thodes permettant d’économiser autant que possible sur le nombre d’opérations à effectuer pour calculer
un déterminant, en simplifiant la matrice.

6.4.2 Propriétés du déterminant

D’abord, un résultat préliminaire :

Lemme 6.17. Pour toute matrice carrée A on a det(AT) = det(A).

Preuve: Par récurrence sur n. Lorsque n = 2, on a simplement

det(A) = det

(
a b
c d

)
= ad −bc = ad − cb = det

(
a c
b d

)
= det(AT) .

Supposons maintenant que la formule soit correcte pour toute matrice de taille n ×n, et considérons une matrice de
taille (n +1)× (n +1), notée A. En développant selon la première colonne, puisque le coefficient d’indice (j ,1) de AT

est le coefficient d’indice (1, j) de A, à savoir A1, j , on a que

det(AT) =
n+1∑
j=1

(−1) j+1 A1, j det
(

AT [j |1]
)

.

Or, par la définition de la transposition, AT [j |1] = (A[1| j])T . De plus, par l’hypothèse d’induction, A[1| j] étant une
matrice de taille (n −1)× (n −1),

det
((

A[1| j]
)T

)
= det(A[1| j]) ,

ce qui donne

det(AT) =
n+1∑
j=1

(−1) j+1 A1, j det
(

A[1| j]
)= det(A) .

En effet, cette dernière somme est le déterminant de A, développé selon la première ligne.

Ensuite, les propriétés qui permettront de simplifier le calcul du déterminant :

Proposition 6.18 (Propriétés du déterminant). 1) Si A possède deux colonnes (ou deux lignes)
égales, alors det(A) = 0.

2) Le signe du déterminant change lorsqu’on échange deux colonnes :

det(a1, . . . ,ai , . . . ,a j , . . . ,an)

=−det(a1, . . . ,a j , . . . ,ai , . . . ,an)

et c’est pareil si l’on échange deux lignes.

3) Lorsqu’on multiplie une colonne par λ, le déterminant est multiplié par λ :

det(a1, . . . ,λai , . . . ,an) =λdet(a1, . . . ,ai , . . . ,an)

et c’est pareil si l’on multiplie une ligne par λ.

4) Lorsqu’on rajoute un multiple d’une colonne à une autre colonne, on ne change pas le détermi-
nant :

det(a1, . . . ,ai+λa j , . . . ,an) = det(a1, . . . ,ai , . . . ,an)

et c’est pareil si l’on rajoute un multiple d’une ligne à une autre ligne.

NumChap: chap-determinant, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) 113

botafogo.saitis.net

6.4. Propriétés du déterminant

Preuve: Ces propriétés suivent directement du fait que le déterminant est une fonction des colonnes qui est alternée
et multilinéaire.

Par exemple, si deux colonnes de A sont égales, det(A) = 0 suit immédiatement du fait que det(A) = det(a1, . . . ,an), et

que det est alternée. Puis, si deux lignes de A sont égales, alors deux colonnes de AT sont égales, et donc det(AT) = 0.

Par le lemme précédent, det(A) = 0.

Exemple 6.19. 1) Deux colonnes égales :

det


−2 0 8 0
5 1 −8 1
−2 −3 0 −3
4 7 1 7

= 0.

2) Échange de deux colonnes :

det


−1 2 0 4
3 4 −7 3
5 −2 2 5
1 6 −3 0

=−det


0 2 −1 4
−7 4 3 3
2 −2 5 5
−3 6 1 0

 .

3) Extraction d’une constante sur une colonne :

det


−1 2 0 4
3 4 −7 3
5 −2 2 5
1 6 −3 0

= 2det


−1 1 0 4
3 2 −7 3
5 −1 2 5
1 3 −3 0

 .

4) Rajouter un multiple d’une ligne à une autre :

det


−1 2 0 4
3 4 −7 3
5 −2 2 5
1 6 −3 0

= det


9 −2 4 14
3 4 −7 3
5 −2 2 5
1 6 −3 0

 ,

où l’on a rajouté 2 fois la troisième ligne à la première.
⋄

Ensuite, il existe des matrices dont le calcul du déterminant ne requiert aucune opération particulière :

Définition 6.20. Une matrice carrée A est triangulaire supérieure (resp., inférieure) si Ai , j = 0 dès
que i > j (resp., i < j). On dit que la matrice A est diagonale si Ai , j = 0 dès que i ̸= j . Étant donné
d1, . . . ,dn ∈R, on notera la matrice de taille n ×n diagonale

diag(d1, . . . ,dn) :=


d1 0 · · · 0
0 d2 · · · 0
...

...
. . .

...
0 0 · · · dn

 .

Exemple 6.21. Une matrice de taille 4×4 triangulaire supérieure :

A =


2 −1 4 −2
0 −5 5 0
0 0 1 −1
0 0 0 3

 .

⋄

114 NumChap: chap-determinant, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

botafogo.saitis.net

6.4. Propriétés du déterminant

Lemme 6.22. Si A est une matrice triangulaire supérieure ou inférieure, alors son déterminant est le
produit de ses termes diagonaux :

det(A) = A1,1 · · · An,n =:
n∏

j=1
A j , j .

Preuve: Montrons la première affirmation pour les matrices triangulaires supérieures, par récurrence sur n. Pour
n = 2, on a

det

(
A1,1 0
A1,2 A2,2

)
= A1,1 A2,2 −0 · A1,2 =

2∏
j=1

A j , j .

Supposons que le résultat est prouvé pour un certain entier n, et considérons une matrice A de taille (n +1)× (n +1)
triangulaire supérieure. En développant selon la première colonne, et en utilisant le fait que tous les A j ,1 = 0 lorsque
j = 2, . . . ,n +1, il ne reste que le terme j = 1. De plus, puisque A[1|1] est une matrice de taille n ×n triangulaire supé-
rieure, on peut utiliser l’hypothèse d’induction :

det(A) =
n+1∑
j=1

(−1) j+1 A j ,1 det
(

A[j |1]
)= (−1)1+1 A1,1 det

(
A[1|1]

)= A1,1

n+1∏
j=2

A j , j =
n+1∏
j=1

A j , j .

Si A est triangulaire inférieure, alors AT est triangulaire supérieure et ses éléments diagonaux sont les mêmes, donc le

résultat est aussi vrai.

En particulier, si A est diagonale,

A = diag(d1, . . . ,dn) :=


d1 0 · · · 0
0 d2 · · · 0
...

...
. . .

...
0 0 · · · dn


alors

det(A) = d1 · · ·dn =
n∏

j=1
d j .

Exemple 6.23.

det



1 76 −21 98 −5 99
0

p
2 0 −6 98 −5

0 0 32 53 75 97
0 0 0 0 42 14
0 0 0 0 21 32
0 0 0 0 0 95

= 1 ·p2 ·32 ·0 ·21 ·95 = 0.

⋄
Exemple 6.24. Matrice identité :

det(In) = det


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

= 1n = 1.

⋄

Les propriétés énoncées jusqu’ici fournissent déjà de quoi calculer un déterminant en évitant de le déve-
lopper systématiquement à l’aide des relations de récurrence. En effet, on a vu que les déterminants les
plus simples à calculer sont ceux des matrices triangulaires, et aussi que des opérations sur les colonnes

NumChap: chap-determinant, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) 115

botafogo.saitis.net

6.4. Propriétés du déterminant

et les lignes correspondent à certaines modifications simples du déterminant. On pourra donc appliquer
des opérations sur les lignes et les colonnes, dans le but de rendre la matrice triangulaire supérieure, ou
au moins avec autant de zéros que possible, ce qui ensuite d’utiliser les relations de récurrence pour une
matrice simplifiée.

Exemple 6.25. Utilisons les propriétés pour calculer le déterminant de la matrice

A =


1 2 3 4
5 6 7 8
2 6 4 8
3 1 1 2

 .

On fait déjà apparaître quelques zéros en soustrayant la troisième ligne de la deuxième, ce qui ne change
pas le déterminant :

det


1 2 3 4
5 6 7 8
2 6 4 8
3 1 1 2

= det


1 2 3 4
3 0 3 0
2 6 4 8
3 1 1 2

 .

Ensuite, en soustrayant la première colonne à la troisième,

det


1 2 3 4
3 0 3 0
2 6 4 8
3 1 1 2

= det


1 2 2 4
3 0 0 0
2 6 2 8
3 1 −2 2

 .

Maintenant, on peut développer selon la deuxième ligne, puisqu’elle contient beaucoup de zéros :

= det


1 2 2 4
3 0 0 0
2 6 2 8
3 1 −2 2

=−3det

2 2 4
6 2 8
1 −2 2

 .

En mettant en évidence un 2 dans les deux premières lignes, puis dans la dernière colonne,

det

2 2 4
6 2 8
1 −2 2

= 22 det

1 1 2
3 1 4
1 −2 2

= 23 det

1 1 1
3 1 2
1 −2 1

 .

En soustrayant la dernière ligne à la première, et en développant selon la première ligne,

det

1 1 1
3 1 2
1 −2 1

= det

0 3 0
3 1 2
1 −2 1


=−3det

(
3 2
1 1

)
=−3 ·1 =−3,

donc det(A) = (−3) ·23 · (−3) = 72 . ⋄

6.4.3 Une curiosité dans le cas n = 3

Dans le cas d’une matrice de taille 3×3, le développement du déterminant peut se faire à l’aide de la règle
de Sarrus. Celle-ci ne contient rien de profond, mais permet de calculer un déterminant de taille 3×3 de
façon systématique, facile à mémoriser. On écrit la matrice A, à la suite de laquelle on rajoute la première et
la deuxième colonne. On parcours ensuite ce tableau de taille 3×5 selon certaines diagonales :

116 NumChap: chap-determinant, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

https://en.wikipedia.org/wiki/Rule_of_Sarrus
https://en.wikipedia.org/wiki/Rule_of_Sarrus
botafogo.saitis.net

6.5. Interprétation géométrique du déterminant de matrices de taille 3×3

A1,1 A1,2 A1,3 A1,1 A1,2

A = A2,1 A2,2 A2,3 A2,1 A2,2

A3,1 A3,2 A3,3 A3,1 A3,2

+ + +

− − −




et

det(A) = A1,1 A2,2 A3,3 + A1,2 A2,3 A3,1 + A1,3 A2,1 A3,2−A3,1 A2,2 A1,3 − A3,2 A2,3 A1,1 − A3,3 A2,1 A1,2.

Remarque 6.26. Il n’existe pas d’équivalent simple de la règle de Sarrus pour des déterminants de matrices
de tailles supérieures. ⋄

6.5 Interprétation géométrique du déterminant de matrices de taille 3×3

Dans l’espace, considérons trois vecteurs u,v,w, et le parallélépipède qu’ils définissent :

u

v

w

Le volume de ce parallélépipède, noté Vol(u,v,w), est reliée au déterminant de la matrice de taille 3×3 dont
les colonnes sont u,v et w.

Théorème 6.27. Le volume du parallélépipède est donnée par

Vol(u,v,w) =
∣∣∣det

(
[u v w]

)∣∣∣ .

Preuve: Omise.

Pour une visualisation intéressante voir la vidéo sur 3Blue1Brown.

6.6 La formule det(AB) = det(A)det(B)

Dans cette section, nous allons démontrer la propriété qui rend le déterminant réellement utile en algèbre
linéaire :

Théorème 6.28. Pour toute paire de matrices A et B de taille n ×n on a

det(AB) = det(A)det(B) .

NumChap: chap-determinant, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) 117

https://www.youtube.com/watch?v=Ip3X9LOh2dk&ab_channel=3Blue1Brown
botafogo.saitis.net

6.6. La formule det(AB) = det(A)det(B)

Preuve:⋆ On fixe A ∈Mn×n(R) et on considère l’application

ϕ :Mn×n(R) →R

B 7→ det(AB) .

Or, on remarque que ϕ est multilinéaire et alternée. En effet, si l’on écrit B à partir de ses colonnes via B = [b1 · · ·bn],
alors

ϕ
(

A[b1 · · ·b′
k +λb′′

k · · ·bn]
)=ϕ(

[Ab1 · · · A(b′
k +λb′′

k) · · · Abn]
)=ϕ(

[Ab1 · · · Ab′
k +λAb′′

k · · · Abn]
)

=ϕ(
[Ab1 · · · Ab′

k · · · Abn]
)+λϕ(

[Ab1 · · · Ab′′
k · · · Abn]

)
,

où l’on a utilisé dans la dernière égalité que ϕ est multilinéaire. En outre, si B possède deux colonnes égales, par
exemple B = [b1 · · ·bi · · ·b j · · ·bn] avec bi = b j , alors

ϕ
(

A[b1 · · ·bi · · ·b j · · ·bn]
)=ϕ(

[Ab1 · · · Abi · · · Ab j · · · Abn]
)= 0,

où l’on a utilisé dans la dernière égalité que ϕ est alternée et Abi = Ab j . En plus, ϕ(In) = det(A In) = det(A). Par la
dernière partie du Théorème 6.13 avec c = det(A), on conclut que

det(AB) =ϕ(B) = det(A)det(B),

comme on voulait démontrer.

6.6.1 Déterminant et inversibilité

La preuve ci-dessus (voir les passages en gras) a comme conséquence la généralisation que nous espérions,
à savoir celle du critère que nous avions établi pour les matrices 2×2 :

Théorème 6.29. Une matrice carrée A est inversible si et seulement si det(A) ̸= 0.

Preuve: On suppose que A est inversible, ce qui nous dit qu’il existe une matrice A−1 de taille n×n telle que A−1 A = In .
Le Théorème 6.28 nous dit que

det(A−1)det(A) = det(A−1 A) = det(In) = 1,

ce qui implique que det(A) ̸= 0, comme on voulait démontrer.
On suppose maintenant que A n’est pas inversible. On va montrer que det(A) = 0. Notons Ẽ (1), . . . , Ẽ (l) les transfor-
mations qui réduisent A. Dans ce cas, A ne peut pas être réduite à l’identité. On note Ã la forme échelonnée réduite.
Comme

Ã = Ẽ (l) · · · Ẽ (1) A

n’est pas la matrice identité, c’est une matrice triangulaire supérieure possédant au moins un zéro sur sa diagonale.
Ceci implique que son déterminant est nul, det(Ã) = 0. On peut donc écrire que

0 = det(Ã) = det(Ẽ (l)) · · ·det(Ẽ (1))det(A) .

Comme det(Ẽ (i)) ̸= 0 pour tout i , on en déduit que det(A) = 0. On a donc démontré que si A n’est pas inversible, alors

det(A) = 0, comme on voulait démontrer.

Exemple 6.30. La matrice

A =



1 1 1 1 1 1 1
1 1 0 0 0 0 0
1 0 1 0 0 0 0
1 0 0 1 0 0 0
1 0 0 0 1 0 0
1 0 0 0 0 1 0
1 0 0 0 0 0 1


118 NumChap: chap-determinant, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

botafogo.saitis.net

6.6. La formule det(AB) = det(A)det(B)

est inversible, puisqu’en soustrayant à la première colonne la somme de toutes les autres,

det(A) = det



−5 1 1 1 1 1 1
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1



= (−5)det



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


=−5 ̸= 0.

⋄
L’utilisation du déterminant permet maintenant d’étudier l’inversibilité de matrices contenant un para-
mètre, en évitant de devoir étudier un système.

Exemple 6.31. Pour quelles valeurs du paramètre t la matrice

A =
 0 t −1

t 10 0
t −1 1 t


est-elle inversible ?

En développant selon la première colonne,

det(A) = (−1)t det

(
t −1
1 t

)
+ (t −1)det

(
t −1

10 0

)
= (−t)(t 2 +1)+10(t −1)

=−t 3 +9t −10.

On sait sait donc que A est inversible si et seulement si t n’est pas racine du polynôme P (t) =−t 3 +9t −10.
On remarque que t = 2 est racine de P , ce qui permet de factoriser (par division Euclidienne par exemple) :

P (t) = (t −2)(−t 2 −2t +5) .

Comme les racines de −t 2 − 2t + 5 sont −1±p
6, on en déduit que A est inversible si et seulement si t ̸∈

{2,−1−p
6,−1+p

6}. ⋄

6.6.2 Le déterminant de l’inverse

Lorsque A est inversible, A A−1 = In , et la formule démontrée plus haut permet d’écrire

1 = det(In) = det(A A−1) = det(A)det(A−1) ,

qui donne :

det(A−1) = 1

det(A)
.

NumChap: chap-determinant, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) 119

botafogo.saitis.net

6.7. Critères d’inversibilité de matrices carrées

6.6.3 Le déterminant comme invariant de similitude

Définition 6.32. Deux matrices A et B de taille n×n sont dites semblables s’il existe une matrice de
taille n ×n inversible M telle que

A = M−1B M .

Lorsque A et B sont semblables, on note A ∼ B .

Exemple 6.33. Les matrices

A =
(
1 1
0 0

)
et B =

(
1 0
0 0

)

sont semblables. En effet, en prenant M =
(
1 1
0 1

)
, qui est inversible, on obtient

M−1B M =
(
1 −1
0 1

)(
1 0
0 0

)(
1 1
0 1

)
=

(
1 1
0 0

)
= A .

⋄

Proposition 6.34. Si A ∼ B, alors det(A) = det(B).

(On dit que le déterminant est un invariant de similitude.)
Preuve:

det(A) = det(M−1B M)

= det(M−1)det(B)det(M)

= det(B)det(M−1)det(M)

= det(B)det(M−1M)

= det(B)det(In)

= det(B) .

Le déterminant peut donc être utilisé pour démontrer à moindre frais que deux matrices ne sont pas sem-
blables :

Exemple 6.35. Les matrices

A =
2 0 0

1 0 −1
0 3 1

 et B =
1 0 1

0 2 13
0 0 −1


ne sont pas semblables, car det(A) = 6 (en développant selon la première ligne), alors que det(B) =−2. ⋄

6.7 Critères d’inversibilité de matrices carrées

6.7.1 Le résultat

Dans la section précédente, nous avons vu un premier critère d’inversibilité général pour une matrice A,
caractérisé par la possibilité de réduire (ou non) A à l’identité. Relions maintenant l’inversibilité à d’autres
propriétés algébriques. (Dans la suite du cours, d’autres critères viendront s’ajouter à cette liste.)

120 NumChap: chap-determinant, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

botafogo.saitis.net

6.7. Critères d’inversibilité de matrices carrées

Théorème 6.36. (Critères d’inversibilité) Soit A une matrice de taille n ×n. Alors, les propriétés sui-
vantes sont toutes équivalentes :

1) A est inversible ;

2) A est un produit fini de matrices élémentaires ;

3) la forme échelonnée réduite de A est In ;

4) det(A) ̸= 0 ;

5) pour tout b ∈Rn , le système Ax = b possède une unique solution ;

6) le système Ax = 0 ne possède que la solution triviale (i.e. Ker(A) = {0}) ;

7) les colonnes de A forment une famille libre de Rn ;

8) les colonnes de A forment une famille géneratrice de Rn (i.e. Img(A) =Rn).

Preuve: Les équivalences 1 ⇔ 2 ⇔ 3 ont été démontrées dans le Théorème 5.27 et le Corollaire 5.28.

L’équivalence 1 ⇔ 4 suit du Théorème 6.29.

L’équivalence 1 ⇔ 5 suit de l’équivalence entre les items (i) et (iv) du Théorème 4.52, où l’on utilise qu’une application
linéaire est bijective si et seulement si sa matrice canonique est inversible (voir Lemme 5.15).

L’équivalence 1 ⇔ 6 suit de combiner l’équivalence entre les items (i) et (ii) du Théorème 4.52 et l’équivalence entre les
items (i) et (iii) du Théorème 4.46, où l’on utilise qu’une application linéaire est bijective si et seulement si sa matrice
canonique est inversible (voir Lemme 5.15).

L’équivalence 1 ⇔ 7 suit de combiner l’équivalence entre les items (i) et (ii) du Théorème 4.52 et l’équivalence entre les
items (i) et (iv) du Théorème 4.46, où l’on utilise qu’une application linéaire est bijective si et seulement si sa matrice
canonique est inversible (voir Lemme 5.15).

L’équivalence 1 ⇔ 8 suit de combiner l’équivalence entre les items (i) et (iii) du Théorème 4.52 et l’équivalence entre

les items (i) et (iv) du Théorème 4.48, où l’on utilise qu’une application linéaire est bijective si et seulement si sa

matrice canonique est inversible (voir Lemme 5.15).

6.7.2 Une application : une simplification de la définition d’inversibilité

Nous avons insisté plusieurs fois sur le fait que la définition d’inversibilité implique deux conditions : il doit
exister B telle que AB = In et B A = In . Or nous avons maintenant les outils pour prouver qu’il suffit qu’une
seule de ces conditions soit vérifiée :

Proposition 6.37. Soit A une matrice de taille n ×n.

(INV-G) S’il existe une matrice C de taille n ×n telle que C A = In , alors A est inversible et A−1 =C .

(INV-D) S’il existe une matrice B de taille n ×n telle que AB = In , alors A est inversible et A−1 = B.

Preuve: 1. Supposons que C A = In . Si x est solution du système homogène Ax = 0, alors

x = In x =C Ax =C (Ax) =C 0 = 0 .

Donc le système homogène ne possède que la solution triviale. Par le théorème (critère 5), A est inversible : son inverse
A−1 existe. En multipliant l’identité C A = In à droite par A−1, on obtient C = A−1.

2. Supposons que AB = In . Fixons un y ∈ Rn quelconque. On a alors ABy = In y = y, que l’on peut récrire Ax∗ = y

(où x∗ = By). Ceci implique bien que y ∈ Img(A). Comme ceci est vrai pour tout y, on a que Img(A) = Rn . Par le

théorème (critère 7.) ce qui implique que A est inversible. En multipliant l’identité AB = In à gauche par A−1, on

obtient A−1 = B .

NumChap: chap-determinant, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) 121

botafogo.saitis.net

6.8. Formule de Cramer et conséquences⋆

6.8 Formule de Cramer et conséquences⋆

6.8.1 Résolution de systèmes d’équations linéaires par déterminants

Dans cette sous-section, on présente une application intéressante de la théorie du déterminant à la résolu-
tion des systèmes linéaires.

Si A est une matrice inversible de taille n ×n, on sait que pour tout b ∈Rn , le système

Ax = b

possède exactement une solution x, donnée par

x = A−1b .

Nous allons voir comment il est possible de calculer chacune des composantes x j de cette solution, sans
passer par la connaissance de A−1.

Définition 6.38. Si M est une matrice de taille n ×n, et z ∈ Rn , M j (z) est la matrice de taille n ×n
obtenue à partir de M en remplaçant la j -ème colonne par z (sans toucher aux autres colonnes).

Exemple 6.39. Si M =
1 2 3

4 5 6
7 8 9

, z =

p

2
π

e

, alors

M2(z) =
1

p
2 3

4 π 6
7 e 9

 .

⋄

Proposition 6.40. (Formule de Cramer) Soit A une matrice de taille n ×n inversible, b ∈ Rn , et soit
x ∈ Rn l’unique solution du système Ax = b. Alors pour tout j ∈ {1,2, . . . ,n}, la j -ème composante de x
est égale à

x j =
det

(
A j (b)

)
det(A)

.

Preuve: Notons A = [a1 · · ·an]. Calculons le produit de A par (In) j (x) :

A
(
(In) j (x)

)= A
[
e1 · · ·e j−1 x e j+1 · · ·en

]
= [

Ae1 · · · Ae j−1 Ax Ae j+1 · · · Aen
]

= [
a1 · · ·a j−1 b a j+1 · · ·an

]
= A j (b) .

On a donc
det(A)det

(
(In) j (x)

)= det
(

A
(
(In) j (x)

))= det
(

A j (b)
)

.

Or en développant selon la j -ème colonne,

det
(
(In) j (x)

)= n∑
k=1

(−1)k+ j xk det
((

(In) j (x)
)

k, j

)
=

n∑
k=1

(−1)k+ j xk det
(
(In)k, j

)
.

122 NumChap: chap-determinant, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

botafogo.saitis.net

6.8. Formule de Cramer et conséquences⋆

Dans la deuxième ligne, on a utilisé le fait que l’on trace la colonne contenant x, et donc cela revient au même de
travailler avec In qu’avec (In) j (x). Ensuite, remarquons que si k ̸= j , alors (In)k j contient une colonne et une ligne de
zéros, et donc en développant selon cette ligne, on voit que det((In)k, j) = 0.

Il ne subsiste donc, dans la somme ci-dessus, que le terme k = j :

det
(
(In) j (x)

)= (−1) j+ j x j det
(
(In) j , j

)
= x j det(In−1)

= x j .

Ceci démontre la formule.

Exemple 6.41. Considérons le système linéaire Ax = b donné par

(∗)


1 2 3 4
1 2 3 0
1 2 0 0
1 0 0 0




x1

x2

x3

x4

=


5
6
7
8

 .

Comme det(A) = 4! = 24 ̸= 0, la matrice est inversible et la solution du système est unique. Si on s’intéresse
par exemple à la quatrième composante x4,

x4 =
det

(
A4(b)

)
det(A)

= 1

24
det


1 2 3 5
1 2 3 6
1 2 0 7
1 0 0 8



= 1

4
det


1 1 1 5
1 1 1 6
1 1 0 7
1 0 0 8



= 1

4
det


0 0 1 5
0 0 1 6
0 1 0 7
1 0 0 8

 .

On a d’abord extrait un 2 de la deuxième colonne et un 3 de la troisième, puis on a soustrait la deuxième
colonne de la première, et la troisième de la deuxième. Maintenant, en développant selon la première co-
lonne,

x4 = 1

4
det


0 0 1 5
0 0 1 6
0 1 0 7
1 0 0 8


= 1

4
(−1)det

0 1 5
0 1 6
1 0 7


= 1

4
(−1)(1)det

(
1 5
1 6

)
= 1

4
(−1)(1)(6−5)

=−1

4
.

NumChap: chap-determinant, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) 123

botafogo.saitis.net

6.8. Formule de Cramer et conséquences⋆

Bien-sûr, on trouve la même chose qu’en résolvant complètement le système (∗), qui serait par exemple de
faire L1 ← L1 −L2, L2 ← L2 −L3, L3 ← L3 −L4, qui donne


0 0 0 4
0 0 3 0
0 2 0 0
1 0 0 0




x1

x2

x3

x4

=


−1
−1
−1
8

 .

⋄

6.8.2 Une application intéressante : formule pour A−1

Si le système considéré est grand, la formule de Cramer pour x j représente un intérêt limité du point de vue
calculatoire. En effet elle implique le calcul de deux déterminants, qui comme on sait représente un nombre
d’opérations croissant factoriellement avec la taille du système.

Par contre, d’un point de vue théorique elle permet de dériver une formule explicite pour l’inverse d’une
matrice :

Définition 6.42. Soit A une matrice de taille n ×n inversible. La matrice complémentaire de A est
la matrice Comp(A) de taille n ×n dont les coefficients sont donnés par

Comp(A)i , j := (−1)i+ j det(A[j |i])

pour tout 1⩽ i , j ⩽ n.

Théorème 6.43. Soit A une matrice de taille n ×n. Alors

A.Comp(A) = Comp(A).A = det(A) In . (6.1)

En conséquence, si A est inversible, l’inverse de A est donnée par

A−1 = 1

det(A)
Comp(A) .

Preuve: On montrera l’identité A.Comp(A) = det(A) In , la preuve de l’autre identité de (6.1) est analogue. Or, par
définition du produit de matrices on a que

(
A.Comp(A)

)
i ,k =

n∑
j=1

Ai , j Comp(A) j ,k =
n∑

j=1
(−1) j+k Ai , j det

(
A[k| j]

)
.

Si i = k, alors

(
A.Comp(A)

)
i ,i =

n∑
j=1

Ai , j Comp(A) j ,i =
n∑

j=1
(−1)i+ j Ai , j det

(
A[i | j]

)= det(A) = det(A)
(

In
)

i ,i ,

où l’on a utilisé le Théorème 6.8 dans la troisième égalité, en développant selon l’i -ème ligne de A. Si i ̸= k, alors

124 NumChap: chap-determinant, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

botafogo.saitis.net

6.8. Formule de Cramer et conséquences⋆

(
A.Comp(A)

)
i ,k =

n∑
j=1

Ai , j Comp(A) j ,k =
n∑

j=1
(−1) j+k Ai , j det

(
A[k| j]

)

= det

A1,1 . . . A1,n

...
. . .

...
Ai−1,1 . . . Ai−1,n

Ai ,1 . . . Ai ,n

Ai+1,1 . . . Ai+1,n

...
. . .

...
A j−1,1 . . . A j−1,n

Ai ,1 . . . Ai ,n

A j+1,1 . . . A j+1,n

...
. . .

...
An,1 . . . An,n





i -ème
ligne

j -ème
ligne

,

où l’on a utilisé le Théorème 6.8 dans la troisième égalité, en développant selon la k-ème ligne de A. Or, la propriété
d’alternance du déterminant nous dit que le dernier déterminant est nul,. En conséquence,(

A.Comp(A)
)

i ,k = 0 = det(A)
(

In
)

i ,k .

On conclut que A.Comp(A) = det(A) In .
Pour montrer la dernière affirmation, on note que si A est inversible, alors det(A) ̸= 0, et (6.1) nous dit que

A.det(A)−1 Comp(A) = det(A)−1 Comp(A).A = In ,

ce qui implique que
A−1 = det(A)−1 Comp(A).

Exemple 6.44. La matrice

A =
2 1 3

1 −1 1
1 4 −2

 ,

est inversible puisque det(A) =−14 ̸= 0. Utilisons la formule pour calculer son inverse. Indiquons en rouge
le signe de chaque coefficient, venant du (−1)i+ j =±1 dans la matrice complémentaire.

A−1 = 1

det(A)
Comp(A)

= 1

−14


+det

(−1 1
4 −2

)
−det

(
1 3
4 −2

)
+det

(
1 3
−1 1

)
−det

(
1 1
1 −2

)
+det

(
2 3
1 −2

)
−det

(
2 3
1 1

)
+det

(
1 −1
1 4

)
−det

(
2 1
1 4

)
+det

(
2 1
1 −1

)


= 1

−14

−2 14 4
314 −7 1

5 −7 −3

 .

⋄

NumChap: chap-determinant, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) 125

botafogo.saitis.net

6.9. Résumé du chapitre sur le déterminant

6.9 Résumé du chapitre sur le déterminant

DÉTERMINANT :

det

(
A1,1 A1,2

A2,1 A2,2

)
:= A1,1 A2,2 − A1,2 A2,1

ET, SI n > 2,

det


A1,1 A1,2 · · · A1,n

A2,1 A2,2 · · · A2,n...
...

. . .
...

An,1 An,2 · · · An,n

 := A1,1 det


A2,2 A2,3 · · · A2,n

A3,2 A3,3 · · · A3,n...
...

. . .
...

An,2 An,3 · · · An,n


︸ ︷︷ ︸

A[1|1]

− A1,2 det


A2,1 A2,3 · · · A2,n

A3,1 A3,3 · · · A3,n...
...

. . .
...

An,1 An,3 · · · An,n


︸ ︷︷ ︸

A[1|2]

+·· ·

+ (−1)n−1 A1,n det


A2,1 A2,3 · · · A2,n−1

A3,1 A3,3 · · · A3,n−1...
...

. . .
...

An,1 An,3 · · · An,n−1


︸ ︷︷ ︸

A[1|n]

SOUS-MATRICE PRINCIPALE A[i | j] :

A1,1 . . . A1, j−1 A1, j A1, j+1 . . . A1,n

...
. . .

...
...

. . .
...

Ai−1,1 . . . Ai−1, j−1 A j−1, j Ai−1, j+1 . . . Ai−1,n

Ai ,1 . . . Ai , j−1 Ai , j Ai , j+1 . . . Ai ,n

Ai+1,1 . . . Ai+1, j−1 Ai+1, j Ai+1, j+1 . . . Ai+1,n

...
. . .

...
...

. . .
...

An,1 . . . An, j−1 An, j An, j+1 . . . An,n




i -ème
ligne

j -ème
colonne

[i | j] :=

A1,1 . . . A1, j−1 A1, j+1 . . . A1,n

...
. . .

...
...

. . .
...

Ai−1,1 . . . Ai−1, j−1 Ai−1, j+1 . . . Ai−1,n

Ai+1,1 . . . Ai+1, j−1 Ai+1, j+1 . . . Ai+1,n

...
. . .

...
...

. . .
...

An,1 . . . An, j−1 An, j+1 . . . An,n





AUTRES MOYENS DE CALCULER LE DÉTERMINANT :

(S) POUR n = 3

A1,1 A1,2 A1,3 A1,1 A1,2

A = A2,1 A2,2 A2,3 A2,1 A2,2

A3,1 A3,2 A3,3 A3,1 A3,2

+ + +

− − −




det(A) = A1,1 A2,2 A3,3 + A1,2 A2,3 A3,1 + A1,3 A2,1 A3,2−A3,1 A2,2 A1,3 − A3,2 A2,3 A1,1 − A3,3 A2,1 A1,2.

(DL) DÉVELOPPEMENT SELON LA i -ÈME LIGNE DE A

det(A) =
n∑

k=1
(−1)k+i Ai ,k det

(
A[i |k]

)
,

126 NumChap: chap-determinant, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

botafogo.saitis.net

6.9. Résumé du chapitre sur le déterminant

(DC) DÉVELOPPEMENT SELON LA j -ÈME COLONNE DE A

det(A) =
n∑

k=1
(−1)k+ j Ak, j det

(
A[k| j]

)
.

(TRI) CAS TRIANGULAIRE

det


A1,1 A1,2 · · · A1,n

0 A2,2 · · · A2,n...
...

. . .
...

0 0 · · · An,n

= A1,1 A2,2 . . . An,n = det


A1,1 0 · · · 0
A2,1 A2,2 · · · 0...

...
. . .

...
An,1 An,2 · · · An,n


DÉTERMINANT ET GÉOMÉTRIE :

AIRE DU PARALLÉLOGRAMME DÉFINI PAR
(

A1,1

A2,1

)
ET

(
A1,2

A2,2

)
=

∣∣∣∣(A1,1 A1,2

A2,1 A2,2

)∣∣∣∣
VOLUME DU PARALLÉLÉPIPÈDE DÉFINI PAR

A1,1

A2,1

A3,1

 ,

A1,2

A2,2

A3,2

 ET

A1,3

A2,3

A3,3

=
∣∣∣∣∣∣
A1,1 A1,2 A1,3

A2,1 A2,2 A2,3

A3,1 A3,2 A3,3

∣∣∣∣∣∣
PROPRIÉTÉS DU DÉTERMINANT :

(MUL) MULTILINÉAIRITÉ

det


A1,1 · · · A′

1,k +λA′′
1,k · · · A1,n

...
. . .

...
. . .

...
An,1 · · · A′

n,k +λA′′
n,k · · · An,n



= det


A1,1 · · · A′

1,k · · · A1,n
...

. . .
...

. . .
...

An,1 · · · A′
n,k · · · An,n

+λdet


A1,1 · · · A′′

1,k · · · A1,n
...

. . .
...

. . .
...

An,1 · · · A′′
n,k · · · An,n



CONSÉQUENCE : det

λ
A1,1 · · · A1,n

...
. . .

...
An,1 · · · An,n


= det

λA1,1 · · · λA1,n
...

. . .
...

λAn,1 · · · λAn,n

=λn det

A1,1 · · · A1,n
...

. . .
...

An,1 · · · An,n


(ALT) ALTERNANCE

SI DEUX COLONNES DE

A1,1 · · · A1,n
...

. . .
...

An,1 · · · An,n

 SONT ÉGALES ⇒ det

A1,1 · · · A1,n
...

. . .
...

An,1 · · · An,n

= 0

(TRA) TRANSPOSITION

det(AT) = det(A)

(PRO) PRODUIT
det(AB) = det(A)det(B) ∀A,B ∈Mn×n(R)

(INV) INVERSE

det(A−1) = det(A)−1 = 1/det(A) ∀A ∈Mn×n(R) INVERSIBLE

NumChap: chap-determinant, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) 127

botafogo.saitis.net

6.9. Résumé du chapitre sur le déterminant

(SEM) MATRICES SEMBLABLES

A ∼ B (≡ B = PAP−1 AVEC P INVERSIBLE) ⇒ det(A) = det(B)

(RED) RÉDUCTION

A
E 1

−−→ A1
E 2

−−→ ·· · E N−1

−−→ AN−1
E N

−−→ AN︸︷︷︸
FER

⇒ det(A) = (−1)#{E i OEL.I}∏
1⩽ i ⩽ N

E i = (L ji
←λ ji

L ji
)

λ ji

det(AN)

CONDITIONS ÉQUIVALENTES POUR INVERSIBILITÉ DE MATRICE n ×n : ←−−− (VOIR THM 6.36)

1) A INVERSIBLE

2) A PRODUIT FINI DE MATRICES ÉLÉMENTAIRES

3) FER DE A EST In

4) det(A) ̸= 0

5) Ax = b COMPATIBLE DÉTERMINÉ ∀b ∈Rn

6) Ax = 0 COMPATIBLE DÉTERMINÉ (≡ Ker(A) = {0}) ;

7) COLONNES DE A SONT FAMILLE LIBRE DE Rn ;

8) COLONNES DE A SONT FAMILLE GÉNÉRATRICE DE Rn (≡ Img(A) =Rn)

FORMULE DE CRAMER :⋆

A1,1 . . . A1, j−1 A1, j A1, j+1 . . . A1,n

...
. . .

...
...

...
. . .

...
Ai ,1 . . . Ai , j−1 Ai , j Ai , j+1 . . . Ai ,n

...
. . .

...
...

...
. . .

...
An,1 . . . An, j−1 An, j An, j+1 . . . An,n





j -ème
colonne

j



b1
...

bi
...

bn

 :=

A1,1 . . . A1, j−1 b1 A1, j+1 . . . A1,n

...
. . .

...
...

...
. . .

...
Ai−1,1 . . . Ai−1, j−1 bi Ai−1, j+1 . . . Ai−1,n

...
. . .

...
...

...
. . .

...
An,1 . . . An, j−1 bn An, j+1 . . . An,n




j -ème

colonne

A INVERSIBLE ⇒ x = 1

det(A)

det
(

A1(b)
)

...
det

(
An(b)

)
 SOL DU SEL Ax = b

MATRICE COMPLEMENTAIRE D’UNE MATRICE n ×n :⋆

Comp(A)i , j := (−1)i+ j det
(

A[j |i]
) ⇒ A Comp(A) = Comp(A)A = det(A) In

128 NumChap: chap-determinant, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

botafogo.saitis.net

Chapitre 7

Définitions abstraites II : bases, dimension et
théorème du rang

7.1 Introduction

Dans ce chapitre, on introduit plus de notions relatives aux espaces vectoriel abstraites. En particulier, on
verra les notions de base d’un espace vectoriel, de coordonnées relatives à une base, de dimension, et de
représentation matricielle d’une application linéaire relative à deux bases. On conclura ce chapitre avec l’un
des résultats les plus importants de l’algèbre linéaire : le Théorème du Rang.

Objectifs de ce chapitre

À la fin de ce chapitre vous devriez être capable de

(O.1) vérifier ou construire des familles libres et/ou génératrices d’un espace vectoriel ;

(O.2) extraire une base d’une famille génératrice et compléter en une base une famille libre d’un
espace vectoriel ;

(O.3) calculer le noyau et l’image d’une application linéaire, ainsi que des bases de ces sous-
espaces vectoriels ;

(O.4) utiliser le théorème du rang pour calculer des dimensions de sous-espaces.

Nouveau vocabulaire dans ce chapitre

• base
• dimension
• rang d’une application linéaire
• rang d’une matrice

• espace engendré par les colonnes d’une
matrice

• espace engendré par les lignes d’une ma-
trice

7.2 Bases

7.2.1 Définition et exemples

Dans toute cette section, V est un espace vectoriel fixé.

NumChap: chap-espaces-vectoriels-2, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) 129

botafogo.saitis.net

7.2. Bases

Définition 7.1. Soit V un espace vectoriel. Une famille finie de vecteurs B = {v1, v2, . . . , vp } ⊆ V est
une base de V si les deux conditions suivantes sont vérifiées :

(B.1) B est une famille libre,

(B.2) B est une famille génératrice de V , c’est-à-dire que V = Vect{v1, v2, . . . , vp }.

Noter que l’on peut appliquer la définition ci-dessus aussi à tout sous-espace vectoriel W d’un espace vec-
toriel V , et parler aussi d’une base d’un sous-espace vectoriel W .

Exemple 7.2. Considérons V =Rn . Rappelons que l’on peut écrire tout vecteur x ∈Rn comme

x = x1e1 +x2e2 · · ·+xnen ,

où

e1 :=


1
0
...
0

 , e2 :=


0
1
...
0

 , . . . en :=


0
0
...
1

 .

Comme cette famille de vecteurs est libre , on conclut que Bcan = {e1, . . . ,en} est bien une base, la base
canonique de Rn . ⋄
Exemple 7.3. Dans V =R2, considérons les vecteurs

v1 =
(
2
1

)
, v2 =

(−7
3

)
,

et montrons que B = {v1,v2} est une base de V . D’abord, on voit que v1 et v2 ne sont pas colinéaires, et
donc que B est libre. Ensuite, pour montrer qu’elle engendre bien tout V , fixons un x ∈ V quelconque, et
montrons qu’il peut s’écrire comme combinaison linéaire de v1 et v2, c’est-à-dire qu’il existe des scalaires
λ1 et λ2 tels que

x =λ1v1 +λ2v2 .

Si on nome x1, x2 les composantes de x, alors cette dernière devient(
x1

x2

)
=λ1

(
2
1

)
+λ2

(−7
3

)
,

qui n’est autre que

(∗)

{
2λ1 − 7λ2 = x1 ,
λ1 + 3λ2 = x2 .

Après L2 ← L2 − 1
2 L1,

(∗)

{
2λ1 − 7λ2 = x1 ,

13
2 λ2 = x2 − 1

2 x1 .

En procédant “du bas vers le haut”, on trouve

λ1 = 3
13 x1 + 7

13 x2 , λ2 =− 1
13 x1 + 2

13 x2 .

Ceci montre que x peut effectivement s’écrire comme combinaison linéaire de v1 et v2. Comme ceci vaut
pour tout x ∈V , B engendre bien V .

On a donc montré que B est une base de V . ⋄

130 NumChap: chap-espaces-vectoriels-2, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

botafogo.saitis.net

7.2. Bases

Exemple 7.4. Considérons V =Pn , l’ensemble des polynômes à coefficients réels, de degré au plus égal à n.
Rappelons que tout élément p ∈Pn est de la forme

p(t) = a0 +a1t +a2t 2 +·· ·+an t n , t ∈R .

Considérons les polynômes e0,e1, . . . ,en ∈Pn définis ainsi : pour tout t ∈R,

e0(t) := 1,

e1(t) := t ,

e2(t) := t 2 ,

...

en(t) := t n .

Pour le polynôme écrit au-dessus,
p = a0e0 +a1e1 +·· ·+anen .

Donc la famille {e0,e1, . . . ,ep } engendre Pn . Mais on a aussi montré dans une section précédente que cette
famille est libre. Ainsi, la famille Bcan = {e0,e1, . . . ,en} forme une base, appelée base canonique de Pn . ⋄
Exemple 7.5. Considérons, dans V =P2, la famille B = (q1, q2, q2), où

q1(t) = 3, q2(t) = 1−2t , q3(t) = t 2 + t .

Montrons que B est une base de V . Pour commencer, montrons que B est libre, en posant

λ1q1 +λ2q2 +λ3q3 = 0,

qui signifie, après avoir regroupé les termes,

(3λ1 +λ2)+ (−2λ2 +λ3)t +λ3t 2 = 0, ∀t ∈R .

On sait qu’un polynôme s’annule en tout t ∈R si et seulement si tous ses coefficients sont nuls. On en déduit
que λ3 = 0, puis que λ2 = 1

2λ3 = 0, puis que λ1 =−1
3λ2 = 0. Ceci montre que B est libre.

Montrons ensuite que B engendre P2. Pour ce faire, fixons un p ∈ P2 quelconque, et montrons qu’on peut
trouver des scalaires α1,α2 tels que

p =α1q1 +α2q2 +α3q3 .

Si p(t) = a +bt + ct 2, cela signifie que

a +bt + ct 2 =α13+α2(1−2t)+α3(t 2 + t) , ∀t ∈R ,

qui devient, après avoir regroupé les termes,

(3α1 +α2 −a)+ (−2α2 +α3 −b)t + (α3 − c)t 2 = 0, ∀t ∈R .

On voit donc que α1,α2,α3 doivent satisfaire

(∗)


3α1 + α2 = a ,

− 2α2 + α3 = b ,
α3 = c .

On trouve
α3 = c , α2 = 1

2 (c −b) , α3 = 1
3 a + 1

6 b − 1
6 c .

Ceci montre que B engendre P2.

Donc on a bien montré que B est une base de P2. ⋄

NumChap: chap-espaces-vectoriels-2, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) 131

botafogo.saitis.net

7.2. Bases

7.2.2 Extraire une base d’une famille génératrice

Supposons qu’un sous-espace W ⊆V soit engendré par une famille :

W = Vect{v1, . . . , vp } .

Par définition, tout vecteur w ∈ W peut s’écrire comme combinaison linéaire des v1, . . . , vp , mais cela ne
signifie pas que ces vecteurs forment une base pour W : il se peut que certains ne soient pas nécessaires
dans la description de W ; en d’autres termes, cette famille peut contenir “trop” de vecteurs, certains de ses
vecteurs peuvent être superflus.

Théorème 7.6 (Extraction d’une base à partir d’une famille génératrice). Soit V un espace vectoriel,
et soit

F = {v1, . . . , vr }

une famille génératrice de V . Si un des vecteurs de F , disons v j , peut s’écrire comme combinaison
linéaire des autres vk (k ̸= j), alors en retirant v j , la famille

F \ {v j } = {v1, . . . , v j−1, v j+1, . . . , vr }

engendre toujours W . En conséquence, étant donné une famille génératrice F = {v1, . . . , vr } de V , il
existe une base B ⊆F .

Preuve: Puisque F engendre V , tout vecteur v ∈V peut s’écrire

v = a1v1 +·· ·+ar vr .

Si v j =∑
i ̸= j αi vi , alors

v =
r∑

i=1
ai vi =

(r∑
i=1
i ̸= j

ai vi

)
+a j v j =

r∑
i=1
i ̸= j

ai vi +a j

r∑
i=1
i ̸= j

αi vi

=
r∑

i=1
i ̸= j

(ai +a jαi)vi ,

donc v peut s’écrire comme combinaison linéaire des éléments de F \ {v j }. Ceci signifie que la famille F \ {v j } en-
gendre aussi V .

Pour démontrer le dernier résultat, on procède par récursion. Si la famille génératrice F = {v1, . . . , vr } de V est libre,

elle est une base et on pose B =F . Si ce n’est pas le cas, il existe un vecteur v j qui peut s’écrire comme combinaison

linéaire des autres vk (k ̸= j). La première partie du théorème nous dit que F \ {v j } est une famille génératrice de V .

Si elle est libre alors elle est une base et on pose B =F \ {v j }. Sinon, on répète l’argument avec F \ {v j } pour trouver

un vecteur vℓ avec ℓ ̸= j qui peut s’écrire comme combinaison linéaire des autres vk (k ̸= j ,ℓ). La première partie

du théorème nous dit que F \ {v j , vℓ} est une famille génératrice de V . Si elle est libre alors elle est une base et on

pose B =F \ {v j , vℓ}. En répétant cette procédure, on trouve une famille génératrice et libre B de V incluse dans F ,

comme on voulait démontrer.

Ce dernier résultat fournit un algorithme pour construire une base d’un espace vectoriel V , du moment que
l’on possède une famille génératrice. Le premier pas de l’algorithme n’est pas forcément facile à calculer :
on va voir dans la suite une simplification de cet algorithme d’extraction.

132 NumChap: chap-espaces-vectoriels-2, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

botafogo.saitis.net

7.3. Dimension

Algorithme d’extraction d’une base à partir d’une famille génératrice

Soit F = {v1, . . . , vr } une famille génératrice finie de V .

(EXT.1) Chercher un vecteur v j ∈F qui peut s’exprimer comme combinaison linéaire des autres.

(EXT.2) S’il y en a un, retirer v j de la famille, et recommencer. S’il n’y en a pas, s’arrêter.

Une fois que cet algorithme s’arrête, on obtient une famille B ⊆F qui engendre toujours V , et dans
laquelle aucun vecteur ne peut s’exprimer comme combinaison linéaire des autres ; c’est donc une
base de V .

Exemple 7.7. Soit V =R4, et soit W ⊆V le sous-espace défini par

W = Vect{w1,w2,w3} ,

où

w1 =


3
−1
0
2

 , w2 =


5
−4
−4
3

 , w3 =


1
2
4
1

 .

Remarquons que {w1,w2,w3} n’est pas libre puisque w2 = 2w1 −w3. Donc w2 est “superflu”, et on peut le
retirer, sans changer W :

W = Vect{w1,w3} .

Maintenant, w1 et w3 n’étant pas colinéaires, B := {w1,w3} est une base de W . ⋄

7.3 Dimension

7.3.1 La notion fondamentale de dimension

C’est à l’aide de la notion de base que l’on définit naturellement celle de dimension.

Commençons par voir une première conséquence de l’existence d’une base :

Lemme 7.8. Si B = {v1, . . . , vp } est une base d’un espace vectoriel V , et si F ⊆V est une famille conte-
nant plus de vecteurs que B (c’est-à-dire plus de p vecteurs), alors F est liée.

Preuve: Le résultat va suivre de ce que nous avons vu dans un chapitre précédent : dans Rp , toute famille de plus de
p vecteurs est liée.

Écrivons F = {w1, . . . , wk } ⊆W , avec k > p. Considérons la relation linéaire

(∗)1 : α1w1 +·· ·+αk wk = 0V .

Appliquons [·]B des deux côtés de cette relation. Par linéarité, et comme [0V]B = 0, on a

(∗)2 : α1[w1]B +·· ·+αk [wk]B = 0 .

Comme {[w1]B , . . . , [wk]B} est une famille de vecteurs de Rp , on sait qu’elle est liée puisque k > p. On conclut qu’il

existe une famille de coefficients α1, . . . ,αk , non tous nuls, tels que (∗)2 soit vérifiée. Puisque [·]B est linéaire et inver-

sible, sa réciproque [·]−1
B

est aussi linéaire (voir lemme de la section précédente). Donc en appliquant [·]−1
B

des deux

côtés de (∗)2, on récupère (∗)1, qui est donc vérifiée pour les mêmes coefficientsα j , ce qui implique que F est liée.

Ainsi, si B est une base de V , on sait qu’une famille libre dans V ne peut pas contenir plus de vecteurs que
le nombre de vecteurs contenus dans B. Ceci implique aussi :

NumChap: chap-espaces-vectoriels-2, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) 133

botafogo.saitis.net

7.3. Dimension

Théorème 7.9. Toutes les bases d’un même espace vectoriel V contiennent le même nombre d’élé-
ments.

Preuve: Soient B = {v1, . . . , vp } et B′ = {w1, . . . , wq } deux bases de V . Si on suppose que p > q , alors le lemme précé-

dent implique que B est liée, ce qui n’est pas possible puisque B est une base ; on conclut que p ⩽ q . De même, si on

suppose que q > p, alors le lemme précédent implique que B′ est liée, ce qui n’est pas possible puisque B′ est une

base; on conclut que q ⩽ p. On a donc p = q .

Puisque toutes les bases d’un espace ont le même nombre d’éléments, ce nombre décrit une propriété
intrinsèque de cet espace :

Définition 7.10. Si un espace vectoriel V possède une base contenant un nombre fini n de vecteurs,
on dit que V est de dimension finie, et que sa dimension est égale à n, ce que l’on note comme suit :
dim(V) = n.

Exemple 7.11. Dans R3, considérons le sous-espace W = Vect{v1,v2}, où

v1 =
 4

1
−3

 , v2 =
0

3
2

 .

Puisque v1 et v2 ne sont pas colinéaires, et qu’ils engendrent W , on en déduit que B = {v1,v2} est une base
de W . Ainsi, dim(W) = 2, c’est un plan. ⋄
Exemple 7.12. Considérons V = Rn . Comme la base canonique {e1, . . . ,en} est formée de n vecteurs, n’im-
porte quelle autre base doit aussi avoir n vecteurs, et donc

dim(Rn) = n .

⋄
Exemple 7.13. Considérons V =Pn . Comme base la base canonique {e0, . . . ,en} est formée de n+1 vecteurs,
n’importe quelle autre base doit aussi avoir n +1 vecteurs, et donc

dim(Pn) = n +1.

⋄
Remarque 7.14. Il existe des espaces vectoriels, comme par exemple l’espace de toutes les fonctions f :
[a,b] → R, qui ne sont pas de dimension finie : il n’existe aucune famille finie (f1, . . . , fn) telle que toute
fonction puisse s’écrire comme combinaison linéaire de f1, . . . , fn . On dit que cet espace est de dimension
infinie. ⋄

Théorème 7.15. Dans un sous-espace vectoriel V de dimension n, toute famille libre contenant n
vecteurs est une base de V .

Preuve: Supposons que F ⊆V , F = {v1, . . . , vn}, est libre. Prenons un v ∈V , et définissons F ′ :=F ∪{v}. Le Théorème
7.9 nous dit que F ′ est liée, car elle contient n +1 vecteur. Alors, il existe λ1, . . . ,λn+1, pas tous nuls, tels que

λ1v1 +·· ·+λn vn +λn+1v = 0.

Si λn+1 = 0, cela signifie qu’au moins un des λ1, . . . ,λn est non-nul, et que

λ1v1 +·· ·+λn vn = 0,

et donc que F est liée, une contradiction. On en conclut que λn+1 ̸= 0, ce qui permet d’écrire w comme combinaison
linéaire des éléments de F :

v =− λ1

λn+1
v1 −·· ·− λn

λn+1
vn .

Donc F est bien une base de V .

134 NumChap: chap-espaces-vectoriels-2, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

botafogo.saitis.net

7.3. Dimension

7.3.2 Complétion d’une famille libre en une base

Théorème 7.16 (Complétion d’une famille libre en une base). Soit V un espace vectoriel de dimen-
sion finie n,

F = {v1, . . . , vr } ⊆V

une famille libre et soit vr+1 ∉ VectF . Alors, F ∪ {vr+1} = {v1, . . . , vr+1} est libre.
En conséquence, étant donné une famille libre F = {v1, . . . , vr }, alors r ⩽ n et il existe des vecteurs
vr+1, . . . , vn de V tels que

B = {v1, . . . , vr , vr+1, . . . , vn}

est une base de V .

Preuve: Pour montrer la première partie, on procède pas l’absurde. On suppose qu’il existe α1, . . . ,αr+1 ∈ R tels que
au moins est un non nul et

α1v1 + . . .+αr+1vr+1 = 0V . (7.1)

On affirme que αr+1 ̸= 0 dans ce cas. En effet, si αr+1 = 0, alors (7.1) devient

α1v1 + . . .+αr vr = 0V ,

ce qui implique α1 = . . . = αr = 0, vu que F est libre, mais cela est absurde, car on avait suppose qu’au moins un
coefficient dans (7.1) est non nul. En conséquence, αr+1 ̸= 0 et (7.1) nous dit que

vr+1 = α1

αr+1
v1 + . . .+ αr

αr+1
vr ∈ VectF ,

ce qui est absurde, car on avait supposé que vr+1 ∉ VectF . En conséquence, {vr+1}∪F = {v1, . . . , vr+1} est libre.
On montre la dernière partie du théorème. Si r = n, alors F est une base et on pose donc B = F . On suppose dé-
sormais r < n et en conséquence F n’engendre pas V . Alors, il existe au moins un vecteur vr+1 ∈ V qui ne peut pas
s’écrire comme combinaison linéaire d’éléments de F . La première partie nous dit que

{v1, . . . , vr , vr+1}

est libre. Si cette famille n’engendre toujours pas V , on recommence : il doit exister un vecteur vr+2 ∈ V qui ne peut
pas s’écrire comme combinaison linéaire de ses éléments, et donc

{v1, . . . , vr , vr+1, vr+2}

est libre, d’après la première partie du théorème. Comme la dimension de V est finie et vaut n, ce procédé continue

jusqu’à obtenir une famille libre qui contient exactement n éléments, et qui forme donc une base de V .

Exemple 7.17. Considérons la famille libre F = {v1,v2} ⊆R3, où

v1 =
 4

0
−3

 , v2 =
0

3
2

 .

Clairement, F est libre, mais elle n’engendre pas R3 (car 2 < 3 !). Par le théorème ci-dessus, on peut com-
pléter F en une base de R3, en lui rajoutant un vecteur qui n’est pas une combinaison linéaire de v1 et v2.
Comment choisir ce vecteur ?

Remarquons que toute combinaison linéaire de v1 et v2 est de la forme

α1

 4
0
−3

+α2

0
3
2

=
 4α1

3α2

−3α1 +2α2

 .

On peut donc prendre n’importe quel vecteur qui n’est pas de cette forme. Par exemple

v3 =
4

3
0

 .

Maintenant, {v1,v2,v3} est une base de R3. ⋄

NumChap: chap-espaces-vectoriels-2, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) 135

botafogo.saitis.net

7.4. Lien entre familles libres, familles génératrices et applications linéaires

7.4 Lien entre familles libres, familles génératrices et applications linéaires

Théorème 7.18. Soit T : V → V ′ une application linéaire et soit F = {v1, . . . , vr } ⊆ V une famille. On
rappelle que T (F) = {T (v1), . . . ,T (vr)} ⊆V ′ est la famille image.

(LL) Si T (F) = {T (v1), . . . ,T (vr)} ⊆V ′ est libre, alors F = {v1, . . . , vr } ⊆V est libre.

(LIL) Si F = {v1, . . . , vr } ⊆V est libre et T est injective, alors T (F) = {T (v1), . . . ,T (vr)} ⊆V ′ est libre.

(GLI) Si F = {v1, . . . , vr } ⊆V est génératrice de V et T (F) = {T (v1), . . . ,T (vr)} ⊆V ′ est libre, alors T est
injective.

(GS) Si T (F) = {T (v1), . . . ,T (vr)} ⊆V ′ est génératrice de V ′, alors T est surjective.

(GSG) Si F = {v1, . . . , vr } ⊆ V est génératrice de V et T est surjective, alors T (F) = {T (v1), . . . ,T (vr)} ⊆
V ′ est génératrice de V ′.

En conséquence, T est bijective si et seulement s’il existe une base B = {v1, . . . , vp } de V dont l’image
T (B) = {T (v1), . . . ,T (vp)} est une base de V ′.

Preuve: On montre d’abord l’implication (LL). On suppose que T (F) = {T (v1), . . . ,T (vr)} ⊆ V ′ est libre. Considérons
une combinaison linéaire nulle des éléments de F donnée par

0V =α1v1 +·· ·+αr vr .

Alors, la linéarité de T nous dit que

0V ′ = T (0V ′) = T (α1v1 +·· ·+αr vr) =α1T (v1)+·· ·+αr T (vr).

Comme T (F) = {T (v1), . . . ,T (vr)} ⊆V ′ est libre, on déduit que α1 = ·· · =αr = 0, i.e. F est libre.
On prouve ensuite l’implication (LL). On suppose que T (F) = {T (v1), . . . ,T (vr)} ⊆V ′ est une famille génératrice de V ′.
Alors, pour tout v ′ ∈V ′ il existe α1, . . . ,αr ∈R tels que

v ′ =α1T (v1)+·· ·+αr T (vr) = T (α1v1 +·· ·+αr vr),

où l’on a utilisé la linéarité de T dans la dernière égalité. En conséquence, v ′ ∈ Img(T), ce qui nous dit que T est
surjective.
On montre maintenant l’implication (LIL). On suppose que T est une application linéaire injective, et on va montrer
que T (F) = {T (v1), . . . ,T (vr)} ⊆V ′ est libre. Considérons une combinaison linéaire nulle des éléments de T (F),

0V ′ =α1T (v1)+·· ·+αr T (vr) = T (α1v1 +·· ·+αr vr) .

Comme T est injective, on a α1v1 +·· ·+αr vr = 0V , et comme F est une libre, on en déduit que α1 = ·· · =αr = 0, i.e.
T (F) est libre.
On prouve puis l’implication (GLI). On suppose que F = {v1, . . . , vr } ⊆ V est une famille génératrice de V et T (F) =
{T (v1), . . . ,T (vr)} ⊆V ′ est libre. On va montrer que T est injective. Soient v, w ∈V tels que T (v) = T (w). Alors, comme
F est une famille génératrice de V , il existe α1,β1 . . . ,αr ,βr ∈R tels que

v =α1v1 +·· ·+αr vr et w =β1v1 +·· ·+βr vr .

Or, T (v) = T (w) nous dit que

α1T (v1)+·· ·+αr T (vr) = T (α1v1 +·· ·+αr vr) = T (v) = T (w) = T (β1v1 +·· ·+βr vr) =β1T (v1)+·· ·+βr T (vr),

ce qui implique que
(α1 −β1)T (v1)+·· ·+ (αr −βr)T (vr) = 0V ′ .

Comme T (F) est libre, on conclut que α1 −β1 = 0, . . ., αr −βr = 0, i.e. α1 =β1, . . ., αr =βr , ce qui implique

v =α1v1 +·· ·+αr vr =β1v1 +·· ·+βr vr = w.

En conséquence, T est injective.

136 NumChap: chap-espaces-vectoriels-2, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

botafogo.saitis.net

7.5. Une base pour Ker(A)

On montre l’implication dans (GSG). On suppose que F = {v1, . . . , vr } ⊆ V est une famille génératrice de V et T est
surjective. On va montrer que T (F) = {T (v1), . . . ,T (vr)} ⊆V ′ est une famille génératrice de V ′. Soit v ′ ∈V ′. Comme T
est surjective, il existe v ∈ V tel que T (v) = v ′. Comme F = {v1, . . . , vr } ⊆ V est une famille génératrice de V , il existe
α1, . . . ,αr ∈R tels que

v =α1v1 +·· ·+αr vr .

En conséquence,

v ′ = T (v) = T (α1v1 +·· ·+αr vr) =α1T (v1)+·· ·+αr T (vr),

ce qui implique que v ′ ∈ VectT (F), i.e. T (F) = {T (v1), . . . ,T (vr)} ⊆V ′ est une famille génératrice de V ′.
Finalement, pour prouver la dernière partie, on note que si T est bijective et B = {v1, . . . , vp } une base de V , alors

(LIL) et (GSG) nous disent que T (B) = {T (v1), . . . ,T (vp)} est une base de V ′. Réciproquement, étant donné une base

B = {v1, . . . , vp } de V , si T (B) = {T (v1), . . . ,T (vp)} est une base de V ′, (GLI) et (GS) nous disent que T est bijective.

On peut résumer toutes les implications du Théorème 7.18 de la forme graphique suivante :

T (F) libre F libre

F gén. T (F) gén.

T inj.

T surj.

(LL)

(GS)

(GLI)

(GSG)

(LIL)

7.5 Une base pour Ker(A)

Rappelons que le noyau d’une application T :Rn →Rm associée à une matrice A de taille m ×n est

Ker(T) = Ker(A) = {
x ∈Rn | Ax = 0

}
.

Le noyau étant un sous-espace vectoriel de Rn (l’ensemble de départ), il est important de trouver une base
pour le décrire.

Voyons comment le calcul mène en général directement à une base du noyau, sur un exemple concret. Il
est bien important de comprendre la méthode utilisée dans ce cas particulier, car elle sera exploitée dans la
preuve du théorème énoncé plus bas :

Exemple 7.19. Calculons le noyau Ker(A) de la matrice d’avant,

A = [a1 a2 a3 a4,a5] =
1 2 0 3 −4

0 −2 2 1 1
1 5 −3 1 −5

 .

NumChap: chap-espaces-vectoriels-2, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) 137

botafogo.saitis.net

7.5. Une base pour Ker(A)

Comme on cherche les x tels que Ax = 0, qui est équivalent à Ãx = 0, on utilise la forme échelonnée réduite
déjà calculée,

Ã =
1 0 2 0 1

0 1 −1 0 −1
0 0 0 1 −1

 .

On en déduit la présence de deux variables libres dans le système Ãx = 0, x3 et x5. Les autres composantes
s’expriment en fonction de x3 = s et x5 = t : 

x1 =−2s − t ,

x2 = s + t ,

x4 = t .

Maintenant, écrivons explicitement la dépendance en s et t , en mettant ces variables en évidence :

Ker(A) = {
x ∈R5 | Ax = 0

}

=




x1

x2

x3

x4

x5

=


−2s − t

s + t
s
t
t


∣∣∣ s, t ∈R



=




x1

x2

x3

x4

x5

= s


−2
1
1
0
0

+ t


−1
1
0
1
1


∣∣∣ s, t ∈R


.

Comme les vecteurs

v1 =


−2
1
1
0
0

 , v2 =


−1
1
0
1
1


sont indépendants et engendrent le noyau, ils forment une base de Ker(A). En particulier, dim(Ker(A)) =
2. ⋄
Dans ce dernier exemple, nous avons vu apparaître deux variables libres, qui ont donné lieu à deux vecteurs
qui formaient directement une base pour le noyau. Il se trouve que ce procédé mène toujours directement
à une base du noyau.

Théorème 7.20. Pour toute matrice A, la dimension du noyau Ker(A) est égale au nombre de variables
libres apparaissant dans le système Ax = 0. (De plus, la méthode directe utilisée dans l’exemple précé-
dent mène toujours à une base du noyau.)

Preuve: Supposons que A est une matrice de taille m×n a ℓ variables liées xp1 , . . . , xpℓ et que les variables xq1 , . . . , xqn−ℓ
soient libres. Lorsqu’on met ces variables en évidence, comme dans l’exemple ci-dessus, à chacune de ces variables

xq j sera associée un vecteur v j ∈ Rn . Or ces vecteurs possèdent la propriété suivante : pour tout 1⩽ j ⩽ n −ℓ, la i j -

ème composante de v j est un 1, alors que ses composantes q j ′ , pour j ′ ̸= j , sont nulles. Ceci implique que la famille

{v1, . . . ,vk } est libre. Puisqu’elle engendre Ker(A), elle forme une base du noyau. Ceci implique que dim(Ker(A)) = k, le

nombre de variables libres.

Pour clarté, on présente le contenue du résultat précédent sous forme d’algorithme.

138 NumChap: chap-espaces-vectoriels-2, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

botafogo.saitis.net

7.6. Une base pour Img(A)

Algorithme pour calculer une base du noyau d’une matrice A ∈Mm×n(R) :

(KR.1) calculer la forme échelonnée réduite Ã de A ;

(KR.2) les numéros de colonnes conténant des pivots de Ã nous donnent les variables liées xp1 , . . . , xpℓ

et les autres variables sont libres xq1 , . . . , xqn−ℓ ;

(KR.3) les coefficients de l’i -ème ligne de Ã (1⩽ i ⩽ ℓ) sont des zéros avec la possible exception de
Ãi ,pi = 1 et Ãi ,q1 , . . . , Ãi ,qn−ℓ , ce qui donne l’équation xpi =−Ãi ,q1 xq1 −·· ·− Ãi ,qn−ℓxqn−ℓ ;

(KR.4) au moyen des équations précédentes on réécrit chaque variable liée xpi en termes de variables
libres pour x1

...
xn

 ∈ Ker(A),

ce qui dit que x1
...

xn

= xq1 v1 +·· ·+xqn−ℓvn−ℓ,

où

(v j)k :=


0, si k = qs , avec s ̸= j ,

1, si k = q j ,

−Ãi ,q j , si k = pi ,

pour 1⩽ j ⩽ n −ℓ ;

(KR.4) la famille {v1, . . . ,vn−ℓ} est une base de Ker(A).

7.6 Une base pour Img(A)

Si T :Rn →Rm est une application linéaire définie par une matrice A de taille m ×n, on sait que l’ensemble
image Img(A) = Col(A) est un sous-espace vectoriel de Rm (si T n’est pas surjective, c’est un sous-espace
strict). Dans cette section nous allons voir un moyen de trouver une base pour le décrire, qui est une amé-
lioration de la méthode générale présentée dans la Sous-section 7.2.2.

7.6.1 Extraire une base des colonnes

D’un point de vue calculatoire, l’ensemble image Img(A) se calcule en trouvant tous les y ∈Rm pour lesquels
le système

Ax = y

possède au moins une solution. Ensuite, chercher une base pour Img(A) présente a priori une seconde
étape.

Or, on sait que l’ensemble image est l’ensemble de toutes les combinaisons linéaires des colonnes de A :

Img(T) = Img(A) = Col(A) = Vect{a1 · · ·an} ,

où {a1 · · ·an} désigne l’ensemble de colonnes de A. Comme les colonnes engendrent Img(A), le Théorème
7.6 nous dit que certaines d’entre elles forment une base de Img(A). Voyons ça sur un exemple (un peu trop)
simple.

NumChap: chap-espaces-vectoriels-2, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) 139

botafogo.saitis.net

7.6. Une base pour Img(A)

Exemple 7.21. Considérons l’application T :R3 →R3 dont la matrice est donnée par

A = [a1 a2 a3 a4] =
1 0 0 0

0 0 0 0
0 0 1 0

 .

Comme a2 et a4 sont identiquement nulles, elles ne participent pas à Col(A) :

Col(A) = Vect{a1,a2,a3,a4} = Vect{a1,a3} .

De plus, a1 et a3 sont linéairement indépendantes, et donc elles forment une base de l’espace qu’elles en-
gendrent. Donc B = (a1,a3) forme une base de Col(A). ⋄
Dans ce dernier exemple, on a pu simplement retirer des colonnes nulles, sachant qu’elles ne contribuent
pas à l’espace Col(A).

Dans la Sous-section 7.2.2 nous avons déjà décrit dans le cadre abstrait des espaces vectoriels le processus
qui permet de retirer les vecteurs “superflus” dans une famille qui engendre un sous-espace W , donnant
un algorithme menant à une base de W : on retire un à un les vecteurs qui peuvent être exprimés comme
combinaisons linéaires des autres, et quand on ne peut plus en retirer, c’est qu’on est en possession d’une
base. Appliquons ce résultat pour calculer l’ensemble image d’une matrice, W = Col(A) :

Exemple 7.22. Considérons l’application linéaire T :R5 →R3 dont la matrice est

A = [a1 a2 a3 a4,a5] =
1 2 0 3 −4

0 −2 2 1 1
1 5 −3 1 −5

 .

A priori,
Col(A) = Vect{a1,a2,a3,a4,a5} .

Or on remarque que a2 = 2a1 −a3, et donc le lemme ci-dessus garantit qu’on peut retirer a2 sans changer
l’espace engendré :

Col(A) = Vect{a1,a3,a4,a5} .

On remarque aussi que a5 =−a1 +a3 −a4, et donc

Col(A) = Vect{a1,a3,a4} .

Maintenant, on peut remarquer que a1, a3 et a4 sont linéairement indépendantes. Comme elles engendrent
Col(A), elles forment donc une base de Col(A).

Remarquons en passant que puisque cette base contient trois vecteurs, dim(Col(A)) = 3, qui est aussi la
dimension de l’espace d’arrivée. Ceci a pour conséquence que l’application T (x) := Ax est surjective. ⋄

7.6.2 Une méthode pour identifier les colonnes retirables

Dans le dernier exemple, on a pu trouver des colonnes qui étaient combinaisons linéaires des autres, mais
n’y a-t-il pas un moyen plus méthodique de trouver facilement les colonnes “superflues”, pour ne garder
que celles qui forment une base de Col(A) ? La réponse est “oui”, et pour le comprendre il faut reprendre le
procédé de réduction vu au début du cours.

Définition 7.23. Soit A une matrice de taille m×n et soit Ã sa forme échelonnée réduite. Si la k-ème
colonne de Ã contient un pivot, on dit que la k-ème colonne de A est une colonne-pivot

Rappelons que les pivots, dans Ã, sont les coefficients principaux égaux à 1, seuls coefficients non-nuls de
leur colonne :

140 NumChap: chap-espaces-vectoriels-2, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

botafogo.saitis.net

7.6. Une base pour Img(A)

0 · · · 0 1 · · · 0 0 · · · 0 · · · · · · 0 · · · · · ·
0 · · · 0 0 · · · 1 0 · · · 0 · · · · · · 0 · · · · · ·
0 · · · 0 0 · · · 0 1 · · · 0 · · · · · · 0 · · · · · ·
0 · · · 0 0 · · · 0 0 · · · 1 · · · · · · 0 · · · · · ·
0 · · · 0 0 · · · 0 0 · · · 0 · · · · · · 1 · · · · · ·
...

. . .
...

...
...

...
...

...
...

. . .
. . .

...
. . .

. . .




L’unicité de la forme échelonnée réduite implique que la notion de colonne-pivot, pour A, est bien définie.

Exemple 7.24. Considérons

A =
 3 5 −4
−3 −2 4
6 1 −8

 .

Alors les colonnes 1 et 2 de A sont des colonnes-pivot, car après réduction, les colonnes 1 et 2 de Ã sont
celles qui contiennent des pivots :

Ã =
1 0 −4/3

0 1 0
0 0 0

 .

⋄

Théorème 7.25. Les colonnes-pivot d’une matrice A forment une base de Img(A). En particulier,
dim(Img(A)) est égale au nombre de colonnes-pivot de A.

Pour démontrer le théorème, nous aurons besoin du résultat suivant, qui dit que les dépendances linéaires
existant entre des colonnes d’une matrice sont les mêmes que celles existant entre les colonnes correspon-
dantes de sa réduite :

Lemme 7.26. Soit A = [a1 · · ·an] ∈Mm×n(R), et soit F = {ai1 , . . . ,aiℓ} ⊆ {a1, · · · ,an} un sous-ensemble de
colonnes de A. Si Ã = [r1 · · ·rn] est la forme échelonnée réduite de A, et si F̃ = {ri1 , . . . ,riℓ} ⊆ {r1, · · · ,rn}
est le sous-ensemble de colonnes de Ã correspondant à F , alors F est libre (resp., génératrice de Col(A))
si et seulement si F̃ est libre (resp., génératrice de Col(Ã)).

Preuve: Si les colonnes considérées sont i1, . . . , iℓ, alors

F = {ai1 , . . . ,aiℓ } ,

F̃ = {ri1 , . . . ,riℓ } .

Comme Ã est la forme échelonnée réduite de A, il existe une matrice inversible E ∈Mm×m(R), donnée par un produit
de matrices élémentaires, telle que Ã = E A (voir Théorème 5.27). Alors,

[r1 · · · rn] = Ã = E A = E [a1 · · · an] = [
(Ea1) · · · (Ean)

]
,

i.e. ri = Eai pour tout entier 1⩽ i ⩽ n. Comme E est inversible, d’après le Théorème 7.18 in Section 7.4, F = {ai1 , . . . ,aiℓ }
est libre (resp., génératrice de Col(A)) si et seulement si

F̃ = E(F) = {Eai1 , . . . ,Eaiℓ } = {ri1 , . . . ,riℓ }

est libre (resp., génératrice de Col(Ã)). Ceci démontre le lemme.

Exemple 7.27. Les colonnes 1, 3 et 8 de A sont dépendantes si et seulement si les colonnes 1, 3 et 8 de Ã
sont dépendantes. ⋄

NumChap: chap-espaces-vectoriels-2, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) 141

botafogo.saitis.net

7.6. Une base pour Img(A)

Une conséquence directe du résultat ci-dessus :

Proposition 7.28. Un sous-ensemble B = {ai1 , . . . ,aiℓ} ⊆ {a1, . . . ,an} des colonnes de A forme une base
de Col(A) si et seulement si le sous-ensemble correspondant B̃ = {ri1 , . . . ,riℓ} ⊆ {r1, . . . ,rn} de colonnes
de la forme échelonnée réduite Ã de A forme une base de Col(Ã).

Exemple 7.29. Soit A une matrice de taille 7×11. Les colonnes 2, 5 et 8 de Ã forment une base de Col(Ã) si
et seulement si les colonnes 2, 5 et 8 de A forment une base de Col(A). ⋄

Nous pouvons maintenant prouver le théorème :
Preuve: Commençons par deux remarques concernant la forme échelonnée réduite Ã :

(r1) dans Ã, les colonnes contenant des pivots sont linéairement indépendantes, puisqu’elles ont toutes un seul
coefficient non nul (le pivot “1”), chaque fois situé à une hauteur différente ;

(r2) dans Ã, toute colonne qui ne contient pas de pivot peut s’écrire comme combinaison linéaire des colonnes qui
contiennent un pivot, et qui sont situées à sa gauche.

Par conséquent, le lemme énoncé plus haut garantit que les colonnes de Ã ne contenant pas de pivot s’écrivent

comme des combinaison linéaires des colonnes de Ã contenant de pivot, et les colonnes contenant un pivot forment

une base de Col(Ã). Par la proposition précédente, ceci implique que les colonnes-pivot de A forment une base de

Col(A).

Voyons comment utiliser le théorème pour obtenir plus facilement une base de Col(A) :

Exemple 7.30. Considérons la même matrice que celle du début de cette section :

A = [a1 a2 a3 a4,a5] =
1 2 0 3 −4

0 −2 2 1 1
1 5 −3 1 −5

 .

Après réduction,

Ã =
1 0 2 0 1

0 1 −1 0 −1
0 0 0 1 −1

 .

Comme les colonnes 1,2 et 4 de Ã sont celles contenant des pivots, on conclut que B = {a1,a2,a4} est une
base de Col(A). En particulier, dim(Img(A)) = 3. ⋄

Seulement pour clarté on présente le résultat suivant, dont on aura besoin dans la suite.

Corollaire 7.31. Soit B = {ai1 , . . . ,aiℓ} ⊆ {a1, . . . ,an} l’ensemble de colonnes-pivot de A ∈ Mm×n(R).
Alors, Vect{ai1 , . . . ,ai j−1 } = Vect{a1, . . . ,ai j−1} pour tout 1⩽ j ⩽ ℓ.

Preuve: Si ai j −1 n’est pas une colonne-pivot de A, l’énoncé du corollaire est seulement une façon équivalente de
réécrire la remarque (r2) dans la preuve du théorème précédent. Si ai j −1 est une colonne-pivot de A, alors ai j −1 = ai j−1 .
Dans ce cas, la remarque (r2) de la preuve du théorème précédent nous dit aussi que

Vect{ai1 , . . . ,ai j−1 } = Vect{a1, . . . ,ai j−1 } = Vect{a1, . . . ,ai j −1}.

142 NumChap: chap-espaces-vectoriels-2, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

botafogo.saitis.net

7.7. Le Théorème du Rang

7.7 Le Théorème du Rang

7.7.1 Le théorème du rang pour des applications linéaires

Théorème 7.32. Soient V etV ′ deux espaces vectoriels de dimensions finies, et soit T : V → V ′ une
application linéaire. Alors

dim
(

Ker(T)
)+dim

(
Img(T)

)= dim(V) .

Preuve: Soit n = dim(V), et soit p = dim(Ker(T)). Comme Ker(T) est un sous-espace vectoriel de V , on a forcément
que p ⩽ n. Ce que l’on doit donc montrer, c’est que dim(Img(T)) = n −p.

Si p = n, on a Img(T) = {0V ′ }, et donc dim(Img(T)) = 0, et le théorème est démontré.

Si p < n, posons r := n −p, qui est par définition plus grand ou égal à 1. Nous allons montrer que dim(Img(T)) = r .
Pour ce faire, commençons par considérer une base BKer(T) de Ker(T) :

BKer(T) =
{

v1, . . . , vp
}

.

Puisque p < n, BKer(T) n’est pas une base de V . Mais on peut malgré tout la compléter en rajoutant n−p = r vecteurs,
afin d’obtenir une base de V :

BV = {
v1, . . . , vp , w1, . . . , wr

}
.

Montrons maintenant que la famille
B′ = {

T (w1), . . . ,T (wr)
}

est une base de Img(T).

1) B′ est libre. En effet, considérons une combinaison linéaire nulle,

α1T (w1)+·· ·+αr T (wr) = 0V ′ .

On va montrer que α1 = ·· · =αr = 0. Par la linéarité de T , on peut écrire cette dernière comme

T (α1w1 +·· ·+αr wr) = 0V ′ ,

qui indique que le vecteurα1w1+·· ·+αr wr est dans Ker(T). On peut donc le décomposer dans la base BKer(T) :

α1w1 +·· ·+αr wr =λ1v1 + . . .λp vp .

Or, on peut récrire cette dernière comme

λ1v1 + . . .λp vp −α1w1 −·· ·−αr wr = 0V ′ .

Comme BV = {v1, . . . , vp , w1, . . . , wr } est une base de V , on a donc que

λ1 = ·· · =λp =−α1 = ·· · =−αr = 0.

Ainsi, α1 = ·· · =αr = 0, ce qui démontre l’affirmation.

2) B′ engendre Img(T). En effet, considérons un v ′ ∈ Img(T), c’est-à-dire un élément v ′ ∈ V ′ pour lequel il existe
un v ∈V tel que v ′ = T (v). Puisque l’on peut décomposer v dans la base BV ,

v =λ1v1 +·· ·+λr vr +λr+1w1 +·· ·+λn wp ,

on a donc que

v ′ = T (v)

= T (λ1v1 +·· ·+λr vr +λr+1w1 +·· ·+λn wp)

=λ1T (v1)+·· ·+λr T (vr)+λr+1T (w1)+·· ·+λnT (wp)

=λr+1T (w1)+·· ·+λnT (wp) ,

où l’on a utilisé dans la dernière ligne que vk ∈ Ker(T), et donc T (vk) = 0. La dernière identité implique que B′
engendre bien Img(T).

Ainsi, B′ est une base de Img(T), et comme elle contient r éléments, on a que dim(Img(T)) = r . On a donc bien que

dim
(

Ker(T)
)+dim

(
Img(T)

)= p + r

= p + (n −p) = n = dim(V) .

NumChap: chap-espaces-vectoriels-2, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) 143

botafogo.saitis.net

7.7. Le Théorème du Rang

7.7.2 Une version alternative du Théorème du Rang : le cas des matrices

Dans cette sous-section on va donner une autre façon de prouver le Théorème du Rang. Considérons une
matrice A de taille m ×n et l’application linéaire associée, T (x) = Ax :

Rn

Ker(T) Img(T)

Rm

x

x′

x′′′

0

T (x′′′)

y′

T

On a déjà dit que

• Ker(A) est un sous-espace vectoriel de Rn ,

• Img(A) est un sous-espace vectoriel de Rm .

Exemple 7.33. Considérons l’application linéaire T : R5 → R3 rencontrée dans les sections précédentes,
dont la matrice est

A =
1 2 0 3 −4

0 −2 2 1 1
1 5 −3 1 −5

 ,

et dont la forme échelonnée réduite est

Ã =
1 0 2 0 1

0 1 −1 0 −1
0 0 0 1 −1

 .

Rappelons ce que nous avons déjà dit :

• Les colonnes 1,2,4 de Ã contiennent des pivots, ce qui implique que les colonnes 1,2,4 de A sont des
colonnes-pivot et forment une base de Img(A), ce qui implique que

dim
(

Img(A)
)= 3.

• Les variables x3, x5 sont libres, ce qui implique (voir théorème de la section précédente) que

dim
(

Ker(A)
)= 2.

Par conséquent,
dim

(
Ker(A)

)+dim
(

Img(A)
)= 2+3 = 5.

Ici, “5” est également la dimension de l’espace de départ (R5), qui est également égal au nombre de colonnes
de A. ⋄
Ce que nous venons d’observer est en fait vrai pour toute matrice : la somme des dimensions de l’ensemble
image et du noyau est toujours égale à la dimension de l’espace de départ. C’est le Théorème du rang,
énonce pour des application linéaires données sous la forme de matrices. Pour le même résultat, mais dé-
montré dans le cadre des espaces vectoriels, voir le Théorème 7.32.

Théorème 7.34. Soit A une matrice de taille m ×n. Alors

dim
(

Ker(A)
)+dim

(
Img(A)

)= n .

Preuve: La structure générale d’une matrice réduite sera toujours du type suivant :

144 NumChap: chap-espaces-vectoriels-2, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

botafogo.saitis.net

7.7. Le Théorème du Rang

0 · · · 0 1 · · · 0 0 · · · 0 · · · · · · 0 · · · · · ·
0 · · · 0 0 · · · 1 0 · · · 0 · · · · · · 0 · · · · · ·
0 · · · 0 0 · · · 0 1 · · · 0 · · · · · · 0 · · · · · ·
0 · · · 0 0 · · · 0 0 · · · 1 · · · · · · 0 · · · · · ·
0 · · · 0 0 · · · 0 0 · · · 0 · · · · · · 1 · · · · · ·
...

. . .
...

...
...

...
...

...
...

. . .
. . .

...
. . .

. . .




 n


m

L L L P L P P L P L L P L L

• Le nombre de colonnes contenant un pivot (au nombre de 5 en bleu sur l’image) donne le nombre d’éléments
contenus dans une base de Img(A), et donc est égal à dim(Img(A)).

• Ensuite toutes les autres colonnes (au nombre de 9 en rouge sur l’image) représentent des variables libres, et
donnent donc la dimension du noyau, dim(Ker(A)). Comme il y a en tout n colonnes (n = 14 sur l’image), on a
bien

dim
(

Img(A)
)+dim

(
Ker(A)

)= n .

Le terme “rang” doit encore être défini :

Définition 7.35. Soit A une matrice de taille m ×n. Le rang de A est défini comme la dimension de
son ensemble image :

rang(A) := dim
(

Img(A)
)

.

Parfois, le rang est aussi noté rg(A) (en anglais on écrit plutôt rank(A)).

Si A est une matrice de taille m ×n, alors

1) rang(A)⩽m, car l’ensemble image de A est un sous-espace vectoriel de Rm , donc sa dimension est
au plus égale à m ;

2) rang(A)⩽ n, car la dimension de l’ensemble image de A est au plus égale au nombre de colonnes de
A.

Par conséquent,

rang(A)⩽min{m,n} .

Informel 7.36. Plus le rang d’une matrice de taille m ×n est grand, plus cette matrice définit une
application qui “remplit” son ensemble d’arrivée. En particulier, si l’application est surjective, alors
son rang vaut m.

Voyons quelques exemples d’utilisation simple du théorème du rang.

Exemple 7.37. Soit A une matrice de taille 6× 9. Alors Ker(A) a dimension au moins égale à 3. En effet,
rang(A)⩽min{6,9} = 6, et donc par le théorème du rang,

dim
(

Ker(A)
)= 9− rang(A)⩾ 9−6 = 3.

⋄

NumChap: chap-espaces-vectoriels-2, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) 145

botafogo.saitis.net

7.7. Le Théorème du Rang

7.7.3 Une application : l’espace engendré par les lignes d’une matrice

Nous avons déjà souvent décrit un matrice de taille m ×n à l’aide de ses colonnes ak ∈Rm :

A = [a1 · · ·an] .

Mais on peut aussi aussi la décrire à l’aide de ses lignes,

A =

ℓ
T
1
...
ℓT

m

 ,

où ℓ1, . . . ,ℓm sont des vecteurs de Rn . En d’autres termes, les lignes de A sont les colonnes de AT :

AT = [ℓ1 · · ·ℓm] .

Exemple 7.38. A =
(

1 0 2
−4 3 5

)
peut s’écrire A =

(
ℓT

1
ℓT

2

)
, où

ℓ1 =
1

0
2

 , ℓ2 =
−4

3
5

 .

⋄

Définition 7.39. Soit A une matrice de taille m ×n, dont les lignes sont ℓT
1 , . . . ,ℓT

m . Alors l’espace-
ligne de A est le sous-espace vectoriel de Rn engendré par ses lignes :

Lgn(A) := Vect{ℓ1, . . . ,ℓm} .

Lemme 7.40. Si A et B sont deux matrices équivalentes selon les lignes (i.e., on peut passer de l’une à
l’autre à l’aide d’un nombre fini d’opérations élémentaires sur les lignes), alors

Lgn(A) = Lgn(B) .

Preuve: Supposons que B peut s’obtenir par une suite d’opérations élémentaires sur les lignes. Alors toute combi-

naison linéaire des lignes de B est aussi une combinaison linéaire des lignes de A. Ceci implique Lgn(B) ⊆ Lgn(A). Le

même argument montre que Lgn(A) ⊆ Lgn(B), ce qui entraîne Lgn(A) = Lgn(B).

Corollaire 7.41. Si Ã est la forme échelonnée réduite de A, alors les lignes de Ã contenant un pivot
(s’il y en a) forment une base de Lgn(Ã) et de Lgn(A).

Preuve: Regardons Ã :

0 · · · 0 1 · · · 0 0 · · · 0 · · · · · · 0 · · · · · ·
0 · · · 0 0 · · · 1 0 · · · 0 · · · · · · 0 · · · · · ·
0 · · · 0 0 · · · 0 1 · · · 0 · · · · · · 0 · · · · · ·
0 · · · 0 0 · · · 0 0 · · · 1 · · · · · · 0 · · · · · ·
0 · · · 0 0 · · · 0 0 · · · 0 · · · · · · 1 · · · · · ·
...

. . .
...

...
...

...
...

...
...

. . .
. . .

...
. . .

. . .




146 NumChap: chap-espaces-vectoriels-2, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

botafogo.saitis.net

7.8. Résumé du chapitre sur les bases, la dimension et le Théorème du Rang

Les lignes contenant un pivot possèdent des “1” à des emplacements différents, précédés de “0” : elles sont donc
clairement indépendantes. Puisqu’elles engendrent évidemment Lgn(Ã), elles forment une base de Lgn(Ã).

Par le lemme précédent, toute famille de vecteurs qui forme une base de Lgn(Ã) forme aussi une base de Lgn(A).

Intéressons-nous maintenant à la dimension de l’espace engendré par les lignes. Par définition,

dim
(

Lgn(A)
)= rang(AT).

Le résultat suivant montre que les espaces engendrés par les colonnes et les lignes d’une matrice quel-
conque ont toujours même dimension :

Théorème 7.42. Si A est une matrice quelconque,

rang(A) = rang(AT) .

Preuve: Soit Ã la forme échelonnée réduite de A. La chose importante à remarquer est que dans Ã, le nombre de
colonnes contenant un pivot est égal au nombre de lignes non nulles. C’est plus clair sur un dessin :

0 · · · 0 1 · · · 0 0 · · · 0 · · · · · · 0 · · · · · ·
0 · · · 0 0 · · · 1 0 · · · 0 · · · · · · 0 · · · · · ·
0 · · · 0 0 · · · 0 1 · · · 0 · · · · · · 0 · · · · · ·
0 · · · 0 0 · · · 0 0 · · · 1 · · · · · · 0 · · · · · ·
0 · · · 0 0 · · · 0 0 · · · 0 · · · · · · 1 · · · · · ·
...

. . .
...

...
...

...
...

...
...

. . .
. . .

...
. . .

. . .




P P P P P

On peut donc écrire

rang(A) = nombre de colonnes-pivot de A

= nombre de colonnes contenant un pivot dans Ã

= nombre de lignes non-nulles dans Ã

= dim
(

Lgn(Ã)
)

= dim
(

Lgn(A)
)

= rang(AT) .

Dans la quatrième ligne, on a utilisé le corollaire ci-dessus. Dans la cinquième ligne, on a utilisé le lemme du dessus.

7.8 Résumé du chapitre sur les bases, la dimension et le Théorème du Rang

BASE D’UN EV V :

B = {v1, v2, . . . , vp } ⊆V BASE ≡ B FAMILLE LIBRE ET B FAMILLE GÉNÉRATRICE DE V︸ ︷︷ ︸
≡ V =Vect{v1,v2,...,vp }

NumChap: chap-espaces-vectoriels-2, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) 147

botafogo.saitis.net

7.8. Résumé du chapitre sur les bases, la dimension et le Théorème du Rang

EXEMPLES DE BASES :


1
0
...
0


︸︷︷︸

e1

,


0
1
...
0


︸︷︷︸

e2

, · · · ,


0
0
...
1


︸︷︷︸

en

−−→ BASE DE Rn ,
{
1, t , t 2, · · · , t n}−−→ BASE DE Pn ,




1 0 · · · 0
0 0 · · · 0
...
0 0 · · · 0


︸ ︷︷ ︸

E 1,1

,


0 1 · · · 0
0 0 · · · 0
...
0 0 · · · 0


︸ ︷︷ ︸

E 1,2

, · · · ,


0 0 · · · 1
0 0 · · · 0
...
0 0 · · · 0


︸ ︷︷ ︸

E 1,n

,


0 0 · · · 0
1 0 · · · 0
...
0 0 · · · 0


︸ ︷︷ ︸

E 2,1

,


0 0 · · · 0
0 1 · · · 0
...
0 0 · · · 0


︸ ︷︷ ︸

E 2,2

, · · · ,


0 0 · · · 0
0 0 · · · 1
...
0 0 · · · 0


︸ ︷︷ ︸

E 2,n

,

· · · ,


0 0 · · · 0
0 0 · · · 0
...
1 0 · · · 0


︸ ︷︷ ︸

E m,1

,


0 0 · · · 0
0 0 · · · 0
...
0 1 · · · 0


︸ ︷︷ ︸

E m,2

, · · · ,


0 0 · · · 0
0 0 · · · 0
...
0 0 · · · 1


︸ ︷︷ ︸

E m,n

−−→ BASE DEMm×n(R),

EXTRACTION D’UNE BASE À PARTIR D’UNE FAMILLE GÉNÉRATRICE F = {v1, . . . , vr } :

(EXT.1) CHERCHER v j ∈F CL DES AUTRES
(EXT.2) RETIRER v j ET RECOMMENCER, SINON S’ARRÊTER

}
−−−→ BASE B =F \ {v j , . . . } ⊆F

DIMENSION dim(V) of EV V :

TOUTES LES BASES D’UN EV V ONT MÊME QUANTITÉ D’ÉLÉMENTS (VOIR THM. 7.9)

↓
dim(V) := QUANTITÉ D’ÉLÉMENTS D’UNE BASE DE V

COMPLETION D’UNE FAMILLE LIBRE EN UNE BASE :

F = {v1, . . . , vr } ⊆V LIBRE ⇒∃vr+1, . . . , vn TELS QUE B = {v1, . . . , vr , vr+1, . . . , vn} BASE (VOIR THM 7.16)

LIEN ENTRE FAMILLES LIBRES, GÉNÉRATRICES, INJECTIVITÉ ET SURJECTIVITÉ :

T (F) libre F libre

F gén. T (F) gén.

T inj.

T surj.

(LL)

(GS)

(GLI)

(GSG)

(LIL)

(VOIR THM. 7.18)

T : V →V ′ AL

F = {v1, . . . , vp } ⊆V

148 NumChap: chap-espaces-vectoriels-2, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

botafogo.saitis.net

7.8. Résumé du chapitre sur les bases, la dimension et le Théorème du Rang

BASE DU NOYAU D’UNE MATRICE A ∈Mm×n(R) :

1 A
OEL−→ ·· · OEL−→ Ã︸︷︷︸

FER

−−→ 2 PIVOTS DE Ã DONNENT VAR LIÉES : xp1 , . . . , xpℓ
⇒ VAR LIBRES : xq1 , . . . , xqn−ℓ

−−→ 3 i -ÈME LIGNE DE Ã DONNE xpi =−Ãi ,q1 xq1 −·· ·− Ãi ,qn−ℓxqn−ℓ

−−→ 4 REMPLACER VAR LIÉES PAR VAR LIBRES DANS

x1
...

xn

 ∈ Ker(A)

−−→ 5

x1
...

xn

= xq1 v1 +·· ·+xqn−ℓvn−ℓ, OÙ (v j)k :=


0, si k = qs , avec s ̸= j ,

1, si k = q j ,

−Ãi ,q j , si k = pi ,

(1⩽ j ⩽ n −ℓ)

−−→ 6 {v1, . . . ,vn−ℓ} BASE DE Ker(A) (VOIR THM 7.20)

BASE DE L’IMAGE D’UNE MATRICE A ∈Mm×n(R) :

COLONNE-PIVOT DE A ∈Mm×n(R) := COLONNE DE A DONT FER DE A CONTIENT PIVOT

↓{
COLONNES-PIVOT DE A ∈Mm×n(R)

}= BASE DE Img(A) (VOIR THM 7.25)

ESPACE-COLONNE D’UNE MATRICE A :

Col(A) := Vect
{

COLONNES DE A
}−−−→ Col(A) = Img(A)

THÉORÈME DU RANG :

T : V →V ′ AL ⇒ dim
(

Ker(T)
)+dim

(
Img(T)

)︸ ︷︷ ︸
=:rang(T)

= dim(V) (VOIR THM 7.32)

OU
A ∈Mm×n(R) ⇒ dim

(
Ker(A)

)+dim
(

Img(A)
)︸ ︷︷ ︸

=:rang(A)

= n (VOIR THM 7.34)

ESPACE-LIGNES D’UNE MATRICE A :

Lgn(A) := Vect
{

LIGNES DE A
}−−−→ Lgn(A) = Lgn(Ã︸︷︷︸

FER

)

RANG DE LA TRANSPOSÉE D’UNE MATRICE A :

rang(A) = rang(AT) (VOIR THM 7.42)

NumChap: chap-espaces-vectoriels-2, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) 149

botafogo.saitis.net

Chapitre 8

Représentations en coordonnées et
matricielles

8.1 Introduction

Dans la pratique, l’étude d’un problème impliquant un espace vectoriel se fait en choisissant une base de
celui-ci. Dans le cas de dimension finie n, cela nous permet d’identifier l’espace vectoriel avec Rn , à partir
des l’application donnée par le vecteur de coordonnées relatives à la base choisie. De la même façon, le
choix de bases nous permet d’identifier les applications linéaires et matrices, au moyen de la représentation
matricielle relatives aux bases choisies.

Bien-sûr, un problème peut s’énoncer naturellement dans une base B, mais être plus facilement soluble
dans une autre base B′, mieux adaptée à la résolution du problème. On aura donc souvent recours à un
changement de base.

Nous aborderons donc les coordonnées des vecteurs relatives à des bases, les représentations des appli-
cations linéaires relatives à des bases et le changement de base. Les point fondamentaux de ce chapitre
seront :

1) d’abord, nous considérerons le problème de savoir comment les coordonnées d’un vecteur se trans-
forment quand on change de base dans un espace vectoriel ;

2) ensuite, nous verrons comment la matrice d’une application linéaire se transforme lorsqu’on change
de base dans les espaces vectoriels de départ et d’arrivée.

Nous présenterons chaque méthode dans un espace vectoriel quelconque, puis l’utiliserons dans diverses
situations, en particulier pour les applications T :Rn →Rm .

Objectifs de ce chapitre

À la fin de ce chapitre vous devriez être capable de

(O.1) calculer les coordonnées d’un vecteur relatives à une base ;

(O.2) calculer la représentation matricielle d’une application linéaire relative à deux bases ;

(O.3) calculer la matrice de passage relative à deux bases ;

(O.4) utiliser les matrices de passage pour calculer les coordonnées d’un vecteur ;

(O.5) utiliser la formule de changement de base pour calculer des représentations relatives à des
bases différentes.

150 NumChap: chap-chgmt-de-base, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

botafogo.saitis.net

8.2. Coordonnées d’un vecteur relatives à une base

Nouveau vocabulaire dans ce chapitre

• coordonnées
• dimension
• représentation matricielle d’une applica-

tion linéaire relative à deux bases

• matrice de passage

8.2 Coordonnées d’un vecteur relatives à une base

Soit V un espace vectoriel et B = {v1, v2, . . . , vp } une base. L’avantage d’une base est qu’elle fournit une
manière simple et univoque de représenter les vecteurs de V , comme le résultat suivant le montre.

Lemme 8.1. Soit V un espace vectoriel et B = {v1, v2, . . . , vp } ⊆ V une famille finie de vecteurs. Alors,
B est une base de V si et seulement pour tout vecteur v ∈V il existe des uniques scalairesα1, . . . ,αp ∈R
tels que

v =α1v1 +·· ·+αp vp . (8.1)

Preuve: On suppose que B est une base de V . Alors, comme B est une famille génératrice de V , étant donné v ∈V il
existe des scalaires α1, . . . ,αp ∈R tels que

v =α1v1 +·· ·+αp vp .

En plus, on affirme que ces scalaires sont uniques. En effet, s’il existe aussi α′
1, . . . ,α′

p ∈R tels que

v =α′
1v1 +·· ·+α′

p vp .

en soustrayant les dernières expressions, on obtient que

0V = (α1 −α′
1)v1 +·· ·+ (αp −α′

p)vp .

Comme B est libre, ceci entraîne
α1 −α′

1 = ·· · =αp −α′
p = 0,

et donc α1 =α′
1, . . ., αp =α′

p .
Réciproquement, on suppose que tout vecteur v ∈V s’écrit comme combinaison linéaire unique des éléments de B.
A fortiori, B est une famille génératrice de V , vu que tout v ∈V s’écrit comme combinaison linéaire des éléments de
B. En outre, on affirme que B est une famille libre. En effet, on suppose que

0V =β1v1 +·· ·+βp vp .

Or, comme le vecteur nul 0V doit s’écrire comme combinaison linéaire unique des éléments de B, et

0V = 0.v1 +·· ·+0.vp ,

on conclut que β1 = ·· · =βp = 0, comme on voulait démontrer.

Définition 8.2. Les scalaires α1, . . . ,αp définis dans (8.1) sont les coordonnées (ou composantes) de
v relatives à la base B. En plus, on peut stocker ces nombres dans le vecteur de coordonnées (ou
composantes) de v relatives à la base B défini par

[v]B :=


α1

α2
...
αp

 ∈Rp .

NumChap: chap-chgmt-de-base, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) 151

botafogo.saitis.net

8.2. Coordonnées d’un vecteur relatives à une base

Informel 8.3. Attention : les composantes sont des nombres que l’on peut utiliser pour décrire un
vecteur, mais le vecteur existait, avant qu’on ne connaisse ses composantes, avant même qu’on ne
parle de base !

D’un côté, un vecteur v ∈ V et un objet abstrait. De l’autre, sa représentation dans la base B, à l’aide des
nombres α1, . . . ,αp , en fait un objet avec lequel on peut faire des calculs.

Remarque 8.4. L’ordre dans lequel on stocke les α1, . . . ,αp est important. En effet, la k-ème composante αk

est associée au k-ème vecteur de la base, vk . Il est donc important, quand on introduit une base, de fixer
l’ordre de ses vecteurs. Donc pour remarquer que les vecteurs de B sont ordonnés, on écrit parfois

B = (v1, . . . , vp) ,

qui est une famille ordonnée, au lieu de
B = {v1, . . . , vp } .

⋄
Insistons sur le fait que le vecteur [v]B ∈ Rp contient exactement la même information que v (il représente
v), puisque v peut toujours être reconstruit exactement à l’aide des composantes de [v]B :

α1v1 +·· ·+αp vp = v .

Ceci implique que finalement, dès qu’on est en possession d’une base dans un sous-espace vectoriel, aussi
abstrait soit-il, ses vecteurs peuvent être traités comme des vecteurs de Rp !

Exemple 8.5. On a vu dans l’Exemple 7.2 que la famille Bcan = {e1, . . . ,en} est bien une base de Rn , appelée
base canonique de Rn . On voit bien que

[x]Bcan = x ,

pour tout x ∈Rn . ⋄
Exemple 8.6. On a vu dans l’Exemple 7.3 que la famille B = {v1,v2} donnée par

v1 =
(
2
1

)
, v2 =

(−7
3

)
,

est une base de V =R2. L’argument pour montrer que B dans l’Exemple 7.3 nous donne aussi les coordon-
nées de tout x ∈R2. En effet, par définition,

[x]B =
(
α1

α2

)
si et seulement si

x =α1v1 +α2v2 .

Si l’on nome x1, x2 les composantes de x, alors cette dernière identité devient(
x1

x2

)
=α1

(
2
1

)
+α2

(−7
3

)
,

qui n’est autre que

(∗)

{
2α1 − 7α2 = x1 ,
α1 + 3α2 = x2 .

Après L2 ← L2 − 1
2 L1,

(∗)

{
2α1 − 7α2 = x1 ,

13
2 α2 = x2 − 1

2 x1 .

152 NumChap: chap-chgmt-de-base, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

botafogo.saitis.net

8.3. Représentation matricielle d’une application linéaire relative à deux bases

En procédant “du bas vers le haut”, on trouve

α1 = 3
13 x1 + 7

13 x2 , α2 =− 1
13 x1 + 2

13 x2 .

En conséquence,

[x]B =
(3

13 x1 + 7
13 x2

− 1
13 x1 + 2

13 x2

)
,

pour tout x ∈R2. ⋄
Exemple 8.7. On a montré dans l’Exemple 7.4 que la famille es Bcan = {e0,e1, . . . ,en} ⊆ Pn est une base de
Pn , appelée base canonique de Pn . Avec la base canonique Bcan, l’application [·]B associe au polynôme p
du dessus le vecteur de Rn+1 défini par

[p]B =


a0

a1
...

an

 .

On peut alors manipuler le polynôme p à l’aide de sa représentation sous la forme [p]B , exactement comme
si c’était un vecteur de Rn+1 ! ⋄
On peut aussi dire plus sur l’application fondamentale :

Lemme 8.8 (Linéarité et inversibilité de l’application “composantes”). Soit B = {v1, . . . , vp } une
base d’un espace vectoriel V . L’application [·]B , qui associe à v le vecteur de Rp formé des composantes
de v relatives à la baseB,

[·]B : V →Rp

v 7→ [v]B

est linéaire et bijective.

Preuve: Soient v, w ∈V et λ ∈R. On suppose que

[v]B =

α1
...
αp

 et [w]B =

β1
...
βp

 ,

i.e. v =α1v1 +·· ·+αp vp et w =β1v1 +·· ·+βp vp . Alors,

v +λw = (α1v1 +·· ·+αp vp)+λ(β1v1 +·· ·+βp vp) = (α1 +λβ1)v1 +·· ·+ (αp +λβp)vp ,

ce qui nous dit que

[v +λw]B =

α1 +λβ1
...

αp +λβp

=

α1
...
αp

+λ

β1
...
βp

= [v]B +λ[w]B .

En conséquence, l’application [·]B : V → Rp est linéaire. Pour montrer que cette application linéaire est bijective, on

utilise la dernière partie du Théorème 7.18. En effet, on voit bien que l’image de la base B par l’application [·]B : V →
Rp est la base canonique Bcan de Rp , ce qui nous dit que [·]B : V →Rp est bijective.

8.3 Représentation matricielle d’une application linéaire relative à deux bases

Considérons deux espaces vectoriels, V et V ′, ainsi qu’une application linéaire T : V →V ′.

NumChap: chap-chgmt-de-base, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) 153

botafogo.saitis.net

8.3. Représentation matricielle d’une application linéaire relative à deux bases

V V ′

v
T (v)

v ′

T

Supposons maintenant que ces deux espaces vectoriels sont tous deux de dimension finie, chacun muni
d’une base :

• B = {v1, . . . , vp } est une base de V ,

• B′ = {v ′
1, . . . , v ′

m} est une base de V ′.

Nous allons voir maintenant comment l’utilisation de ces bases va permettre de ramener l’étude de T à
l’étude d’une application linéaire de Rp dans Rm .

Définition 8.9. La matrice (ou représentation matricielle) de l’application linéaire T : V → V ′ re-
lative aux bases B = {v1, . . . , vp } (départ) et B′ = {v ′

1, . . . , v ′
m} (arrivée) est la matrice de taille m ×p

définie par

[T]B′←B :=
[[

T (v1)
]
B′ · · ·

[
T (vp)

]
B′

]
.

Dans le cas V =V ′ et B =B′, on écrira plutôt [T]B au lieu de [T]B←B .

Théorème 8.10. Soient V et V ′ deux espaces vectoriels, avec des bases B et B′, respectivement. On
suppose que dim(V) = n et dim(V ′) = m. Soit T : V →V ′ une application linéaire. Alors,[

T (v)
]
B′ = [T]B′←B[v]B (8.2)

pour tout v ∈ V . En plus, [T]B′←B est l’unique matrice qui satisfait (8.2), i.e. si A est une matrice de
taille m ×n telle que [T (v)]B′ = A[v]B pour tout v ∈V , alors A = [T]B′←B .

Preuve: Étant donne v ∈V , décomposons-le sur B :

v = a1v1 +·· ·+ap vp ,

ce qui permet de décrire v univoquement à l’aide du vecteur de Rp qui lui est associé :

[v]B =

a1
...

ap

 .

Ensuite, regardons l’image de v par T . Puisque T est linéaire,

T (v) = T (a1v1 +·· ·+ap vp)

= a1T (v1)+·· ·+ap T (vp) .

En utilisant ensuite la linéarité de [·]B′ ,[
T (v)

]
B′ =

[
a1T (v1)+·· ·+ap T (vp)

]
B′

= a1
[
T (v1)

]
B′ +·· ·+ap

[
T (vp)

]
B′ .

154 NumChap: chap-chgmt-de-base, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

botafogo.saitis.net

8.3. Représentation matricielle d’une application linéaire relative à deux bases

Cette dernière ligne est une combinaison linéaire des vecteurs [T (v1)]B′ , · · · , [T (vp)]B′ de Rm , on peut donc l’inter-
préter comme un produit d’une matrice par le vecteur [v]B :

[
T (v)

]
B′ = a1

[
T (v1)

]
B′ +·· ·+ap

[
T (vp)

]
B′ =

[[
T (v1)

]
B′ · · ·

[
T (vp)

]
B′

]
︸ ︷︷ ︸

m×n

a1
...

ap


︸ ︷︷ ︸
=[v]B

=
[[

T (v1)
]
B′ · · ·

[
T (vp)

]
B′

]
[v]B ,

comme on voulait démontrer.

Finalement, pour montrer l’unicité, il suffit de noter que A[vi]B = Aei est la i -ème colonne de A pour tout 1⩽ i ⩽
n.

Ce que nous avons fait ci-dessus peut se résumer dans le shéma suivant :

V V ′

Rp Rm

v

[v]B

T (v)

[
T (v)

]
B′

T

[T]B′←B

[·]B [·]B′

ou, sinon, par la commutativité du rectangle

V V ′

Rp Rm

T

[·]B [·]B′

[T]B′←B

En utilisant les bases B et B′, ainsi que les applications [·]B et [·]B′ qui leur sont associées, nous avons pu
prendre l’application

v 7→ T (v)

qui est abstraite, et nous l’avons rendue plus concrète, en la représentant à l’aide d’une matrice : on peut
maintenant la voir comme une application linéaire de Rp dans Rm , dont la matrice est [T]B′B :

[v]B︸ ︷︷ ︸
∈Rp

7→ [
T (v)

]
B′︸ ︷︷ ︸

∈Rm

= [T]B′←B[v]B .

NumChap: chap-chgmt-de-base, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) 155

botafogo.saitis.net

8.3. Représentation matricielle d’une application linéaire relative à deux bases

En conséquence, l’étude de T peut se réduire à celle de la matrice [T]B′←B .

Point clé : Matrice d’une application linéaire et vecteurs de coordonnées

Pour une application linéaire T : V →V ′, et bases B de V et B′ de V ′, on a l’identité fondamentale[
T (v)

]
B′ = [T]B′←B[v]B

pour tout v ∈V , et [T]B′←B est l’unique matrice qui vérifie cette propriété pour tout v ∈V .

Exemple 8.11. Considérons l’application T :P3 →P2 définie ainsi : pour p ∈P3,

T (p) = p ′ ,

i.e. T (p)(t) := p ′(t) pour tout t ∈R, où p ′(t) est la dérivée de p par rapport à t .

Cette application est clairement linéaire puisque

T (αp +βq) = (αp +βq)′ =αp ′+βq ′ =αT (p)+βT (q) .

Calculons maintenant la matrice associée à cette application relative

• à la base canonique Bcan = {e0,e1,e2,e3} dans P3, et

• à la base canonique B′
can = {e0,e1,e2} dans P2.

Par ce qu’on a dit plus haut, cette matrice sera

[T]B′
can←Bcan

=
[[

T (e0)
]
B′

can

[
T (e1)

]
B′

can

[
T (e2)

]
B′

can

[
T (e3)

]
B′

can

]
.

Comme

e0(t) = 1, e1(t) = t , e2(t) = t 2 , e3(t) = t 3 ,

on a

e ′0(t) = 0, e ′1(t) = 1, e ′2(t) = 2t , e ′3(t) = 3t 2 ,

et donc

T (e0) = 0, T (e1) = e0 , T (e2) = 2e1 , T (e3) = 3e2 ,

c’est-à-dire

T (e0) = 0e0 +0e1 +0e2 ,

T (e1) = 1e0 +0e1 +0e2 ,

T (e2) = 0e0 +2e1 +0e2 ,

T (e3) = 0e0 +0e1 +3e2 .

On peut donc écrire

[
T (e0)

]
B′

can
=

0
0
0

 ,
[
T (e1)

]
B′

can
=

1
0
0

 ,

[
T (e2)

]
B′

can
=

0
2
0

 ,
[
T (e3)

]
B′

can
=

0
0
3

 .

156 NumChap: chap-chgmt-de-base, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

botafogo.saitis.net

8.3. Représentation matricielle d’une application linéaire relative à deux bases

La matrice qui représente T relative à ce choix de bases est donc

[T]B′
can←Bcan

=
0 1 0 0

0 0 2 0
0 0 0 3

 .

Prenons par exemple le polynôme p ∈P3 défini par

p(t) = 2+ t 2 −5t 3 ,

pour lequel

[p]Bcan =


2
0
1
−5

 .

Son image par T est T (p) ∈P2, dont le vecteur de coordonnées relatives à B′
can est donnée par

[
T (p)

]
B′

can
= [T]B′

can←Bcan
[p]Bcan =

0 1 0 0
0 0 2 0
0 0 0 3




2
0
1
−5

=
 0

2
−15

 ,

qui est bien la décomposition de

p ′(t) = (2+ t 2 −5t 3)′ = 2t −15t 2

relative à B′
can :

[p ′]Bcan =
 0

2
−15

 .

⋄
Exemple 8.12. Considérons l’application

T :P2 →R2

p 7→ T (p) :=
(

p(0)
p ′(1)

)
,

où p ′(t) désigne la dérivée de p(t) par rapport à t . Remarquons que T est linéaire, puisque pour tous p, q ∈
P2 et tout scalaires α,β,

T (αp +βq) =
(
αp(0)+βq(0)
αp ′(1)+βq ′(1)

)
=α

(
p(0)
p ′(1)

)
+β

(
q(0)
q ′(1)

)
=αT (p)+βT (q) .

Puisqu’on connaît la base canonique Bcan = {e0,e1,e2} dans P2 et la base canonique B′
can = {e1,e2} dans R2

(on écrit B′
can juste pour la distinguer de l’autre, mais c’est bien la base canonique de R2), on peut calculer

la matrice de taille 2×3 qui représente T relative à ces bases :

[T]B′
can←Bcan

=
[[

T (e0)
]
B′

can

[
T (e1)

]
B′

can

[
T (e2)

]
B′

can

]
.

NumChap: chap-chgmt-de-base, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) 157

botafogo.saitis.net

8.3. Représentation matricielle d’une application linéaire relative à deux bases

Comme e0(t) = 1, e1(t) = t , e2(t) = t 2, on a

T (e0) =
(
e0(0)
e ′0(1)

)
=

(
1
0

)
,

T (e1) =
(
e1(0)
e ′1(1)

)
=

(
0
1

)
,

T (e2) =
(
e2(0)
e ′2(1)

)
=

(
0
2

)
,

et donc

[T]B′
can←Bcan

=
(
1 0 0
0 1 2

)
.

Par exemple, prenons le polynôme p(t) = 9−2t +7t 2, et calculons son image. Alors[
T (p)

]
B′

can
= [T]B′

can←Bcan
[p]Bcan

=
(
1 0 0
0 1 2

) 9
−2
7

=
(

9
12

)
,

qui est bien

(
p(0)
p ′(1)

)
. ⋄

On présente les propriétés fondamentales des représentations matricielles des applications linéaires.

Proposition 8.13. Soient V , V ′ et V ′′ des espaces vectoriels de dimension finie et soient B, B′ et B′′

des bases de V , V ′ et V ′′, respectivement. Soient T : V → V ′ et S : V ′ → V ′′ des applications linéaires.
Alors,

(COM) [S ◦T]B′′←B = [S]B′′←B′ [T]B′←B ;

(ID) [idV]B←B = Idim(V), où idV : V →V désigne l’application identité de V , qui associe v ∈V à v ∈V ;

(INJ) pour v ∈V , on a
v ∈ Ker(T) ⇔ [v]B ∈ Ker

(
[T]B′←B

)
,

ce qui implique que T est injective si et seulement si la matrice [T]B′←B est injective ;

(SUR) pour v ′ ∈V ′, on a
v ′ ∈ Img(T) ⇔ [v ′]B′ ∈ Img

(
[T]B′←B

)
,

ce qui implique que T est surjective si et seulement si la matrice [T]B′←B est surjective ;

(INV) T est bijective si et seulement si [T]B′←B est une matrice inversible, et dans ce cas [T]−1
B′←B

=
[T −1]B←B′ .

Preuve: On montre d’abord la première identité. Pour le faire, étant donné v ∈V , on a

[S ◦T]B′′←B[v]B = [
(S ◦T)(v)

]
B′′ =

[
S
(
T (v)

)]
B′′ = [S]B′′←B′

[
T (v)

]
B′ = [S]B′′←B′ [T]B′←B[v]B .

Par l’unicité de la représentation matricielle dans le Théorème 8.10, on conclut que [S ◦T]B′′←B = [S]B′′←B′ [T]B′←B .
Pour montrer la deuxième identité, noter que

Idim(V)[v]B = [v]B = [
idV (v)

]
B = [idV]B←B[v]B

pour tout v ∈V . L’unicité de la représentation matricielle dans le Théorème 8.10 nous dit que [idV]B←B = Idim(V).
On prouve maintenant l’item (INJ). On suppose que dim(V) = n et dim(V ′) = m. Alors,

v ∈ Ker(T) ⇔ T (v) = 0V ′ ⇔ [
T (v)

]
B′ = 0

⇔ [T]B′←B[v]B = 0 ⇔ [v]B ∈ Ker
(
[T]B′←B

)
,

158 NumChap: chap-chgmt-de-base, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

botafogo.saitis.net

8.4. Les matrices de passage

où l’on a utilisé dans la deuxième équivalence que [·]B′ : V ′ → Rm est bijective, et dans dans la troisième équivalence
l’identité fondamentale [

T (v)
]
B′ = [T]B′←B[v]B

pour v ∈V . La dernière partie de l’item (INJ) suit du fait qu’une application linéaire est injective si et seulement si son
noyau est réduit à zéro (voir Lemme 4.43).
On montre l’item (SUR). On suppose que dim(V) = n et dim(V ′) = m. Alors,

v ′ ∈ Img(T) ⇔ il existe v ∈V tel que T (v) = v ′ ⇔ il existe v ∈V tel que
[
T (v)

]
B′ = [v ′]B′

⇔ il existe v ∈V tel que [T]B′←B[v]B = [v ′]B′

⇔ il existe x ∈Rn tel que [T]B′←Bx = [v ′]B′ ⇔ [v ′]B′ ∈ Img
(
[T]B′←B

)
,

où l’on a utilisé dans la deuxième équivalence que [·]B′ : V ′ → Rm est bijective, dans dans la troisième équivalence
l’identité fondamentale [

T (v)
]
B′ = [T]B′←B[v]B

pour v ∈ V , et dans la quatrième équivalence que [·]B : V → Rn est bijective. La dernière partie de l’item (SUR) suit
directement de ce que l’on a montré précédemment et du fait que [·]B : V ′ →Rm est bijective.
On va finalement prouver l’item (INV). On suppose que T est bijective et on montrera que [T]B′←B est inversible et
[T]−1

B′←B
= [T −1]B←B′ . Comme T est bijective, soit T −1 l’application réciproque. Alors, les deux premiers items nous

disent que
Idim(V) = [idV]B←B = [T −1 ◦T]B←B = [T −1]B←B′ [T]B′←B

et
Idim(V ′) = [idV ′]B′←B′ = [T ◦T −1]B′←B′ = [T]B′←B[T −1]B←B′ .

En conséquence, [T]B′←B est inversible et [T]−1
B′←B

= [T −1]B←B′ . Réciproquement, si [T]B′←B est une matrice inver-

sible, alors elle est injective et surjective, et, d’après les items (INJ) et (SUR), T est injective et surjective, i.e. bijective,

comme on voulait démontrer.

Nous reviendrons plus en profondeur sur la représentation d’une application linéaire à l’aide d’une matrice,
en particulier dans le cas T :Rn →Rm .

8.4 Les matrices de passage

8.4.1 Motivation

Pour commencer, étudions les relations existant entre les composantes d’un même vecteur, exprimé relati-
vement à une base ou à une autre.

Avant de voir l’approche dans le cas général, commençons par un exemple simple.

Exemple 8.14. Dans le plan, considérons le vecteur

x =
(
5
1

)
.

Considérons maintenant la base B = {b1,b2}, dont les vecteurs sont disons

b1 =
(

1
−1

)
, b2 =

(
2
1

)
.

Quelles sont les composantes de x relatives à B ? Ce qu’on cherche ici est

[x]B =
(
β1

β2

)
,

qui ne signifie rien d’autre que
x =β1b1 +β2b2 .

NumChap: chap-chgmt-de-base, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) 159

botafogo.saitis.net

8.4. Les matrices de passage

Or cette dernière s’exprime comme (
5
1

)
=β1

(
1
−1

)
+β2

(
2
1

)
,

qui est équivalent au système d’équations linéaires{
β1 + 2β2 = 5,
−β1 + β2 = 1,

dont la solution est β1 = 1, β2 = 2. Ainsi,

[x]B =
(
1
2

)
,

qui signifie x = b1 +2b2.

Remarque : Il est plus utile de penser que x est un vecteur dans le plan, et que ce vecteur peut être représenté
en composantes, relatives à la base canonique Bcan ou à la base B :

[x]Bcan =
(
5
1

)
, [x]B =

(
1
2

)
.

(1)

(2)

x

b1

b2

e1

e2

Bien-sûr, il serait intéressant d’avoir un procédé permettant d’obtenir directement les composantes d’un
vecteur quelconque dans une base, en fonction des composantes dans l’autre base :

[x]Bcan =
(
γ1

γ2

)
?←→

(
β1

β2

)
= [x]B .

⋄

Abordons le problème d’un point de vue général.

Soit V un espace vectoriel de dimension p. Supposons que l’on ait deux bases dans V :

B = {b1, . . . ,bp } , C = {c1, . . . ,cp } .

Si v ∈ V est un vecteur quelconque, il peut être décomposé dans une base ou dans l’autre, et les compo-
santes relatives à ces bases seront a priori différentes :

[v]B =

β1
...
βp

 , [v]C =

γ1
...
γp

 .

Nous aimerions savoir comment les composantes relatives à une base, par exemple les β1, . . . ,βp , peuvent
se calculer à partir des composantes dans l’autre base, c’est-à-dire les γ1, . . . ,γp .

160 NumChap: chap-chgmt-de-base, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

botafogo.saitis.net

8.4. Les matrices de passage

V

Rp Rp

v

[v]B

[v]C?

?

[·]B [·]C

Le but de la prochaine sous-section c’est de voir que cette relation est linéaire, et peut donc s’exprimer à
l’aide d’une matrice.

8.4.2 La définition de matrice de passage

On rappelle l’application identité idV : V →V , définie par

idV (v) := v , ∀v ∈V .

Cette application ne porte en elle rien de vraiment intéressant. Mais considérons comme avant deux bases
pour décrire V , notées C et B.

Définition 8.15. Soit V un espace vectoriel de dimension finie et soient B et C deux bases de V . La
matrice de passage (ou de changement de base) de B vers C , notée PC←B , est définie via

PC←B := [idV]C←B .

Étant un cas particulier de représentation matricielle d’une application linéaire, on trouve immédiatement
plusieurs propriétés des matrices de passage.

Proposition 8.16. Soit V un espace vectoriel de dimension finie et soient B = {b1, . . . ,bp } et C =
{c1, . . . ,cp deux bases de V . Alors,

(i) PC←B = [
[b1]C · · · [bp]C

]
,

(ii) [v]C = PC←B[v]B pour tout v ∈V ;

(iii) PC←B est inversible et PC←B
−1 = PB←C .

Preuve: Le premier item suit de la définition de représentation matricielle, vu que

PC←B = [idV]C←B =
[[

idV (b1)
]
C · · ·[idV (bp)

]
C

]
= [

[b1]C · · · [bp]C
]

.

NumChap: chap-chgmt-de-base, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) 161

botafogo.saitis.net

8.4. Les matrices de passage

Le deuxième item suit de l’identité (8.2) du Théorème 8.10 pour T = idV . Finalement, comme l’application idV est
bijective, le dernier item de la Proposition 8.13 nous dit que PC←B = [idV]C←B est inversible. En plus, la même pro-
position nous dit que

P−1
C←B = [idV]−1

C←B = [id−1
V]B←C = [idV]B←C = PB←C ,

où l’on a utilisé dans la dernière égalité que id−1
V = idV .

On peut représenter la matrice de passage de forme graphique via le diagramme suivant. On présente aussi
de façon sommaire le point clé de cette section.

V V

Rp Rp

v

[v]B

v

[v]C

idV

[idV]C←B

[·]B [·]C

Point clé : Matrice de passage et vecteurs de coordonnées

Pour un espace vectoriel V de dimension finie, et bases B et C de V , on a l’identité fondamentale

[v]C = PC←B[v]B

pour tout v ∈V , et PC←B est l’unique matrice qui vérifie cette propriété pour tout v ∈V .

Exemple 8.17. Dans le plan, considérons comme tout à l’heure le vecteur

x =
(
5
1

)
.

Pour être plus précis, notons Bcan = {e1,e2} la base canonique, et récrivons

[x]Bcan =
(
5
1

)
.

Considérons maintenant la base B = {b1,b2} définie par :

b1 =
(

1
−1

)
, b2 =

(
2
1

)
.

Calculons [x]B , en fonction de [x]Bcan , en utilisant le théorème :

[x]B = PB←Bcan [x]Bcan ,

162 NumChap: chap-chgmt-de-base, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

botafogo.saitis.net

8.4. Les matrices de passage

où
PB←Bcan =

[
[e1]B [e2]B

]
.

On doit donc trouver les composantes de e1 et e2 relatives à B. Mais comme

[b1]Bcan =
(

1
−1

)
, [b2]Bcan =

(
2
1

)
signifie en fait {

b1 = e1 − e2 ,
b2 = 2e1 + e2 ,

on a {
e1 = 1

3 b1 + 1
3 b2 ,

e2 = −2
3 b1 + 1

3 b2 ,

Ainsi,

[e1]B =
(
1/3
1/3

)
, [e2]B =

(−2/3
1/3

)
,

et donc

PB←Bcan =
[
[e1]B [e2]B

]= (
1/3 −2/3
1/3 1/3

)
.

Donc les coordonnées de x relatives à B sont

[x]B = PB←Bcan [x]Bcan =
(
1/3 −2/3
1/3 1/3

)(
5
1

)
=

(
1
2

)
,

comme nous avions trouvé plus haut. Si maintenant on souhaite plutôt transformer des composantes rela-

tives à B en des composantes relatives à Bcan, on calcule

PBcan←B = PB←Bcan
−1 = 1

1/3

(
1/3 2/3
−1/3 1/3

)
=

(
1 2
−1 1

)
.

Donc si par exemple on prend x tel que

[x]B =
(
1
2

)
,

alors ses composantes relatives à Bcan sont, comme on sait déjà,

[x]Bcan = PBcan←B[x]B =
(

1 2
−1 1

)(
1
2

)
=

(
5
1

)
.

⋄
Exemple 8.18. Supposons que l’on considère, dans R3, le vecteur

x =
1

2
3

 .

Considérons la base de R3, B = {b1,b2,b3}, dont les vecteurs sont (on laisse au lecteur le soin de vérifier que
B est effectivement une base) :

b1 =
0

0
1

 , b2 =
 1

0
−1

 , b3 =
0

2
0

 .

Ensuite, cherchons les composantes de x relatives à B, en utilisant le formalisme présenté plus haut.

NumChap: chap-chgmt-de-base, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) 163

botafogo.saitis.net

8.4. Les matrices de passage

Pour bien faire, récrivons explicitement ce que nous savons :

[x]Bcan =
1

2
3

 ,

ainsi que

[b1]Bcan =
0

0
1

 , [b2]Bcan =
 1

0
−1

 , [b3]Bcan =
0

2
0

 .

Pour exprimer les composantes de x relatives à B, nous allons utiliser la formule

[x]B = PB←Bcan [x]Bcan ,

où la matrice de passage est donnée par

PB←Bcan =
[
[e1]B [e1]B [e1]B

]
.

Or si on écrit explicitement les définitions des vecteurs de la base B,
b1 = e3 ,
b2 = e1 −e3 ,
b3 = 2e2 .

Comme on doit exprimer les composantes des vecteurs de la base canonique par rapport à B, il faut inverser
ces relations. On trouve facilement 

e1 = b1 +b2 ,
e2 = 1

2 b3 ,
e3 = b1 ,

c’est-à-dire

[e1]B =
1

1
0

 , [e2]B =
0

0
1
2

 , [e3]B =
1

0
0

 ,

ce qui donne

[x]B = PB←Bcan [x]Bcan

=
1 0 1

1 0 0
0 1

2 0

1
2
3


=

4
1
1

 .

Remarque : Pour le calcul de PB←Bcan , une façon tout à fait équivalente de faire mais écrite différemment
aurait été de commencer par calculer

PBcan←B = [
[b1]Bcan [b2]Bcan [b3]Bcan

]=
0 1 0

0 0 2
1 −1 0

 ,

puis de calculer son inverse (par exemple avec l’algorithme de Gauss-Jordan) :

PB←Bcan = PBcan←B
−1 =

1 0 1
1 0 0
0 1

2 0

 .

⋄

164 NumChap: chap-chgmt-de-base, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

botafogo.saitis.net

8.5. Formule de changement de base

8.5 Formule de changement de base

On a vu dans les sections précédentes comment exprimer une application linéaire

T : V →V ′ ,

lorsqu’on possède une base B dans V , et une base B′ dans V ′. Si l’on considère en plus une autre base C

de V , et une base C ′ de V ′, on a donc deux façons de représenter la même application linéaire T , comme
indiqué par la commutativité des rectangles dans le diagramme ci-dessous.

V V ′

Rp Rm

Rp Rm

T

[·]B [·]B′

[·]C ′

[T]B′←B

[T]C ′←C

[·]C

On va voir dans la sous-section suivante qu’il existe en fait une relation directe entre les deux représenta-
tions matricielles de T .

8.5.1 Changement de base dans le cas général T : V →V ′

Le résultat suivant est une conséquence directe mais très importante de la Proposition 8.13.

Théorème 8.19 (Formule de changement de base). Soient V et V ′ deux espaces vectoriels de dimen-
sion finie. Soient B et calC deux bases de V , et B′ et calC ′ deux bases de V ′. Pour toute application
linéaire T : V →V ′, on a

[T]C ′←C = PC ′←B′ [T]B′←BPB←C .

Preuve: Comme T = idV ′ ◦T ◦ idV , alors le premier item de la Proposition 8.13 nous dit que

[T]C ′←C = [idV ′ ◦T ◦ idV]C ′←C = [idV ′]C ′←B′ [T]B′←B ◦ [idV]C ′←C = PC ′←B′ [T]B′←BPB←C ,

comme on voulait démontrer.

En interchangeant l’ordre des bases, le théorème précédent nous donne aussi l’identité

[T]B′←B = PB′←C ′ [T]C ′←C PC←B .

En effet, cette formule est équivalente à celle du théorème, car on obtient la deuxième en multipliant la
première à droite par PB←C , puis à gauche par PC ′←B′ .

Le théorème précédent nous permet de comprendre la relation entre les matrices [T]B′←B et [T]C ′←C , que
l’on peut présenter de façon graphique avec le diagramme commutatif suivant (i.e., si l’on suit à travers le
diagramme un chemin d’un objet à un autre, le résultat par composition des morphismes ne dépend que
de l’objet de départ et de l’objet d’arrivée).

NumChap: chap-chgmt-de-base, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) 165

botafogo.saitis.net

8.5. Formule de changement de base

V V ′

Rp Rm

Rp Rm

T

[·]B [·]B′

[·]C ′

[T]B′←BPC←B PC ′←B′

[T]C ′←C

[·]C

PB←C

PB′←C ′

Pour simplifier un peu le schéma, gardons uniquement les espaces de départ et d’arrivée, les bases relative-
ment auxquelles ils sont associés, ainsi que les matrices associées à T relatives à ces bases :

Base B Base B′

Rp Rm

Rp Rm

Base C Base C ′

[T]B′←B

PC←B PC ′←B′

[T]C ′←C

PB←C PB′←C ′

Dans ce diagramme, on peut monter ou descendre librement à l’aide des matrices de changement de base,
puisqu’elles sont inversibles .

8.5.2 Changement de base dans le cas T : V →V

Le cas que nous utiliserons le plus est lorsque T applique V dans lui-même, c’est-à-dire où V ′ =V :

T : V →V .

Si on suppose aussi que l’on a deux bases pour décrire V , B et C , et qu’on on prend C ′ = C , B′ = B, le
schéma devient plus simple :

Base B Base B

Rp Rm

Rp Rm

Base C Base C

[T]B

PC←B PC←B

[T]C

PB←C PB←C

Maintenant, comme PB←C = PC←B
−1, la formule de changement de base du Théorème 8.19 prend la forme

plus connue :

[T]B = PC←B
−1[T]C PC←B ,

ou, sinon, la version équivalente

[T]B = PB←C [T]C PB←C
−1 .

166 NumChap: chap-chgmt-de-base, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

botafogo.saitis.net

8.6. Exemples

8.6 Exemples

Exploitons les diverses formules de changement de base vues dans les sections précédentes, sur quelques
exemples concrets.

Toutes les applications linéaires que nous avons considérées jusqu’à présent ont généralement été définies
relativement à la base canonique : leur matrice s’obtenait en calculant les images des vecteurs de la base
canonique.

Mais on sait maintenant exprimer la matrice d’une application relative à n’importe quelle base. Nous allons
donc repasser par certaines applications rencontrées précédemment, et étudier leur matrices relatives à des
bases qui ne sont pas canoniques.

Exemple 8.20. Considérons l’application linéaire T :R3 →R2 définie par

T

x1

x2

x3

 :=
(
2x2 −5x3

x1 +3x2

)
=

(
0 2 −5
1 3 0

)x1

x2

x3

 .

Remarquons que lorsqu’une application est définie de cette façon, il est implicitement admis que les coor-
données (ici x1, x2, x3) sont relatives aux bases canoniques des ensembles de départ et d’arrivée. Ici, pour
les distinguer, nous noterons temporairement

• Bcan = {e1,e2,e3} la base canonique de R3,

• Bcan = {e1,e2} la base canonique de R2.

Donc la matrice ci-dessus est en fait

[T]Bcan←Bcan =
[[

T (e1)
]
Bcan

[
T (e2)

]
Bcan

[
T (e3)

]
Bcan

]
=

(
0 2 −5
1 3 0

)
.

Considérons maintenant les bases B = {b1,b2,b3} de R3 et C = {c1,c2} de R2, où

b1 =
1

1
0

 , b2 =
 1

0
−1

 , b3 =
0

1
0

 ,

c1 =
(

0
−1

)
, c2 =

(
2
3

)
.

Calculons la matrice de T relative à ces deux nouvelles bases, [T]B←C . On peut s’aider du schéma

Bcan Bcan

B C

[T]Bcan←Bcan

PB←Bcan PC←Bcan

[T]C←B

PBcan←B PBcan←C

pour retrouver la formule :
[T]C←B = PC←Bcan [T]Bcan←Bcan PBcan←B .

Or, comme les vecteurs de B ont été donnés en composantes relatives à la base canonique,

[b1]Bcan =
1

1
0

 , [b2]Bcan =
 1

0
−1

 , [b3]Bcan =
0

1
0

 ,

NumChap: chap-chgmt-de-base, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) 167

botafogo.saitis.net

8.6. Exemples

on a déjà

PBcan←B = [
[b1]Bcan [b2]Bcan [b3]Bcan

]=
1 1 0

1 0 1
0 −1 0

 .

Ensuite,

[c1]Bcan =
(

0
−1

)
, [c2]Bcan =

(
2
3

)
,

et donc

PC←Bcan = PBcan←C
−1

= [
[c1]Bcan [c2]Bcan

]−1

=
(

0 2
−1 3

)−1

=
(
3/2 −1
1/2 0

)
.

On a donc

[T]C←B = PC←Bcan [T]Bcan←Bcan PBcan←B

=
(
3/2 −1
1/2 0

)(
0 2 −5
1 3 0

)1 1 0
1 0 1
0 −1 0


=

(−1 13/2 0
1 5/2 1

)
.

⋄
Exemple 8.21. Considérons la projection projd sur une droite d passant par l’origine et faisant un angle de
θ avec e1 :

Rappelons que sa matrice relative à la base canonique est donnée par

[projd]Bcan =
(

cos2θ cosθ sinθ
cosθ sinθ sin2θ

)
.

Plus naturelle, pour décrire cette projection, serait une base dans laquelle les vecteurs sont orientés dans
des directions qui tiennent compte de la position de l’axe d . Par exemple, une base B = {b1,b2} où b1 dirige
d , et b2 est perpendiculaire à d :

168 NumChap: chap-chgmt-de-base, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

botafogo.saitis.net

8.6. Exemples

(1)

(2)

d

b1b2

Par définition de la projection,

projd (b1) = b1 , projd (b2) = 0 ,

ce qui donne [
projd (b1)

]
B =

(
1
0

)
,

[
projd (b2)

]
B =

(
0
0

)
.

Par conséquent, la matrice relative à cette base prend une forme particulièrement simple :

[projd]B =
(
1 0
0 0

)
Vérifions que c’est bien ce que l’on obtient en faisant le changement de base, de Bcan vers B.

Tout d’abord, on écrit explicitement les vecteurs de la nouvelle base en fonction de ceux de l’ancienne.
Puisque d fait un angle θ avec l’horizontale, en les prenant orientés comme sur la figure ci-dessus, et uni-
taires,

[b1]Bcan =
(
cosθ
sinθ

)
, [b2]Bcan =

(−sinθ
cosθ

)
.

Ainsi, la matrice de changement de base est

PBcan←B =
(
cosθ −sinθ
sinθ cosθ

)
.

La formule du changement de base donne donc

[projd]B = PBcan←B
−1[projd]Bcan PBcan←B

=
(

cosθ sinθ
−sinθ cosθ

)(
cos2θ cosθ sinθ

cosθ sinθ sin2θ

)(
cosθ −sinθ
sinθ cosθ

)
=

(
1 0
0 0

)
.

⋄

Dans dernier exemple, on a observé qu’une application (la projection) prenait une forme plus simple quand
on la regardait dans une base qui était adaptée à la géométrie du problème. Faisons maintenant l’inverse :
prenons une transformation, définie dans une base naturelle, et voyons quelle forme elle prend dans une
autre base :

Exemple 8.22. Considérons la réflexion par rapport à une droite d qui passe par l’origine, que nous avions
notée refld . Utilisons à nouveau la base où b1 dirige d , et b2 est perpendiculaire à d . On remarque que
l’application de la réflexion sur ces vecteurs prend une forme très simple :

NumChap: chap-chgmt-de-base, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) 169

botafogo.saitis.net

8.7. Résumé du chapitre sur les coordonnées et les représentations matricielles

(1)

(2)

d

b1 = refld (b1)
b2

refld (b2)

refld (b1) = b1 , refld (b2) =−b2 .

Par conséquent,

[refld]B =
[[

refld (b1)
]
B

[
refld (b2)

]
B

]
=

(
1 0
0 −1

)
.

Maintenant, exprimons la matrice de refld relative à la base canonique. Comme la matrice de passage est la
même qu’avant,

[refld]Bcan = PBcan←B[refld]BP−1
Bcan←B

=
(
cosθ −sinθ
sinθ cosθ

)(
1 0
0 −1

)(
cosθ sinθ
−sinθ cosθ

)
=

(
cos2θ− sin2θ 2sinθcosθ

2sinθcosθ sin2θ−cos2θ

)
=

(
cos(2θ) sin(2θ)
sin(2θ) −cos(2θ)

)
.

Cette expression est bien celle que nous avions obtenue précédemment. ⋄

8.7 Résumé du chapitre sur les coordonnées et les représentations matricielles

RÉSULTAT FONDAMENTAL :

B = {v1, . . . , vn} BASE DE V ⇔ ∀v ∈V ∃! α1, . . . ,αn ∈R TELS QUE v =α1v1 +·· ·+αn vn

(VOIR LEMME 8.1)

COORDONNÉES DE v ∈V RELATIVES À BASE B = {v1, . . . , vn} ⊆V :

[v]B :=


x1

x2
...

xn

 ∈Rn ⇔ v = x1v1 +·· ·+xn vn −−→


POUR CALCULER x1, . . . , xn :

1 v = x1v1 +·· ·+xn vn = SEL EN x1, . . . , xn

2 RÉSOUDRE LE SEL!

coordonnées
170 NumChap: chap-chgmt-de-base, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

botafogo.saitis.net

8.7. Résumé du chapitre sur les coordonnées et les représentations matricielles

EXEMPLE FONDAMENTAL :

v ∈Rn ET Bcan =




1
0
...
0

 ,


0
1
...
0

 , · · · ,


0
0
...
1


 ⇒ [v]Bcan = v

MATRICE D’AL T : V →V ′ RELATIVE AUX BASES B = {v1, . . . , vn} ⊆V ET B′ = {v ′
1, . . . , v ′

m} ⊆V ′ :

[T]B′←B :=
[[

T (v1)
]
B′ · · ·

[
T (vn)

]
B′

]
ET SI V ′ =V ET B′ =B

[T]B := [T]B←B

IDENTITÉ FONDAMENTALE : [
T (v)

]
B′ = [T]B′←B[v]B

PROPRIÉTÉS POUR T : V →V ′ ET S : V ′ →V ′′ AVEC BASES B ⊆V , B′ ⊆V ′ ET B′′ ⊆V ′′ :

[S ◦T]B′′←B = [S]B′′←B′ [T]B′←B ET [idV]B←B = Idim(V)

INJECTIVITÉ, SURJECTIVITÉ ET BIJECTIVITÉ D’UNE AL T : V →V ′ :

v ∈ Ker(T) ⇔ [v]B ∈ Ker
(
[T]B′←B

) ⇒ T INJECTIVE ⇔ [T]B′←B INJECTIVE

v ′ ∈ Img(T) ⇔ [v ′]B′ ∈ Img
(
[T]B′←B

) ⇒ T SURJECTIVE ⇔ [T]B′←B SURJECTIVE

⇓
T BIJECTIVE ⇔ [T]B′←B BIJECTIVE

MATRICE DE PASSAGE (OU DE CHANGEMENT DE BASE) DE BASE B = {v1, . . . , vn} ⊆ V VERS UNE BASE
C = {w1, . . . , wn} ⊆V :

PC←B := [idV]C←B =
[[

v1
]
C · · ·[vn

]
C

]
IDENTITÉ FONDAMENTALE : [

v
]
C = PC←B[v]B

PROPRIÉTÉ :

PC←B INVERSIBLE ET P−1
C←B = PB←C

FORMULES DE CHANGEMENT DE BASE :

[T]C ′←C = PC ′←B′ [T]B′←BPB←C (VOIR THM. 8.19)

ET SI V ′ =V
[T]C = PC←B[T]BPB←C = P−1

B←C [T]BPB←C

NumChap: chap-chgmt-de-base, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) 171

botafogo.saitis.net

Chapitre 9

Valeurs et vecteurs propres

9.1 Motivation

Les notions introduites jusqu’ici permettent de dire des choses très globales sur une application linéaire

T : V →V ′ .

Si V et V ′ sont de dimensions finies, une telle application peut être représentée par une matrice, et nous
savons l’utiliser pour étudier l’injectivité, la surjectivité ; nous avons plusieurs critères permettant de déter-
miner quand l’application est bijective (via l’inversibilité de sa matrice et le déterminant).

Mais ce que nous n’avons pas encore c’est un outil, un peu comme la dérivée en analyse, qui nous permette
de dire des choses plus fines sur cette application.

Nous nous concentrerons sur les applications linéaires

T :Rn →Rm .

Pour motiver les nouvelles notions que nous allons introduire, voyons un exemple simple dans le plan :

Exemple 9.1. Considérons l’application T :R2 →R2 définie par(
x1

x2

)
= x 7→ T (x) :=

(
x2

1
2 x1 − 1

2 x2

)
=

(
0 1
1
2 −1

2

)
︸ ︷︷ ︸

=A

(
x1

x2

)
.

Les colonnes de A étant indépendantes, cette application est bijective.

Mais ne peut-on rien dire de plus ? Par exemple, peut-on dire plus précisément comment Ax est relié géo-
métriquement à x ?

Pour essayer de mieux comprendre cette application, faisons varier x sur l’animation ci-dessous, et obser-
vons comment l’image Ax se comporte :

On se rend compte que certaines directions semblent jouer un rôle particulier. Sous l’action de T , c’est-à-
dire lorsqu’on multiplie par A,

172 NumChap: chap-val-et-vect-propres, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

botafogo.saitis.net

9.2. Définitions de valeur propre, de vecteur propre et d’espace propre

• tout vecteur x sur la droite dirigée par v1 =
(
2
1

)
subit uniquement une modification de longueur, par

un facteur 1
2 ,

Ax = 1
2 x .

• tout vecteur x sur la droite dirigée par v2 =
(

1
−1

)
subit uniquement une modification de sens :

Ax =−x .

En d’autres termes, les deux directions spécifiées par v1 et v2 sont particulières puisqu’elles définissent des
vecteurs dont la direction ne change pas sous l’action de T . Leur longueur et leur sens, par contre, peuvent
être altérés.

Ces vecteurs particuliers v1 et v2, que nous appellerons vecteurs propres, fournissent un point de départ pour
comprendre la géométrie de l’application T . Au chapitre suivant, sur la diagonalisation, nous utiliserons ces
vecteurs propres pour construire une nouvelle base dans laquelle nous exprimerons T . ⋄

Objectifs de ce chapitre

À la fin de ce chapitre vous devriez être capable de

(O.1) calculer le polynôme caractéristique, les valeurs et les espaces propres d’une matrice carrée ;

(O.2) calculer les multiplicités algébriques et géométriques des valeurs propres d’une matrice car-
rée.

Nouveau vocabulaire dans ce chapitre

• valeur propre
• vecteur propre
• spectre
• espace propre

• polynôme caractéristique

• multiplicité algébrique

• multiplicité géométrique

9.2 Définitions de valeur propre, de vecteur propre et d’espace propre

En général, lorsqu’on multiplie un vecteur x ∈ Rn par une matrice A de taille n ×n, on change la direction
de x.
Or on a vu dans l’exemple de la section précédente qu’il peut exister des vecteurs v particuliers dont la
direction n’est pas modifiée lorsqu’ils sont multipliés par A. En d’autres termes, pour ces vecteurs, Av est
colinéaire à v.

Définition 9.2. Soit V us espace vectoriel et soit T : V →V une application linéaire. Un vecteur v ∈V
non nul est appelé vecteur propre de T s’il existe λ ∈R tel que

T (v) =λv .

Le scalaire λ est appelé valeur propre de T , et v est un vecteur propre associé à λ.

Comme à toute matrice A de taille n×n correspond une application linéaire T :Rn →Rn , définie par T (x) :=
Ax, on définit les vecteurs propres (resp., valeurs propres) de A comme étant ceux (resp., celles) de T ,
comme indiqué dans la définition suivante, ce qui représentera le cas le plus intéressant dans ce cours.

NumChap: chap-val-et-vect-propres, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) 173

botafogo.saitis.net

9.2. Définitions de valeur propre, de vecteur propre et d’espace propre

Définition 9.3. Soit A une matrice de taille n×n. Un vecteur v ∈Rn non nul est appelé vecteur propre
de A s’il existe λ ∈R tel que

Av =λv .

Le scalaire λ est appelé valeur propre de A, et v est un vecteur propre associé à λ.

Exemple 9.4. Soit A =
(
1 6
5 2

)
.

• Si v =
(

6
−5

)
, alors

Av =
(
1 6
5 2

)(
6
−5

)
=

(−24
20

)
=−4

(
6
−5

)
=−4v ,

et donc v est vecteur propre, avec valeur propre λ=−4.

• Si v =
(
0
1

)
, alors

Av =
(
1 6
5 2

)(
0
1

)
=

(
6
2

)
,

qui n’est pas colinéaire à v, donc v n’est pas vecteur propre.

⋄
Exemple 9.5. Pour une matrice de taille n ×n diagonale,

A = diag(d1, . . . ,dn) =


d1 0 · · · 0
0 d2 · · · 0
...

...
. . .

...
0 0 · · · dn

 ,

on a
Aek = dk ek , ∀k = 1, . . . ,n ,

et donc chaque vecteur de la base canonique ek est vecteur propre, avec valeur propre dk . ⋄
Nous verrons bientôt comment calculer les vecteurs et valeurs propres d’une matrice. Mais parfois, lorsque
l’application associée a un sens géométrique direct, on peut les connaître sans faire de calculs, par simple
observation.

Exemple 9.6. Considérons la projection sur une droite passant par l’origine :

• Nous avons déjà remarqué que les vecteurs sur d ne sont pas modifiés par la projection :

projd (v) = v = 1v , ∀v ∈ d ,

Ainsi, tous les vecteurs de d sont vecteurs propres de projd , avec valeur propre λ= 1.

174 NumChap: chap-val-et-vect-propres, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

botafogo.saitis.net

9.2. Définitions de valeur propre, de vecteur propre et d’espace propre

• Les vecteurs qui sont perpendiculaires à d ont tous comme projection le vecteur nul :

projd (v) = 0 = 0v , ∀v ⊥ d ,

Ainsi, tous les vecteurs perpendiculaires à d sont vecteurs propres de projd , avec valeur propre λ= 0.

Il n’y a, apparemment en tout cas, pas d’autres vecteurs propres. ⋄
Exemple 9.7. On peut faire de même avec la réflexion par rapport à une droite :

• Tout vecteur sur d est vecteur propre, avec valeur propre λ= 1 :

refld (v) = v = 1v , ∀v ∈ d ,

• Tout vecteur perpendiculaire à d est vecteur propre, avec valeur propre λ=−1 :

refld (v) =−v = (−1)v , ∀v ⊥ d .

⋄
Une matrice ne possède pas toujours des vecteurs et valeurs propres. En effet, l’existence de vecteurs v qui
soient colinéaires à leur image Av est une propriété géométrique particulière que beaucoup de transforma-
tions, même naturelles, ne satisfont pas.

Exemple 9.8. Considérons la rotation d’angle θ, x 7→ T (x) = rotθ(x) :

Pour les valeurs de θ ∈ [−π,π] qui sont différentes de 0 et ±π, rotθ(x) pointe toujours dans une direction
différente de x. Donc pour ces valeurs de θ, sa matrice n’a pas de vecteurs propres. Par contre,

• Si θ = 0, alors évidemment la rotation ne fait rien,

rot0(x) = x , ∀x ∈R2 ,

et donc n’importe quel vecteur du plan est vecteur propre, avec valeur propre λ= 1.

• Si θ =±π, alors l’effet de la rotation est de renverser x,

rot±π(x) =−x , ∀x ∈R2 ,

et donc n’importe quel vecteur du plan est vecteur propre, avec valeur propre λ=−1.

Nous reviendrons plus tard sur ces cas particuliers. ⋄
La question se pose maintenant de savoir comment calculer les vecteurs propres et valeurs propres de façon
systématique, pour une matrice donnée.

NumChap: chap-val-et-vect-propres, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) 175

botafogo.saitis.net

9.2. Définitions de valeur propre, de vecteur propre et d’espace propre

9.2.1 Espace propre

Par linéarité, si v est vecteur propre avec valeur propre λ, alors tout vecteur non nul colinéaire à v est aussi
vecteur propre avec valeur propre λ .

Donc dès qu’une application linéaire ou une matrice possède une valeur propre, il y a une infinité de vec-
teurs propres qui lui sont associés. Ceci mène à considérer, pour une valeur propre λ donnée, l’ensemble
de tous les vecteurs propres associés à λ :

Définition 9.9. Soit T : V →V une application linéaire et λ une valeur propre de T . L’ensemble

Eλ := {
v ∈V : T (v) =λv

}⊆V

est appelé espace propre associé à λ. De façon plus concrète, soit A une matrice de taille n ×n et λ
une valeur propre de A. L’ensemble

Eλ := {
v ∈Rn : Av =λv

}⊆Rn

est aussi appelé espace propre associé à λ.

Remarque 9.10. Noter que Eλ contient toujours le vecteur nul 0. ⋄
Exemple 9.11. Nous avons vu plus haut que λ=−4 était valeur propre de la matrice

A =
(
1 6
5 2

)
.

Calculons son espace propre associé. Pour ce faire, on cherche tous les v solutions de

Av =−4v .

Comme on sait, ce système doit posséder une infinité de solutions ! En nommant les composantes de v, on
peut l’écrire (

1 6
5 2

)(
v1

v2

)
=−4

(
v1

v2

)
.

En passant le second membre du côté gauche,(
5 6
5 6

)(
v1

v2

)
=

(
0
0

)
.

L’espace propre associé à λ=−4 est donc une droite :

E−4 =
{

v = t

(
6
−5

)∣∣∣t ∈R}
= Vect

{(
6
−5

)}
.

⋄
Exemple 9.12. Considérons l’application associée à

A =
4 −1 6

2 1 6
2 −1 8

 .

Supposons que l’on ait déjà montré que λ = 2 est valeur propre. Calculons son espace propre associé, E2 :
on cherche tous les v ∈R3 solutions de

Av = 2v ,

176 NumChap: chap-val-et-vect-propres, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

botafogo.saitis.net

9.2. Définitions de valeur propre, de vecteur propre et d’espace propre

c’est-à-dire 4 −1 6
2 1 6
2 −1 8

v1

v2

v3

= 2

v1

v2

v3

 .

En passant le second membre du côté gauche,

2 −1 6
2 −1 6
2 −1 6

v1

v2

v3

=
0

0
0

 ,

qui est équivalent à 2 −1 6
0 0 0
0 0 0

v1

v2

v3

=
0

0
0

 .

On peut donc prendre v2 et v3 comme variables libres, et prendre v1 = 1
2 (v2 −6v3) comme variable de base.

Ainsi, tout vecteur de la forme

v =
1

2 v2 −3v3

v2

v3

= v2

1/2
1
0

+ v3

−3
0
1


est vecteur propre de A, avec valeur propre 2. Ceci montre que l’espace propre E2 est un plan :

E2 =
v = s

1/2
1
0

+ t

−3
0
1

∣∣∣s, t ∈R


= Vect


1/2

1
0

 ,

−3
0
1

 .

⋄
Remarque 9.13. On l’a observé sur ces deux premiers exemples : une fois la valeur propre connue, la re-
cherche des vecteurs propres qui lui sont associés mène toujours à un système possédant une infinité de
solutions. ⋄

Donc une fois une valeur propre connue, un calcul explicite d’espace propre n’est que la résolution d’un
système du type Av =λv. La question naturelle, à laquelle nous répondrons dans la section suivante, est de
savoir comment trouver les valeurs propres.

Mais avant ça, remarquons que dans les deux exemples ci-dessus, l’espace propre trouvé était engendré
par certains vecteurs, et avait donc une structure de sous-espace vectoriel. C’est l’origine du terme “espace”
propre :

Lemme 9.14. L’espace propre d’une application linéaire T : V → V (resp., d’une matrice carrée A de
taille n) associé à une valeur propre λ peut s’écrire

Eλ = Ker(T −λ idV)
(
resp., Eλ = Ker(A−λ In)

)
.

Par conséquent, c’est un sous-espace vectoriel de V (resp., Rn).

NumChap: chap-val-et-vect-propres, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) 177

botafogo.saitis.net

9.3. Le polynôme caractéristique

Preuve: On fait la preuve dans le cas des matrices, le cas des applications linéaires étant pareil. Dans ce cas, on note
que

v ∈ Eλ⇔ Av =λv

⇔ Av−λv = 0

⇔ (A−λ In)v = 0

⇔ v ∈ Ker(A−λ In) .

Comme A−λ In est une application linéaire, nous savons depuis les chapitres précédents que son noyau est un sous-

espace vectoriel de Rn

9.2.2 Matrices inversibles et la valeur propre nulle

Théorème 9.15. Une matrice A de taille n ×n est inversible si et seulement si λ = 0 n’est pas valeur
propre.

Preuve: On sait que A est inversible si et seulement si son noyau ne contient que le vecteur nul. Or le noyau pouvant

être défini comme l’ensemble des vecteurs v tels que Av = 0v, ceci donne l’équivalence.

On trouvera ici (3Blue1Brown) une discussion qui pourra vous aider à comprendre certaines des choses
faites ici, et qui motive aussi l’usage que nous ferons plus tard des vecteurs et valeurs propres.

9.3 Le polynôme caractéristique

Voyons le résultat qui rendra la recherche de valeurs propres un problème purement algébrique :

Théorème 9.16. Soit A une matrice de taille n×n. Alors λ ∈R est valeur propre de A si et seulement si

det(A−λ In) = 0.

Preuve: En effet, λ est valeur propre de A si et seulement s’il existe un vecteur non-nul v tel que Av = λv. On a vu

plus haut que ceci est équivalent à dire que v ∈ Ker(A −λ In). Mais l’existence de vecteurs non-nuls dans le noyau

d’une matrice (ici : la matrice A −λ In) implique que celle-ci n’est pas inversible, ce qui est équivalent à dire que son

déterminant est nul.

Exemple 9.17. Considérons encore une fois la matrice

A =
(
1 6
5 2

)
.

Par le théorème, toutes les valeurs propres se trouvent en étudiant l’équation

det(A−λ I2) = 0.

Comme

det(A−λ I2) = det

(
1−λ 6

5 2−λ
)

= (1−λ)(2−λ)−30

=λ2 −3λ−28

= (λ+4)(λ−7) ,

A possède exactement deux valeurs propres : λ1 =−4 (comme nous avions déjà observé) et λ2 = 7. ⋄

178 NumChap: chap-val-et-vect-propres, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

https://www.youtube.com/watch?v=PFDu9oVAE-g&ab_channel=3Blue1Brown
botafogo.saitis.net

9.3. Le polynôme caractéristique

Comme dans ce dernier exemple, la fonction λ 7→ det(A−λ In) sera toujours un polynôme en λ.

Définition 9.18. Soit A une matrice de taille n ×n. Le polynôme

P A(λ) := det(A−λ In)

est appelé le polynôme caractéristique de A.

Les valeurs propres d’une matrice se trouvent donc en cherchant les racines de son polynôme caractéris-
tique.

Exemple 9.19. Soit A =
(
1 −5
1 1

)
. On a

P A(λ) = det

(
1−λ −5

1 1−λ
)
= (1−λ)2 +5.

Comme P A(λ)⩾ 5 pour tout λ, P A n’a pas de racines. Donc A ne possède aucune valeur propre, et aucun
vecteur propre. ⋄
Exemple 9.20. Pour une matrice diagonale A = diag(d1, . . . ,dn) de taille n ×n on a

P A(λ) = det(A−λ In)

= det
(
diag(d1 −λ, . . . ,dn −λ)

)
= (d1 −λ) · · · (dn −λ) ,

donc les valeurs propres de A sont ses éléments diagonaux d1, . . . ,dn . ⋄

9.3.1 Recherche de vecteurs et valeurs propres

Pour trouver les vecteurs propres et valeurs propres (s’il y en a) d’une matrice A, on pourra donc procéder
comme suit :

1) Calculer le spectre de A, noté spectre(A), et défini comme l’ensemble de toutes ses valeurs propres,
racines du polynôme caractéristique, P A(λ) = 0.

2) Si spectre(A) ̸= ;, calculer pour chaque valeur propre λ ∈ spectre(A) l’espace propre associé Eλ, en
trouvant toutes les solutions de Av =λv.

Informel 9.21. A priori, si A est une matrice de taille n × n, P A(λ) est un polynôme de degré n.
Comme on cherche les racines de P A(λ), on a avantage à le calculer avec précaution, de façon à
tout de suite l’obtenir sous une forme factorisée (ou aussi factorisée que possible). Dans l’exemple
suivant, un choix judicieux d’opérations sur la matrice A −λ I3 évite de devoir étudier un polynôme
de degré 3.

Exemple 9.22. Cherchons les vecteurs et valeurs propres de

A =
 1 −1 −1
−1 1 −1
−1 −1 1

 .

NumChap: chap-val-et-vect-propres, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) 179

botafogo.saitis.net

9.3. Le polynôme caractéristique

Commençons par la recherche des valeurs propres, en calculant

P A(λ) = det

1−λ −1 −1
−1 1−λ −1
−1 −1 1−λ


= det

−1−λ −1 −1
−1−λ 1−λ −1
−1−λ −1 1−λ


=−(1+λ)det

1 −1 −1
1 1−λ −1
1 −1 1−λ


=−(1+λ)det

1 −1 −1
0 2−λ 0
0 0 2−λ


=−(1+λ)(2−λ)2 .

(Dans la deuxième ligne nous avons rajouté les colonnes 2 et 3 à la première, dans la troisième nous avons
extrait un (1+λ) de la première colonne, et dans la quatrième nous avons soustrait la première de la deuxième
et troisième ligne. Dans la dernière ligne, nous avons profité du fait que la matrice était triangulaire.)

Nous avons donc deux valeurs propres, λ1 =−1 et λ2 = 2. On calcule facilement leurs espaces propres asso-
ciés :

E−1 = Ker(A+ In) = Vect


1

1
1

 ,

E2 = Ker(A−2In) = Vect


−1

1
0

 ,

−1
0
1

 .

⋄

9.3.2 Le polynôme caractéristique est un invariant de similitude

Rappelons que deux matrices carrées sont semblables, A ∼ B , s’il existe une matrice inversible M telle que
A = MB M−1.

Théorème 9.23. Si deux matrices sont semblables, A ∼ B, alors elles ont le même polynôme caracté-
ristique :

P A(λ) = PB (λ) , ∀λ ∈R .

Par conséquent, elles ont le même spectre : spectre(A) = spectre(B).

180 NumChap: chap-val-et-vect-propres, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

botafogo.saitis.net

9.4. Multiplicités algébriques et géométriques

Preuve: Si A = MB M−1, alors en récrivant In = M M−1 = M In M−1,

P A(λ) = det(A−λ In)

= det(MB M−1 −λM M−1)

= det
(
M(B −λ In)M−1)

= det(M)det(B −λ In)det(M−1)

= det(B −λ In)det(M)det(M−1)

= det(B −λ In)det(M M−1)

= det(B −λ In)

= PB (λ) .

Considérons une application linéaire
T :Rn →Rn .

Si l’on possède deux bases dans Rn , notées B et C , T peut se représenter comme une matrice,

• [T]B relative à B, ou

• [T]C relative à C ,

La formule du changement de base nous dit que

[T]B = PB←C [T]C PC←B

= PC←B
−1[T]C PC←B .

Ceci implique que [T]B ∼ [T]C , et donc, par le théorème ci-dessus, que ces deux matrices ont le même
spectre.

Ceci montre que le spectre est bel et bien associé à l’application, pas à la matrice qui est utilisée pour la
représenter relativement à une base ou une autre.

9.4 Multiplicités algébriques et géométriques

L’utilisation des valeurs et vecteurs propres, dans l’étude d’une application linéaire, sera

Définition 9.24. Soit λk une valeur propre d’une matrice A. La multiplicité algébrique de λk est le
plus grand entier n tel que (λ−λk)n divise P A(λ) ; on note cet entier multa(λk).

En d’autres termes, si la factorisation complète du polynôme caractéristique contient

P A(λ) = ·· · (λ−λk)n · · · ,

alors multa(λk) = n.

Remarque 9.25. On sait par le théorème fondamental de l’algèbre que P A(λ) possède au plus n racines
réelles. Ceci signifie que si A possède les valeurs propres λ1, . . . ,λk , alors

k∑
j=1

multa(λ j)⩽ n .

⋄

NumChap: chap-val-et-vect-propres, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) 181

botafogo.saitis.net

9.4. Multiplicités algébriques et géométriques

Exemple 9.26. Pour notre matrice

A =
(
1 6
5 2

)
,

nous avions trouvé
P A(λ) = (λ+4)1(λ−7)1 ,

qui donne multa(−4) = 1, multa(7) = 1. ⋄
Exemple 9.27. Le polynôme caractéristique de la matrice identité In étant

PIn (λ) = (1−λ)n ,

l’unique valeur propre λ1 = 1 est de multiplicité algébrique multa(1) = n. ⋄

Définition 9.28. Soit λk une valeur propre d’une matrice A. La multiplicité géométrique de λk est
la dimension de son espace propre :

multg (λk) := dim(Eλ) = dim
(

Ker(A−λk In)
)

.

Remarque 9.29. Par définition, une multiplicité géométrique est toujours⩾ 1. ⋄

Théorème 9.30. Soit λk une valeur propre de A. Alors

multg (λk)⩽multa(λk) .

Preuve: Considérons une valeur propre de A, qu’on notera λ0 pour simplifier, et son espace propre son espace propre
associé, Eλ0 . Posons

k := multg (λ0) = dim(Eλ0) ,

et considérons des vecteurs propres v1, . . . ,vk formant une base de Eλ0 . Complétons cette famille en une base de Rn :

B = {v1, . . . ,vk ,wk+1, . . . ,wn} .

Soit A′ la matrice de l’application linéaire T (x) = Ax relative à la base B :

A′ =
[[

T (v1)
]
B · · ·[T (vk)

]
B

[
T (wk+1)

]
B · · ·[T (wn)

]
B

]
.

Puisque chaque v j 1 est vecteur propre de T , T (v j) =λ0v j , A′ a la structure suivante :

A′ =



λ0

. . . B
λ0

0 C


.

Maintenant, rappelons que A et A′ sont semblables, et possèdent donc le même polynôme caractéristique :

P A(λ) = P A′ (λ) .

Mais par la structure de A′ donnée ci-dessus,

P A′ (λ) = det(A′−λ In)

= det



λ0 −λ
. . . B

λ0 −λ

0 C −λ In−k


= (λ0 −λ)k det(C −λ In−k) .

182 NumChap: chap-val-et-vect-propres, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

botafogo.saitis.net

9.4. Multiplicités algébriques et géométriques

Exemple 9.31. Reprenons la matrice vue plus haut :

A =
 1 −1 −1
−1 1 −1
−1 −1 1

 .

Nous avions calculé

P A(λ) =−(1+λ)1(2−λ)2 .

Nous avons donc deux valeurs propres,

• λ1 =−1, de multiplicité algébrique multa(λ1) = 1,

• λ2 = 2, de multiplicité algébrique multa(λ2) = 2.

En ce qui concerne les espaces propres,

E−1 = Ker(A+ In) = Vect


1

1
1

 ,

qui implique multg (λ1) = 1, et

E2 = Ker(A−2In) = Vect


−1

1
0

,

−1
0
1

 ,

qui implique multg (λ2) = 2. Donc dans cet exemple,

multa(λ1) = multg (λ1) ,

multa(λ2) = multg (λ2) .

⋄
Exemple 9.32. Considérons la matrice

B =
(
3 1
0 3

)
.

D’une part, son polynôme caractéristique est donné par

PB (λ) = (3−λ)2 ,

et donc B ne possède qu’une valeur propre λ1 = 3, de multiplicité algébrique multa(λ1) = 2. Mais on a
d’autre part que

E1 = Ker(A−3I2) = Vect

{(
1
0

)}
,

qui implique multg (λ1) = 1. Donc dans ce cas,

multg (λ1) < multa(λ1) .

⋄

NumChap: chap-val-et-vect-propres, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) 183

botafogo.saitis.net

9.5. Résumé du chapitre sur les valeurs et vecteurs propres

9.5 Résumé du chapitre sur les valeurs et vecteurs propres

VALEUR PROPRE ET VECTEUR PROPRE DE MATRICE CARRÉE A ∈Mn(R) :

Av =λv AVEC v ̸= 0

vecteur propre valeur propre

ESPACE PROPRE DE MATRICE A ∈Mn(R) POUR VALEUR PROPRE λ :

Eλ := {v ∈Rn : Av =λv} ⇒ v VECTEUR PROPRE AVEC VALEUR PROPRE λ ⇔ v ∈ Eλ \ {0}

↓
CONSÉQUENCE : λ= 0 VALEUR PROPRE DE A ⇔ A NON INJECTIVE −→ E0 = Ker(A)

POLYNÔME CARACTÉRISTIQUE DE A ∈Mn(R) :

P A(λ) := det(A−λ In) ←−−− POLYNÔME DE DEGRÉ n

RÉSULTAT FONDAMENTAL I :

POUR λ0 ∈R,λ0 VALEUR PROPRE DE A ⇔λ0 RACINE DE P A(λ) ←−−− CALCUL DE VALEURS PROPRES!

RÉSULTAT FONDAMENTAL II :

POUR λ0 ∈R VALEUR PROPRE DE A,Eλ0 = Ker(A−λ0 In) ←−−− CALCUL D’ESPACE PROPRE!

SPECTRE DE MATRICE A ∈Mn(R) :

spectre(A) := {λ ∈R :λ VALEUR PROPRE DE A}

MULTIPLICITÉ ALGÉBRIQUE DE VALEUR PROPRE λ0 :

multa(λ0) := max
{
k ∈N : (λ−λ0)k DIVISE P A(λ)

}
MULTIPLICITÉ GÉOMÉTRIQUE DE VALEUR PROPRE λ0 :

multg (λ0) := dim(Eλ0)

RÉSULTAT REMARQUABLE :

∀λ VALEUR PROPRE multg (λ)⩽multa(λ) (VOIR THM 9.30)

184 NumChap: chap-val-et-vect-propres, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

botafogo.saitis.net

Chapitre 10

Diagonalisation

10.1 Motivation et définition

Nous l’avions dit au début du chapitre sur les vecteurs et valeurs propres, notre but était de un outil per-
mettant d’étudier une application linéaire de façon plus géométrique.

Objectifs de ce chapitre

À la fin de ce chapitre vous devriez être capable de

(O.1) déterminer si une matrice est diagonalisable, et la diagonaliser si possible ;

(O.2) utiliser la diagonalisation pour calculer des puissances d’une matrice.

Nouveau vocabulaire dans ce chapitre

• matrice diagonalisable • diagonalisation d’une matrice

10.1.1 Un idéal : les matrices diagonales

Commençons par décrire les applications qui, même en grande dimensions, sont très simples à comprendre :
les applications dont la matrice (relative à la base canonique) est diagonale. En effet, considérons une ap-
plication T :Rn →Rn définie par

x =


x1

x2
...

xn

 7→ T (x) :=


d1 0 · · · 0
0 d2 · · · 0
...

...
. . .

...
0 0 · · · dn




x1

x2
...

xn

=


d1x1

d2x2
...

dn xn

 .

Une telle application se comprend simplement dans le sens suivant : chaque variable xk n’est que multipliée
par dk , et n’interfère pas avec les autres variables.

Informel 10.1. Donc une application linéaire dont la matrice dans une base est diagonale corres-
pond dans cette base à faire, indépendamment pour chaque k, une simple “dilatation” ou “étire-
ment” (“stretching” en anglais) par un facteur dk selon la composante k.

Exemple 10.2. Dans le plan, considérons

x =
(

x1

x2

)
7→ T (x) =

(
2 0
0 −1

)(
x1

x2

)
=

(
2x1

−x2

)
.

NumChap: chap-diagonalisation, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) 185

botafogo.saitis.net

10.1. Motivation et définition

Dans ce cas, l’effet de T simple à décrire : elle multiplie x1 par 2, et change le signe de x2. Ceci permet de
construire l’image d’un x quelconque à la règle et au compas :

⋄

10.1.2 Objectif

On sait que la représentation matricielle d’une application linéaire relative à la base canonique n’est qu’une
représentation parmi d’autres. Au vu de la discussion ci-dessus, on peut donc se poser la question de savoir
si, pour une application linéaire donnée, il existe une base dans laquelle sa matrice est diagonale. Si c’est le
cas (parce que ça ne sera pas toujours possible), alors on a tout avantage à choisir cette base pour travailler,
puisque dans cette base l’application ne devient qu’une modification multiplicative de chacune des com-
posantes, indépendamment des autres. Le but de la diagonalisation, que nous présentons dans ce chapitre,
est de déterminer si une application donnée peut (ou ne peut pas) être rendue diagonale dans une base bien
choisie.

Puisque la diagonalisation a pour but de réduire une application à une base dans laquelle elle “multiplie
simplement les composantes par des nombres”, c’est sans surprise que les notions de vecteur propre et
valeur propre joueront un rôle central dans son développement.

Avant de passer à l’étude générale de la diagonalisation, voyons comment elle s’implémente dans un cas
simple.

10.1.3 Diagonaliser une application dans le plan

Exemple 10.3. Reprenons l’application utilisée comme motivation de la notion de vecteur propre, dans le
chapitre précédent :

x =
(

x1

x2

)
7→ T (x) :=

(
x2

1
2 x1 − 1

2 x2

)
=

(
x1

x2

)
.

On a donc la matrice relative à la base canonique donnée par

[T]Bcan =
(

0 1
1
2 −1

2

)
.

Nous avions remarqué que certains vecteurs subissaient, sous l’action de T , une simple multiplication par
un scalaire. Maintenant que l’on sait que ces vecteurs sont les vecteurs propres, on peut les calculer expli-
citement. Puisque

P[T]Bcan
(λ) = 2λ2 +λ−1,

on a deux valeurs propres :

• λ1 = 1
2 , avec espace propre associé E 1

2
= Vect

{(
2
1

)}
,

186 NumChap: chap-diagonalisation, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

botafogo.saitis.net

10.1. Motivation et définition

• λ2 =−1, avec espace propre associé E−1 = Vect

{(−1
1

)}
.

On peut représenter ces espaces propres, et vérifier comment ils sont modifiés sous l’action de T :

Ensuite, choisissons deux vecteurs propres,

v1 =
(
2
1

)
∈ E 1

2
, v2 =

(−1
1

)
∈ E−1 .

Ces vecteurs étant indépendants (évident, mais surtout vrai parce qu’ils sont associés à des valeurs propres
distinctes !), ils forment une base de R2 : B = {v1,v2}.

Exprimons T dans cette base B formée de vecteurs propres :

[T]B = PBcan←B
−1[T]Bcan PBcan←B .

Comme

PBcan←B =
(
2 −1
1 1

)
, PBcan←B

−1 = 1

3

(
1 1
−1 2

)
,

on a

[T]B = 1

3

(
1 1
−1 2

)(
0 1
1
2 −1

2

)(
2 −1
1 1

)
= 1

3

(3
2 0
0 −3

)
=

(1
2 0
0 −1

)
.

On a ainsi diagonalisé T ; sur la diagonale de [T]B apparaissent précisément les valeurs propres.

Maintenant, lorsqu’on est dans la base B, l’effet de T sur un vecteur devient transparent puisque sa matrice
est diagonale. En effet, si

[x]B =
(

x1

x2

)
,

alors [
T (x)

]
B = [T]B[x]B =

(1
2 0
0 −1

)(
x1

x2

)
=

(1
2 x1

−x2

)
.

Avec cette information, on peut maintenant retourner sur l’animation du dessus, et observer comment ef-
fectivement, sous l’action de T , relativement à B, la première composante de x, est multipliée par 1

2 , et la
deuxième est multipliée par −1. ⋄

NumChap: chap-diagonalisation, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) 187

botafogo.saitis.net

10.2. Vecteurs propres associés à des valeurs propres distinctes

10.1.4 Définition générale de la diagonalisabilité

Définition 10.4. Une matrice A est diagonalisable si elle est semblable à une matrice diagonale,
c’est-à-dire s’il existe une matrice diagonale D , et une matrice inversible M telles que

A = PDP−1 .

Remarque 10.5. • La condition peut aussi s’exprimer par “A =Q−1DQ”, avec Q inversible, mais on verra
que celle-ci est plus naturelle.

• Toute matrice diagonale est diagonalisable.
⋄

Maintenant se pose la question : comment savoir si une matrice est diagonalisable ?

On s’en doute, cette question est reliée à l’existence de valeurs et de vecteurs propres. Mais ça n’est pas
suffisant, comme on verra dans la section suivante.

10.2 Vecteurs propres associés à des valeurs propres distinctes

Théorème 10.6. Soient λ1, . . . ,λk des valeurs propres distinctes (λi ̸= λ j si i ̸= j) d’une matrice A, et
soient v1, . . . ,vk des vecteurs non-nuls tels que

• v1 est vecteur propre associé à λ1,

• ...

• vk est vecteur propre associé à λk .

Alors la famille {v1, . . . ,vk } est libre.

Preuve: On démontre le résultat par récurrence sur k, c’est-à-dire sur le nombre de vecteurs propres dans la famille.
Si k = 1, il n’y a rien à démontrer, car c’est direct.

Supposons que le résultat est vrai pour des famille de k valeurs propres et k vecteurs propres, et considérons une
famille qui en contient k +1 vecteurs :

• v1 est vecteur propre associé à λ1,

• ...

• vk+1 est vecteur propre associé à λk+1,

où tous les λ j sont distincts, et tous les v j sont non-nuls.

Considérons la relation
α1v1 +·· ·+αk+1vk+1 = 0 .

Comme avant, agissons de deux manière sur cette relation :

• en multipliant par A des deux côtés,

α1λ1v1 +·· ·+αk+1λk+1vk+1 = 0 ;

• en multipliant par λk+1 des deux côtés,

α1λk+1v1 +·· ·+αk+1λk+1vk+1 = 0 .

En faisant la différence de ces deux expressions, le terme αk+1λk+1vk+1 disparaît, et il reste

α1(λ1 −λk+1)v1 +·· ·+αk (λk −λk+1)vk = 0 ,

188 NumChap: chap-diagonalisation, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

botafogo.saitis.net

10.3. Critère de base

et comme l’hypothèse d’induction garantit que {v1, . . . ,vk } est libre, tous les coefficients de cette combinaison linéaire
sont nuls :

α1(λ1 −λk+1) = 0, · · · , αk (λk −λk+1) = 0.

Mais λk+1 est distinct de toutes les autres valeurs propres : λ j −λk+1 ̸= 0. De là, on tire que α1 = 0, . . . ,αk = 0. En
réinjectant ces zéros dans la relation de départ, elle devient

αk+1vk+1 = 0 .

Comme vk+1 ̸= 0, on conclut que αk+1 est nul comme les autres, et donc que la famille {v1, · · · ,vk+1} est libre.

On peut effectivement remarquer que dans les quelques exemples vus précédemment, des familles de vec-
teurs propres associés à des valeurs propres distinctes étaient toujours libres.

Exemple 10.7. On a vu que la matrice

A =
(
1 6
5 2

)
.

possède exactement deux valeurs propres, λ1 =−4 et λ2 = 7. Les espaces propres associés sont

E−4 = Vect

{(
6
−5

)}
, E7 = Vect

{(
1
1

)}
.

Or si v1 ∈ E−4 et v2 ∈ E7 sont tous deux non-nuls, alors {v1,v2} est toujours libre. ⋄

10.3 Critère de base

Le résultat suivant est une caractérisation de la diagonalisabilité d’une matrice, qui utilise les vecteurs
propres de cette matrice :

Théorème 10.8. Soit A une matrice de taille n ×n. Alors A est diagonalisable si et seulement si A
possède n vecteurs propres linéairement indépendants.

De plus, dans le cas où A est diagonalisable, A = PDP−1, alors

• D a sur sa diagonale des valeurs propres de A,

• les colonnes de P sont les n vecteurs propres indépendants de A.

Preuve: Supposons que A est diagonalisable : il existe donc D = diag(d1, . . . ,dn) et P = [m1 · · ·mn], inversible, telle que
A = PDP−1. Remarquons alors que puisque P est inversible, ses colonnes sont indépendantes. Ensuite, si on multiplie
à droite par P , on obtient

AP = PD .

Si on exprime D comme
D = [d1e1 · · ·dn en] ,

alors

PD = P
[
d1e1 · · ·dn en

]
= [

d1Pe1 · · ·dnPen
]

= [
d1m1 · · ·dn mn

]
.

On peut donc exprimer AP = PD comme suit :[
Am1 · · · Amn

]= [
d1m1 · · ·dn mn

]
,

qui implique bien que Am j = d j m j pour tout j = 1, . . . ,n, et donc que A possède n vecteurs propres linéairement
indépendants.

NumChap: chap-diagonalisation, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) 189

botafogo.saitis.net

10.3. Critère de base

Inversément, supposons que A possède n vecteurs propres linéairement indépendants, que l’on peut noter v1, . . . ,vn .
Nommons leurs valeurs propres respectives λ1, . . . ,λn :

Av j =λ j v j , j = 1, . . . ,n .

Posons
P := [v1 · · ·vn] , D := diag(λ1, . . . ,λn) .

Puisque les v j sont indépendants, P est inversible. Calculons :

AP = A[v1 · · ·vn]

= [Av1 · · · Avn]

= [λ1v1 · · ·λn vn]

= PD .

En multipliant à droite par P−1, on obtient A = PDP−1, qui signifie bien que A est diagonalisable.

Informel 10.9. Donc une matrice est diagonalisable si et seulement s’il est possible de construire
une base de Rn composée uniquement de vecteurs propres de cette matrice.

Remarque 10.10. Ce qui n’est pas précisé, dans l’énoncé du théorème ci-dessus, mais que nous avons ob-
servé dans la preuve, c’est que l’ordre dans lequel les valeurs propres sont rangées sur la diagonale de D doit
respecter l’ordre dans lequel les vecteurs propres sont rangés pour former P . On le fera explicitement dans
des cas particuliers, plus bas. ⋄
Avant de voir quelques exemples, donnons une conséquence directe du théorème :

Corollaire 10.11. Si A est une matrice de taille n ×n avec n valeurs propres distinctes, alors elle est
diagonalisable.

Preuve: Si A possède n valeurs propres distinctes, alors elle possède aussi n vecteurs propres. Puisque ces vecteurs

propres sont associés à des valeurs propres distinctes, ils sont linéairement indépendants. Par le théorème ci-dessus,

ceci implique que A est diagonalisable.

Exemple 10.12. Soit A =
(
5 −3
1 5

)
. Comme P A(λ) = (5−λ)2 +3⩾ 3, A n’a aucune valeur propre, donc aucun

vecteur propre. Par conséquent, A n’est pas diagonalisable. ⋄

Exemple 10.13. Nous avons aussi vu que B =
(
3 1
0 3

)
possède une seule valeur propre, λ1 = 3, mais que

E3 = Ker(A−3I2) = Vect

{(
1
0

)}
.

Ceci implique que B ne possède pas deux vecteurs propres linéairement indépendants, donc B n’est pas
diagonalisable. ⋄

Informel 10.14. Dans ce dernier exemple, on a une matrice qui possède une infinité de vecteurs
propres, mais qui n’est pas diagonalisable parce que ses vecteurs propres ne “remplissent” pas assez
R2 (ils ne permettent pas de former une base).

Exemple 10.15. Étudions la diagonalisabilité de

B =
1 2 0

0 3 0
2 −4 2

 .

190 NumChap: chap-diagonalisation, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

botafogo.saitis.net

10.3. Critère de base

On calcule :

PB (λ) = det

1−λ 2 0
0 3−λ 0
2 −4 2−λ


= (3−λ)det

(
1−λ 0

2 2−λ
)

= (1−λ)(2−λ)(3−λ) .

Comme B est une matrice de taille 3×3 avec 3 valeurs propres distinctes, le corollaire ci-dessus implique
que B est diagonalisable. Écrivons la diagonalisation explicitement.

D’abord, calculons les espaces propres :

E1 = Vect


 1

0
−2

 ,

E2 = Vect


0

0
1

 ,

E3 = Vect


 1

1
−2

 .

Pour ce faire, il nous faut un vecteur propre pour chaque valeur propre. Choisissons, pour chaque valeur
propre, un vecteur propre associé :

• Pour λ1 = 1, on peut prendre v1 =
 1

0
−2

.

• Pour λ2 = 2, on peut prendre v2 =
0

0
1

.

• Pour λ3 = 3, on peut prendre v3 =
 1

1
−2

.

(Les vecteurs v1,v2,v3 sont automatiquement indépendants, puisqu’ils sont associés à des valeurs propres
distinctes.)

Maintenant, pour réaliser la diagonalisation, on place ces valeurs propres sur une diagonale, et les vecteurs
propres associés, dans le même ordre, dans une matrice de changement de base :

D :=
1 0 0

0 2 0
0 0 3

 , P := [v1 v2 v3] =
 1 0 1

0 0 1
−2 1 −2

 ,

qui donne la diagonalisation B = PDP−1.

Mais on pourrait aussi organiser les valeurs propres dans un ordre différent ; la seule condition à respecter
est que le placement des vecteurs propres dans la matrice de changement de base respecte l’ordre choisi pour
les valeur propres. Par exemple,

D̃ :=
2 0 0

0 3 0
0 0 1

 , P̃ := [v2 v3 v1] =
0 1 1

0 1 0
1 −2 −2

 ,

NumChap: chap-diagonalisation, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) 191

botafogo.saitis.net

10.4. Deuxième critère

qui donne la diagonalisation B = P̃ D̃P̃−1. ⋄
Exemple 10.16. Étudions la diagonalisabilité de

C =
 1 3 3
−3 −5 −3
3 3 1

 .

Cette fois,

PC (λ) = (1−λ)(λ+2)2 .

On n’a que deux valeurs propres (et pas 3), donc les hypothèses du corollaire ne sont pas satisfaites. Pour
voir si l’hypothèse du théorème est satisfaites, on doit voir s’il est possible de former une base de R3 avec
des vecteurs propres.

Or l’étude des espaces propres révèle que

• Pour λ1 = 1, E1 est engendré par v1 =
 1
−1
1

.

• Pour λ2 =−2, E−2 est engendré par w1 =
−1

1
0

 et w2 =
−1

0
1

.

Puisque {v1,w1,w2} est libre, donc forme une base de R3 ; ainsi, le théorème implique que C est diagonali-
sable. La diagonalisation peut se faire par exemple avec

D :=
1 0 0

0 −2 0
0 0 −2

 , P := [v1 w1 w2] =
 1 −1 −1
−1 1 0
1 0 1

 ,

qui donne C = PDP−1. Bien-sûr, d’autres choix sont possibles. ⋄

10.4 Deuxième critère

Le deuxième critère est essentiellement une conséquence du premier, mais prend une forme dans laquelle
on peut déterminer la diagonalisabilité uniquement à partir de la connaissance des multiplicités géomé-
triques des valeurs propres :

Théorème 10.17. Soit A une matrice de taille n ×n. On suppose que toutes les racines du polynôme
caractéristique P A(λ) de A sont réelles. Alors A est diagonalisable si et seulement si∑

λ∈spectre(A)
multg (λ) = n .

De plus, cette dernière égalité est vérifiée si et seulement si

multg (λ) = multa(λ) , ∀λ ∈ spectre(A).

Preuve: Supposons que spectre(A) = {λ1, . . . ,λk }. ⇒ : Supposons que A est diagonalisable. Par le théorème de la sec-

tion précédente, il existe donc une base de Rn , formée de vecteurs propres de A :

B = {v1, . . . ,vn} .

192 NumChap: chap-diagonalisation, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

botafogo.saitis.net

10.4. Deuxième critère

Comme chaque v j est vecteur propre, il doit être associé à une des valeurs propres de spectre(A). Pour i = 1, . . . ,k,
définissons mi comme étant le nombre de vecteurs de la famille {v1, . . . ,vn} qui sont associés à la valeur propre λi . On
a donc

k∑
i=1

mi = n .

Puisque B est une base, les vecteurs de {v1, . . . ,vn} qui sont associés à une même valeur propre forment une famille
libre, donc

mi ⩽multg (λi) .

Mais comme on sait aussi que multg (λi)⩽multa(λi), on peut écrire

n =
k∑

i=1
mi ⩽

k∑
i=1

multg (λi)⩽
k∑

i=1
multa(λi)⩽ n ,

qui implique
k∑

i=1
multg (λi) =

k∑
i=1

multa(λi) = n .

Remarquons aussi que cette dernière implique que

multg (λi) = multa(λi) , ∀i = 1, . . . ,k .

En effet, s’il existe un i tel que
multg (λi) < multa(λi) ,

alors
k∑

i=1
multg (λi) <

k∑
i=1

multa(λi) .

⇐ : (Le paragraphe qui suit est un peu lourd en notations, même si l’idée est simple.) Supposons maintenant que cette
dernière égalité est vraie. Pour chaque i = 1, . . . ,k, définissons gi := multg (λi) = dim(Eλi), et considérons une base de
Eλi , notée

Bi = {v(i)
1 ,v(i)

2 , . . . ,v(i)
gi

} .

Montrons que l’union de toutes ces bases,
B :=B1 ∪·· ·∪Bk

qui contient par définition n vecteurs, est libre.
On considère donc la relation linéaire

(∗) λ(1)
1 v(1)

1 +·· ·+λ(k)
gk

v(k)
gk

= 0 .

Plus précisément,

(∗)
k∑

i=1

gi∑
j=1

λ(i)
j v(i)

j = 0 .

Si l’on introduit les vecteurs

wi :=
gi∑

j=1
λ(i)

j v(i)
j ,

alors (∗) devient
(∗) w1 +·· ·+wk = 0 .

Mais chaque wi ∈ Eλi , et donc les w1, . . . ,wk sont des vecteurs propres associés à des valeurs propres distinctes, ils
forment donc une famille libre. Ceci signifie que si leur somme est nulle, alors ils sont tous nuls :

wi = 0 , ∀i = 1, . . . ,k.

Mais comme Bi = {v(i)
1 ,v(i)

2 , . . . ,v(i)
gi

} est une base, ses vecteurs sont indépendants, et donc

wi =λ(i)
1 v(i)

1 +·· ·+λ(i)
gi

v(i)
gi

= 0

implique que λ(i)
1 = ·· · = λ(i)

gi
= 0. Ceci montre que B est libre ; puisqu’elle contient n vecteurs, c’est une base de Rn .

Par conséquent, A est diagonalisable.

NumChap: chap-diagonalisation, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) 193

botafogo.saitis.net

10.5. Puissances de matrices diagonalisables

Exemple 10.18. Dans la section précédente, on avait considéré

B =
1 2 0

0 3 0
2 −4 2

 .

On a vu que cette matrice possède trois valeurs propres, chacune de multiplicité géométrique égale à 1, ce
qui implique ∑

λ∈spectre(A)
multg (λ) = 1+1+1 = 3.

Par le théorème ci-dessus, on en déduit que B est diagonalisable. ⋄
Exemple 10.19. Étudions la diagonalisabilité de

A =
1 −1 0

1 1 0
0 0 1

 .

Comme
P A(λ) = (1−λ)(λ2 −2λ+2︸ ︷︷ ︸

∆<0!

) ,

A ne possède qu’une valeur propre : λ1 = 1, avec multa(1) = 1. Or comme

E1 = Ker(A− In) = Vect


0

0
1

 ,

on a multg (1) = 1. Puisqu’ici n = 3, on a ∑
λ∈spectre(A)

multg (λ)︸ ︷︷ ︸
=1

< 3,

le théorème implique que A n’est pas diagonalisable. ⋄

10.5 Puissances de matrices diagonalisables

Dans cette section on va voir une application pratique de la diagonalisation.

Lemme 10.20. Soit A un matrice de taille n ×n diagonalisable. En conséquence, il existe une matrice
inversible P de taille n ×n telle que P−1 AP est une matrice diagonale diag(d1, . . . ,dn), ce qui équivaut
à écrire

A = Pdiag(d1, . . . ,dn)P−1 .

Alors, pour tout entier positif k,
Ak = Pdiag(d k

1 , . . . ,d k
n)P−1 .

Preuve: On montre le résultat par récurrence sur k, le cas k = 1 étant direct. Si l’on suppose que le résultat est vrai
pour N , alors

Ak+1 = Ak A

= (Pdiag(d k
1 , . . . ,d k

n)��P−1)(�P diag(d1, . . . ,dn)P−1)

= Pdiag(d k
1 , . . . ,d k

n)diag(d1, . . . ,dn)P−1

= Pdiag(d k+1
1 , . . . ,d k+1

n)P−1 ,

comme on voulait démontrer.

194 NumChap: chap-diagonalisation, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

botafogo.saitis.net

10.5. Puissances de matrices diagonalisables

Exemple 10.21. Soit

A =
1 0 0

4
9

7
9 −8

9
8
9 −4

9 −7
9

 .

On va calculer A1000. Pour le faire, on va montrer que A est diagonalisable et la diagonaliser. On calcule
d’abord le polynôme caractéristique de A, qui nous donne

P A(λ) = det(A−λ I3) = det

1−λ 0 0
4
9

7
9 −λ −8

9
8
9 −4

9 −7
9 −λ


= (1−λ)det

(7
9 −λ −8

9
−4

9 −7
9 −λ

)
=−(λ−1)

(
λ2 − 49

81
− 32

81

)
=−(λ−1)(λ2 −1) =−(λ−1)2(λ+1) .

En conséquence, les valeurs propres de A sont −1, avec multiplicité algébrique 1, et 1, avec multiplicité
algébrique 2.

On calcule maintenant une base des espaces propres associées. Pour λ=−1, on a

E−1 = Ker(A+ I3) = Ker

2 0 0
4
9

16
9 −8

9
8
9 −4

9
2
9

 ,

et comme la forme échelonnée réduite de A+ I3 est1 0 0
0 1 −1

2
0 0 0

 ,

on voit que

E−1 = Ker

1 0 0
0 1 −1

2
0 0 0


=


x1

x2

x3

 : x1 = 0, x2 = x3/2


=


 0

x3/2
x3

 : x3 ∈R


= Vect


 0

1/2
1

= Vect


0

1
2

 .

De façon analogue, pour λ= 1, on a

E1 = Ker(A− I3) = Ker

0 0 0
4
9 −2

9 −8
9

8
9 −4

9 −16
9

 ,

NumChap: chap-diagonalisation, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) 195

botafogo.saitis.net

10.5. Puissances de matrices diagonalisables

et comme la forme échelonnée réduite de A− I3 est1 −1
2 −2

0 0 0
0 0 0

 ,

on voit que

E1 = Ker

1 −1
2 −2

0 0 0
0 0 0


=


x1

x2

x3

 : x1 = x2

2
+2x3


=


 x2

2 +2x3

x2

x3

 : x2, x3 ∈R


= Vect


1/2

1
0

 ,

2
0
1

= Vect


1

2
0

 ,

2
0
1

 .

Alors, si l’on pose

D =
−1 0 0

0 1 0
0 0 1

 et P =
0 1 2

1 2 0
2 0 1


on voit que

A = PDP−1 ,

ce qui implique que

A1000 = PD1000P−1 .

Or,

D1000 =
−1 0 0

0 1 0
0 0 1

1000

=
(−1)1000 0 0

0 11000 0
0 0 11000

=
1 0 0

0 1 0
0 0 1

= I3 ,

ce qui nous dit que

A1000 = PD1000P−1 = P I3 P−1 = PP−1 = I3 .

⋄
Exemple 10.22 (Un exemple sur modèles de population). Dans cet exemple on va étudier l’évolution dans
le temps d’une population d’organismes du même type. Nos hypothèses sur ces organismes sont :

(H1) chaque organisme a une durée de vie maximale de N ∈ N∗ unités de temps (e.g. minutes, heures,
jours, années), et on va noter l’âge d’un organisme avec 1⩽ i ⩽N ;

(H2) si un organisme a âge 1⩽ i < N , la probabilité de survivre encore un jour est pi+1←i ∈ [0,1] ;

(H3) si un organisme a âge 1⩽ i ⩽N , la quantité d’organismes qu’il engendre est ri ∈N.

On remarque que l’on considère qu’un organisme a âge i s’il a vécu i −1 unités de temps mais pas (encore)
son i -ème unité de temps. En particulier, l’âge d’un organisme nouveau-né est i = 1.
On va noter qi (k) la quantité d’organismes ayant âge i au temps k ∈N (aussi mesuré dans les mêmes unités
de temps que l’âge des organismes).

196 NumChap: chap-diagonalisation, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

botafogo.saitis.net

10.5. Puissances de matrices diagonalisables

Dans notre modèle, on considère que l’unité de temps choisie est trop petite par rapport aux quantités
étudiées de sorte qu’il n’ait pas trop de sens d’analyser le comportement de ces quantités à l’intérieur d’une
unité de temps.
D’après nos hypothèses

q1(k +1) = r1q1(k)+·· ·+ rN qN (k),

qi (k +1) = pi←(i−1)qi (k),

pour tout 1 < i ⩽N et k ∈N. Si l’on pose

q(k) :=


q1(k)
q2(k)

...
qN (k)

 ,

alors 
q1(k +1)
q2(k +1)
q3(k +1)

...
qN (k +1)

=


r1q1(k) + r2q2(k) + ·· · + rN−1qN−1(k) + rN qN (k)

p2←1q1(k)
p3←2q2(k)

...
pN←(N−1)qN−1(k)



=


r1 r2 · · · rN−1 rN

p2←1 0 · · · 0 0
0 p3←2 · · · 0 0
...

...
. . .

...
...

0 0 · · · pN←(N−1) 0


︸ ︷︷ ︸

=:L


q1(k)
q2(k)

...
qN−1(k)

qN (k)

 ,

i.e.
q(k +1) = Lq(k) ,

ce qui implique que
q(k) = Lk q(0) .

La matrice L est appelée la matrice de Leslie du modèle. On est ainsi intéressé à calculer Lk pour k ≫ 1.

On va calculer q(k) pour l’exemple de modèle de population avec N = 3 donnée par la matrice de Leslie

L =
0 7 6

1 0 0
0 1 0


et l’état initial

q(0) =
0

1
1

 .

On va montrer que L est diagonalisable et on va appliquer le lemme précédent pour calculer Lk . Dans ce
cas le polynôme caractéristique de L est

PL(λ) = det(L−λ I3) = det

−λ 7 6
1 −λ 0
0 1 −λ

=−λ3 +7λ+6,

NumChap: chap-diagonalisation, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) 197

botafogo.saitis.net

10.5. Puissances de matrices diagonalisables

où l’on a développé selon la première ligne. En regardant les diviseurs de 6, on voit que λ = −2,−1,3 sont
des racines de PL(λ). En conséquence, les valeurs propres de L sont λ=−2,−1,3. Comme on a trois valeurs
propres différentes, L est diagonalisable. En fait, on voit bien que

v1 =
 4
−2
1

 , v2 =
 1
−1
1

 et v3 =
9

3
1


sont des vecteurs propres de L associés aux valeurs propres λ=−2,−1,3, respectivement. Alors, si l’on pose

P =
 4 1 9
−2 −1 3
1 1 1

 et D =
−2 0 0

0 −1 0
0 0 3


on voit que

L = PDP−1 .

On a aussi dans ce cas que

P−1 =
 1

5 −2
5 −3

5
−1

4
1
4

3
2

1
20

3
20

1
10

 .

On conclut que

Lk = PDk P−1 =
 4 1 9
−2 −1 3
1 1 1


(−2)k 0 0

0 (−1)k 0
0 0 3k


 1

5 −2
5 −3

5
−1

4
1
4

3
2

1
20

3
20

1
10



=

(−2)k+2 (−1)k+2 3k+2

(−2)k+1 (−1)k+1 3k+1

(−2)k (−1)k 3k


 1

5 −2
5 −3

5
−1

4
1
4

3
2

1
20

3
20

1
10

 ,

ce qui nous dit que

q(k) = Lk q(0) =

(−2)k+2 (−1)k+2 3k+2

(−2)k+1 (−1)k+1 3k+1

(−2)k (−1)k 3k


 1

5 −2
5 −3

5
−1

4
1
4

3
2

1
20

3
20

1
10

0
1
1



=

(−2)k+2 (−1)k+2 3k+2

(−2)k+1 (−1)k+1 3k+1

(−2)k (−1)k 3k


−1

7
4
1
4



= 1

4

−4(−2)k+2 +7(−1)k+2 +3k+2

−4(−2)k+1 +7(−1)k+1 +3k+1

−4(−2)k +7(−1)k +3k

 .

Si l’on pose ak = (−4(−2)k +7(−1)k +3k)/4, on trouve ainsi

q(k) =
ak+2

ak+1

ak

 .

On sait que la limite de ak lorsque k tend vers infini est aussi +∞, vu que l’opérande 3k est dominant. On
peut aussi calculer les premières valeurs de ak , ce qui donne

k 0 1 2 3 4 5 6 7 8 9 10 . . .
ak 1 1 0 13 6 91 120 673 1383 5431 13740 . . .

⋄

198 NumChap: chap-diagonalisation, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

botafogo.saitis.net

10.6. Diagonalisation dans le cas complexe⋆

10.6 Diagonalisation dans le cas complexe⋆

Si l’on considère la matrice

A =
(
0 −1
1 0

)
on voit que son polynôme caractéristique est P A(λ) =λ2+1, qui n’a pas de racines réelles. En conséquence,
on ne peut pas a priori appliquer aucune des définitions ou méthodes de ce chapitre ou celui d’avant, car A
n’a pas de valeurs propres (réelles). Par contre, cette restriction de considérer des valeurs et vecteurs propres
réels est d’une certaine façon artificielle, car on voit bien que le polynôme P A(λ) =λ2+1 admet précisément
deux racines : −i et i dans C.

En fait, de façon plus générale, toutes les définitions et résultats de ce chapitre et celui d’avant peuvent se
faire en considérant des nombres complexes, en particulier, on peut parler des valeurs et vecteurs propres
complexes. L’avantage de ce point de vue c’est que l’on peut trouver dans C toutes les racines du polynôme
caractéristique de toute matrice carrée A (même si A a des coefficients réels). Dans ce sens, toute matrice
carrée de taille n ×n possède toujours des valeurs propres. Au lieu de voir la théorie générale, qui est plus
ou moins pareille à celle que l’on étudie dans le cas réel, on va se contenter dans cette section de faire
seulement un exemple pour illustrer un peu la situation.

Exemple 10.23. Soit

A =

 1
2 0

p
3

2
0 2 0

−
p

3
2 0 1

2

 .

On va montrer que A est diagonalisable si l’on travaille dans les complexes, mais elle n’est pas diagonalisable
si l’on travaille seulement avec les nombres réels. On calcule d’abord le polynôme caractéristique de A, qui
nous donne

P A(λ) = det(A−λ I3) = det

1
2 −λ 0

p
3

2
0 2−λ 0

−
p

3
2 0 1

2 −λ


= (2−λ)det

(
1
2 −λ

p
3

2

−
p

3
2

1
2 −λ

)

=−(λ−2)

(
λ2 − 1

2

)2
+ 3

4


=−(λ−2)(λ2 −λ+1) .

Comme le discriminant du polynôme λ2 −λ+1 est négatif, il n’a pas de racines réelles. Si l’on travaille avec
les nombres complexes, on note par contre que

P A(λ) =−(λ−2)(λ2 −λ+1) =−(λ−2)
(
λ− 1− i

p
3

2

)(
λ− 1+ i

p
3

2

)
.

En conséquence, les valeurs propres de A sont 2, (1− i
p

3)/2 et (1+ i
p

3)/2, chacune avec multiplicité algé-
brique 1.

On calcule maintenant une base des espaces propres associées. Pour λ= 2, on a

E2 = Ker(A−2I3) = Ker

 −3
2 0

p
3

2
0 0 0

−
p

3
2 0 −3

2

 ,

NumChap: chap-diagonalisation, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) 199

botafogo.saitis.net

10.6. Diagonalisation dans le cas complexe⋆

et comme la forme échelonnée réduite de A−2I3 est1 0 0
0 0 1
0 0 0

 ,

on voit que

E2 = Ker

1 0 0
0 0 1
0 0 0


=


x1

x2

x3

 : x1 = x3 = 0


=


 0

x2

0

 : x2 ∈R


= Vect


0

1
0

 .

Pour λ= (1− i
p

3)/2, on a

E 1−i
p

3
2

= Ker
(

A− 1− i
p

3

2
I3

)
= Ker

 i
p

3
2 0

p
3

2

0 3
2 + i

p
3

2 0

−
p

3
2 0 i

p
3

2

 .

On calcule la forme échelonnée réduite de A− ((1−p
3)/2)I3, ce qui nous donne

 i
p

3
2 0

p
3

2

0 3
2 + i

p
3

2 0

−
p

3
2 0 i

p
3

2


L1 ←−i 2p

3
L1

L2 ← 2p
3(
p

3+i)
L2

L3 ← − 2p
3

L3−→
1 0 −i

0 1 0
1 0 −i

 L3←L3−L1−→
1 0 −i

0 1 0
0 0 0

 .

En conséquence,

E 1−i
p

3
2

= Ker

1 0 −i
0 1 0
0 0 0


=


x1

x2

x3

 : x1 = i x3, x2 = 0


=


i x3

0
x3

 : x3 ∈C


= Vect


i

0
1

 .

Pour λ= (1+ i
p

3)/2, on a

E 1+i
p

3
2

= Ker
(

A− 1+ i
p

3

2
I3

)
= Ker

−i
p

3
2 0

p
3

2

0 3
2 − i

p
3

2 0

−
p

3
2 0 −i

p
3

2

 .

200 NumChap: chap-diagonalisation, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

botafogo.saitis.net

10.7. Résumé du chapitre sur la diagonalisation

On calcule la forme échelonnée réduite de A− ((1+p
3)/2)I3, ce qui nous donne

−i
p

3
2 0

p
3

2

0 3
2 − i

p
3

2 0

−
p

3
2 0 −i

p
3

2


L1 ← i 2p

3
L1

L2 ← 2p
3(
p

3−i)
L2

L3 ← − 2p
3

L3−→
1 0 i

0 1 0
1 0 i

 L3←L3−L1−→
1 0 i

0 1 0
0 0 0

 .

En conséquence,

E 1+i
p

3
2

= Ker

1 0 i
0 1 0
0 0 0


=


x1

x2

x3

 : x1 =−i x3, x2 = 0


=


−i x3

0
x3

 : x3 ∈C


= Vect


−i

0
1

 .

Alors, si l’on pose

D =

2 0 0

0 1−i
p

3
2 0

0 0 1+i
p

3
2

 et P =
0 i −i

1 0 0
0 1 1

 ,

on voit que

A = PDP−1 =
0 i −i

1 0 0
0 1 1


2 0 0

0 1−i
p

3
2 0

0 0 1+i
p

3
2


 0 1 0
− i

2 0 1
2

i
2 0 1

2

 ,

où l’on a calculé P−1 avec la méthode de Gauss-Jordan. On conclut que A est diagonalisable dans C mais
pas dans R. ⋄

10.7 Résumé du chapitre sur la diagonalisation

MATRICE A ∈Mn(R) DIAGONALISABLE :

A DIAGONALISABLE ≡∃P ∈Mn(R) INVERSIBLE TELLE QUE P−1 AP EST MATRICE DIAGONALE

RÉSULTAT DE BASE :

v1, . . . ,vk VECTEURS PROPRES RESP. POUR λ1, . . . ,λk ∈ spectre(A) DISTINCTES ⇒ {v1, . . . ,vk } LIBRE

NumChap: chap-diagonalisation, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) 201

botafogo.saitis.net

10.7. Résumé du chapitre sur la diagonalisation

RÉSULTAT FONDAMENTAL I :

A ∈Mn(R) DIAGONALISABLE ⇔∃ v1, . . . ,vn VECTEURS PROPRES DE A ET LIBRE (= BASE)

(VOIR THM 10.8)

⇓

A = PDP−1 AVEC P = [v1 v2 . . . vn] ET D =


d1 0 · · · 0
0 d2 · · · 0
...

...
. . .

...
0 0 · · · dn

 , OÙ Avi = di vi

RÉSULTAT FONDAMENTAL II :

SI TOUTE RACINE DE
P A(λ) EST RÉELLE,

A DIAGONALISABLE ⇔∀λ VALEUR PROPRE multg (λ) = multa(λ)

(VOIR THM 10.17)

RÉSULTAT REMARQUABLE :

A = P diag(d1, . . . ,dn) P−1 ⇒ Ak = P diag(d k
1 , . . . ,d k

n) P−1

202 NumChap: chap-diagonalisation, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

botafogo.saitis.net

Chapitre 11

Produit scalaire et orthogonalité

11.1 Introduction

Dans ce chapitre on va étudier la notion de distance entre vecteurs, et entre vecteurs et sous-espaces vecto-
riels. Pour le faire on va introduire la notion de produit scalaire des vecteurs, qui nous permet aussi d’étudier
la notion d’orthogonalité (aussi appelé perpendicularité).

La raison fondamentale pour laquelle on s’intéresse aux notions de distance et de perpendicularité est due
au problème suivant. Souvent on va se rencontrer avec des système d’équations linéaires Ax = b, où A
est une matrice de taille m ×n et b ∈ Rm , qui sont incompatibles, i.e. qui n’ont pas de solution. Jusqu’à
maintenant, on s’est contenté de dire uniquement qu’ils n’admettent pas de solution. Par contre, même si
ces systèmes d’équations linéaires n’ont pas de solution au sens strict, on peut considérer des points qui
sont les plus proches à être une solution, i.e. des éléments x0 ∈Rn tels que

distance entre Ax0 et b soit minimale.

On verra les détails de ces calculs, et en particulier comment calculer les vecteurs qui minimisent la distance
précédente dans le chapitre suivant. La perpendicularité rentre dans ce problème, car, comme on verra plus
tard, la condition de minimalité de la distance précédente est équivalente au fait que b−Ax0 est orthogonal
à tout vecteur de la image Img(A) de A.

La situation peut se représenter graphiquement de la façon suivante :

Ax0

b

Ax1

Ax2

b− Ax0

Img(A)

NumChap: chap-prod-scal-orthogonalite, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) 203

botafogo.saitis.net

11.2. Norme et distance euclidiennes

Objectifs de ce chapitre

À la fin de ce chapitre vous devriez être capable de

(O.1) connaître la définition de produit scalaire, ainsi que quelques propriétés ;

(O.2) déterminer si une application est un produit scalaire ;

(O.3) calculer des produits scalaires, vérifier si des éléments sont orthogonaux ;

(O.4) calculer des compléments orthogonaux, et prouver des propriétés fondamentales ;

(O.5) appliquer l’algorithme de Gram-Schmidt pour trouver une base orthonormée à partir d’une
famille génératrice ;

(O.6) calculer la projection orthogonale d’un vecteur sur un sous-espace vectoriel, qui donne la
meilleure approximation du vecteur avec des éléments du sous-espace ;

(O.7) calculer la décomposition QR d’une matrice.

Nouveau vocabulaire dans ce chapitre

• produit scalaire
• produit scalaire usuel
• norme associée à un produit scalaire
• distance entre deux vecteurs
• vecteur unitaire
• vecteurs orthogonaux
• famille orthogonale

• famille orthonormée
• complément orthogonal
• projection orthogonale
• distance d’un vecteur à un sous-espace
• algorithme de Gram-Schmidt
• orthonormalisation d’une base
• décomposition QR d’une matrice

11.2 Norme et distance euclidiennes

Définition 11.1. Si x ∈Rn , et si x1, . . . , xn sont ses composantes relatives à la base canonique, alors sa
norme euclidienne (ou usuelle) est définie par le réel

∥x∥ :=
√

x2
1 +·· ·+x2

n .

Proposition 11.2 (Propriétés de la norme euclidienne). La norme euclidienne satisfait aux proprié-
tés suivantes :

(NOR.1) ∥λx∥ = |λ|∥x∥ pour tous λ ∈R,x ∈Rn ;

(NOR.2) ∥x∥⩾ 0 pour tout x ∈Rn , et ∥x∥ = 0 si et seulement si x = 0 ;

(NOR.3) ∥x+y∥⩽ ∥x∥+∥y∥ pour tous x,y ∈Rn (inégalité triangulaire).

Preuve: Pour la première propriété,

∥λx∥ =
√

(λx1)2 +·· ·+ (λxn)2

=
√
λ2x2

1 +·· ·+λ2x2
n

=
√
λ2(x2

1 +·· ·+x2
n)

= |λ|
√

x2
1 +·· ·+x2

n

= |λ|∥x∥ .

204 NumChap: chap-prod-scal-orthogonalite, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

botafogo.saitis.net

11.2. Norme et distance euclidiennes

Ensuite, ∥x∥⩾ 0 est évidente, et remarquons que ∥x∥ = 0 si et seulement si ∥x∥2 = 0, qui est équivalente à

x2
1 +·· ·+x2

n = 0.

Or une somme de nombres non-négatifs est nulle si et seulement chacun de ces nombres est nul, x2
k = 0, et donc

xk = 0 pour chaque k = 1, . . . ,n.

On démontrera l’inégalité triangulaire dans la section suivante.

Définition 11.3. On dit que x ∈Rn est unitaire (ou normalisé) si ∥x∥ = 1.

Remarque 11.4. Pour tout vecteur non-nul x, il existe exactement deux vecteurs unitaires qui sont coli-
néaires à x, donnés par

u± :=± x

∥x∥ .

u+

x

u−

⋄

La notion de norme permet de définir encore deux notions géométriques classiques :

Définition 11.5. La distance euclidienne (ou usuelle) entre x et y est définie par

dist(x,y) := ∥x−y∥ .

y

x

x−y

NumChap: chap-prod-scal-orthogonalite, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) 205

botafogo.saitis.net

11.3. Produit scalaire euclidien

11.3 Produit scalaire euclidien

11.3.1 Définition et propriétés fondamentales

Définition 11.6. Soient x,y ∈Rn . Le produit scalaire euclidien (ou usuel) de x et y est défini par

x ·y := x1 y1 +x2 y2 +·· ·+xn yn .

Remarque 11.7. Il sera souvent utile de récrire le produit scalaire euclidien en le réinterprétant comme un
produit matriciel un peu particulier :

x ·y = x1 y1 +·· ·+xn yn = (x1 · · ·xn)︸ ︷︷ ︸
1×n

y1
...

yn


︸ ︷︷ ︸

n×1

= xT y .

⋄

Proposition 11.8 (Propriétés du produit scalaire euclidien). On a les propriétés suivantes.

(PS.1) Le produit scalaire euclidien est symétrique, i.e. x ·y = y ·x.

(PS.2) Le produit scalaire euclidien est bilinéaire, i.e.

(PS.2.1) x · (y1 +λy2) = x ·y1 +λx ·y2 ;

(PS.2.2) (x1 +λx2) ·y = x1 ·y+λx2 ·y.

(PS.3) Le produit scalaire euclidien est défini positif, i.e. x · x ⩾ 0 pour tout x ∈ Rn , et x · x = 0 si et
seulement si x = 0.

(NRM) Le produit scalaire euclidien et la norme euclidienne sont liés par x ·x = ∥x∥2.

(C-S) Le produit scalaire euclidien satisfait l’inégalité de Cauchy-Schwarz

|x ·y|⩽ ∥x∥∥y∥ .

Preuve: Les cinq premières propriétés suivent directement de la définition du produit scalaire euclidien. Démontrons
l’inégalité de Cauchy-Schwarz.

Pour commencer, remarquons que l’inégalité est triviale dès que y (ou x) est nul. On peut donc supposer que y ̸= 0.
Ensuite, remarquons que pour tout t ∈R,

0⩽ ∥x+ ty∥2 = (x+ ty) · (x+ ty)

= x ·x+2t (x ·y)+ t 2(y ·y)

= ∥x∥2 +2t (x ·y)+ t 2∥y∥2 .

Comme cette inégalité est vraie pour tout t ∈ R, le discriminant du polynôme quadratique précédent est non positif,
vu qu’il possède au moins une racine réelle, ce qui implique que

4(x ·y)2 −4∥x∥2∥y∥2⩽ 0,

ce qui équivaut à
(x ·y)2⩽ ∥x∥2∥y∥2 .

On obtient l’inégalité de Cauchy-Schwarz en prenant la racine carrée des deux côtés.

Remarque 11.9. Rn , muni du produit scalaire, est un cas particulier de ce que nous appellerons plus tard
un espace euclidien. ⋄

206 NumChap: chap-prod-scal-orthogonalite, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

botafogo.saitis.net

11.3. Produit scalaire euclidien

Informel 11.10. En petites dimensions (n = 2 ou 3), le produit scalaire est relié à l’angle θ fait par x
et y, par la relation fondamentale suivante :

x ·y = ∥x∥∥y∥cos(θ) .

Néanmoins, nous ne ferons pas usage de cette relation.

On peut utiliser l’inégalité de Cauchy-Schwarz pour démontrer l’inégalité triangulaire de la section précé-
dente :

∥x+y∥2 = (x+y) · (x+y)

= ∥x∥2 +2(x ·y)+∥y∥2

⩽ ∥x∥2 +2∥x∥∥y∥+∥y∥2

= (∥x∥+∥y∥)2 .

11.3.2 Orthogonalité

Le produit scalaire est surtout utilisé, en algèbre linéaire, pour résoudre des problèmes dans Rn à l’aide d’ar-
guments géométriques empruntés à la géométrie du plan et de l’espace. Et la première notion qui joue un
rôle en géométrie est celle d’orthogonalité.

Définition 11.11. Deux vecteurs x,y ∈Rn sont orthogonaux (ou perpendiculaires) si x ·y = 0. Si x et
y sont orthogonaux, on écrit x ⊥ y.

y

x

x+y

x

y

Exemple 11.12. Dans R5, les vecteurs

x =


3
1
−2
0
2

 , y =


2
2
5
3
1


sont orthogonaux, vu que x ·y = 0. ⋄
Voici une description équivalente de l’orthogonalité de vecteurs de Rn :

Lemme 11.13. Deux vecteurs x,y ∈Rn sont orthogonaux si et seulement si ∥x+y∥2 = ∥x∥2 +∥y∥2.

Preuve: On remarque d’abord l’égalité

(x ·y) = 1

2

(
∥x+y∥2 − (∥x∥2 +∥y∥2)) .

NumChap: chap-prod-scal-orthogonalite, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) 207

botafogo.saitis.net

11.3. Produit scalaire euclidien

Ceci implique que x ·y = 0 si et seulement si ∥x+y∥2 = ∥x∥2 +∥y∥2, comme on voulait démontrer.

En géométrie, on considère souvent un objet géométrique, généralement une droite ou un plan, défini
comme étant perpendiculaire à un autre. En algèbre linéaire, on définit un ensemble de vecteurs qui sont
tous orthogonaux aux vecteurs d’un autre ensemble :

Définition 11.14. Soit W un sous-espace vectoriel de Rn . Le complément orthogonal de W est l’en-
semble

W ⊥ := {
v ∈Rn |v ⊥ w ∀w ∈W

}
.

Commençons par comprendre intuitivement le sens de W ⊥, en petites dimensions :

Exemple 11.15. Si W est un plan (passant par l’origine) de R3, alors W ⊥ est la droite perpendiculaire à W ,
passant par l’origine :

v1

v2

W = Vect{v1,v2} W ⊥

(2)

(1)

(3)

(En effet, un vecteur v quelconque sur la droite est perpendiculaire à tous les vecteurs w du plan.) ⋄
Exemple 11.16. Si W est une droite (passant par l’origine) de R3, alors W ⊥ est le plan perpendiculaire à W ,
passant par l’origine :

v1

v2

W ⊥ W

w

(2)

(1)

(3)

(En effet, un vecteur v quelconque sur le plan est perpendiculaire à tous les vecteurs w de la droite.) ⋄

Ces deux derniers exemples illustrent bien les propriétés générales ci-dessous :

208 NumChap: chap-prod-scal-orthogonalite, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

botafogo.saitis.net

11.3. Produit scalaire euclidien

Proposition 11.17 (Propriétés du complément orthogonal). Étant donné un sous-espace vectoriel
W ⊆Rn , alors

1) W ⊥ est un sous-espace vectoriel de Rn ;

2) (W ⊥)⊥ =W ;

3) dim(W)+dim(W ⊥) = n.

Preuve: On vérifie que W ⊥ est un sous-espace vectoriel de Rn .

• Clairement, le vecteur nul appartient à W puisque 0 ·w = 0 pour tout w ∈W .

• Si v ∈W ⊥, alors pour tout scalaire λ ∈R,

(λv) ·w =λ(v ·w) = 0,

donc λv ∈W ⊥.

• Si v1,v2 ∈W ⊥, alors pour tout w ∈W ,

(v1 +v2) ·w = v1 ·w+v2 ·w = 0+0 = 0,

donc v1 +v2 ∈W ⊥.

Les autes propriétés seront démontrées en exercice.

Dans la définition, W ⊥ est défini comme l’ensemble des vecteurs qui sont orthogonaux à tous les vecteurs
de W . Ceci implique que d’un point de vue calculatoire, on devrait a priori vérifier une infinité de conditions
pour savoir si un vecteur appartient à W ⊥. Mais lorsqu’on possède une base les choses sont plus simples :

Lemme 11.18. Soit W un sous-espace vectoriel de Rn , et soit B = {w1, . . . ,wk } une famille génératrice
de W . Alors v ∈W ⊥ si et seulement si v ⊥ w j pour tout j = 1, . . . ,k.

Preuve: On sait par hypothèse que W = Vect{w1, . . . ,wk }.

Si v est orthogonal à tous les vecteurs de W , il est en particulier orthogonal à chacun des éléments de la famille géné-
ratrice B.

Inversement, supposons que v est orthogonal à chacun des éléments de la base. Comme un élément quelconque
w ∈W peut se décomposer dans la base, w =α1w1 +·· ·+αk wk , la linéarité du produit scalaire implique que

v ·w = v · (α1w1 +·· ·+αk wk)

=α1(v ·w1︸ ︷︷ ︸
=0

)+·· ·+αk (v ·wk︸ ︷︷ ︸
=0

)

= 0,

et donc v ∈W ⊥.

Calcul du complément orthogonal W ⊥ d’un sous-espace vectoriel W ⊆Rn

Étant donné un sous-espace vectoriel W de Rn , pour calculer W ⊥ :

(CO.1) on trouve une base {w1, · · · ,wk } de W ;

(CO.2) on a
W ⊥ = Ker

(
[w1 · · · wk]T

)
.

NumChap: chap-prod-scal-orthogonalite, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) 209

botafogo.saitis.net

11.3. Produit scalaire euclidien

Remarque 11.19. La preuve de l’identité W ⊥ = Ker([w1 · · · wk]T) précédente suit de lemme ci-dessus. En
effet, v ∈ Ker([w1 · · · wk]T) si et seulement si

0 = [w1 · · · wk]T v =

wT
1
...

wT
k

v =

wT
1 v
...

wT
k v

=

w1 ·v
...

wk ·v

 ,

ce qui équivaut à w1 · v = ·· · = wk · v = 0. Le lemme précédent nous ainsi que v ∈ Ker([w1 · · · wk]T) si et
seulement si v ∈W ⊥. ⋄
Exemple 11.20. Dans R3, considérons les vecteurs

w1 =
1

2
0

 , w2 =
−1

3
1

 ,

et considérons le plan
W = Vect{w1,w2} .

Le lemme précédent dit que
W ⊥ = {v ∈R3 : v ⊥ w1 et v ⊥ w2} .

Donc on cherche les vecteurs v ∈R3 tels que les deux conditions suivantes soient satisfaites simultanément :{
v ·w1 = 0,

v ·w2 = 0.

Si v =
v1

v2

v3

, ceci est équivalent à

{
v1 + 2v2 = 0,
−v1 + 3v2 + v3 = 0.

On peut prendre v1 comme variable libre, et donc on voit que W ⊥ est une droite :

W ⊥ =
v =

 x1

−x1/2
5x1/2

 ∣∣∣x1 ∈R
= Vect


 2
−1
5

 .

On vérifie bien dans ce cas que
dim(W)+dim(W ⊥) = 2+1 = 3.

⋄

Informel 11.21. Dans ce dernier exemple, l’intuition géométrique aurait peut-être suggéré de trou-
ver un vecteur directeur de la droite W ⊥ en calculant le produit vectoriel de w1 et w2. Mais ce produit
(que nous ne traiterons pas dans ce cours) n’existe que dansR3, alors que la méthode que nous avons
utilisée fonctionne en toute dimension.

Exemple 11.22. Dans R4, considérons les vecteurs

w1 =


1
2
−1
0

 , w2 =


−1
0
1
2

 ,

210 NumChap: chap-prod-scal-orthogonalite, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

botafogo.saitis.net

11.4. Définition abstraite de produit scalaire et exemples

et considérons le plan
W = Vect{w1,w2} .

Puisque dim(W) = 2 et que
dim(W)+dim(W ⊥) = 4,

on sait que dim(W ⊥) = 2, et donc W ⊥ doit aussi être un plan. Et effectivement, un calcul semblable à celui
de l’exemple précédent (voir exercices) montre que

W ⊥ = Vect{p1,p2} .

où

p1 =


1
0
1
0

 , p2 =


2
−1
0
1

 .

⋄

11.4 Définition abstraite de produit scalaire et exemples

11.4.1 Définitions générales

Dans cette section, nous allons introduire la notion de produit scalaire sur un espace vectoriel quelconque.
Ceci permettra de définir la notion de perpendicularité dans un cadre très général, et d’utiliser une ap-
proche semblable à celle des derniers chapitres pour la résolution de nombreux problèmes d’approxima-
tion.

Définition 11.23. Soit V un espace vectoriel. On appelle produit scalaire une application V ×V →
R qui à toute paire de vecteurs u, v ∈ V associe un réel noté (u|v) ∈ R, satisfaisant aux propriétés
suivantes :

(PS.1) l’application V ×V →R est symétrique, i.e. (u|v) = (v |u) pour tous u, v ∈V ;

(PS.2) l’application V ×V →R est bilinéaire, i.e.

(PS.2.1) (u +λu′|v) = (u|v)+λ(u′|v) pour tous u,u′, v ∈V et λ ∈R ;

(PS.2.2) (u|v +λv ′) = (u|v)+λ(u|v ′) pour tous u, v, v ′ ∈V et λ ∈R ;

(PS.3) l’application V ×V → R est définie positive, i.e. (u|u) ⩾ 0 pour tout u ∈ V , et (u|u) = 0 si et
seulement si u = 0V .

Un espace vectoriel muni d’un produit scalaire est un espace préhilbertien. Un espace préhilbertien
de dimension finie est un espace euclidien.

Exemple 11.24. L’espace Rn , muni du produit scalaire euclidien

(u|v) := u ·v = u1v1 +·· ·+un vn ,

est notre premier exemple d’espace euclidien. ⋄
Exemple 11.25. On considère l’espace vectoriel V =R2 muni du produit scalaire donné par

(u|v) := uT
(
3 1
1 3

)
v = 3u1v1 +u1v2 +u2v1 +3u2v2 .

L’expression précédent définie en effet un produit scalaire. La symétrie suit de

(u|v) = 3u1v1 +u1v2 +u2v1 +3u2v2 = 3v1u1 + v1u2 + v2u1 +3v2u2 = (v|u)

NumChap: chap-prod-scal-orthogonalite, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) 211

botafogo.saitis.net

11.4. Définition abstraite de produit scalaire et exemples

et la bilinéarité suit de

(u+λu′|v) = 3(u1 +λu′
1)v1 + (u1 +λu′

1)v2 + (u2 +λu′
2)v1 +3(u2 +λu′

2)v2

= (3u1v1 +u1v2 +u2v1 +3u2v2)+λ(3u′
1v1 +u′

1v2 +u′
2v1 +3u′

2v2) = (u|v)+λ(u′|v).

Finalement, on note que

(u|u) = 3u2
1 +2u1u2 +3u2

2 = 2(u2
1 +u2

2)+ (u1 +u2)2⩾ 0,

et l’égalité est vraie si et seulement si u2
1 = u2

2 = (u1 +u2)2 = 0, u.e. u1 = u2 = 0, ce qui équivaut à u = 0. ⋄
Exemple 11.26. Sur l’espace vectoriel des polynômes Pn , on peut vérifier que

(p|q) :=
n∑

i=0
p(i)q(i)

définit un produit scalaire. En effet, la symétrie et la bilinéarité sont clairement satisfaites, et

(p|p) =
n∑

i=0
p(i)2⩾ 0,

et cette somme de carrés est nulle si et seulement chacun des carrés p(i)2 = 0, c’est-à-dire p(i) = 0, et donc
p = 0 est le polynôme nul, vu que l’unique polynôme de degré inférieur ou égal à n avec n + 1 racines
différentes est le polynôme nul. ⋄
Exemple 11.27. Sur l’espace vectoriel des matricesMm×n(R), on peut vérifier que

(A|B) :=
m∑

i=1

n∑
j=1

Ai , j Bi , j

définit un produit scalaire. En effet, la symétrie et la bilinéarité sont clairement satisfaites, et

(A|A) =
m∑

i=1

n∑
j=1

A2
i , j ⩾ 0,

et cette somme de carrés est nulle si et seulement chacun des carrés A2
i , j = 0, c’est-à-dire Ai , j = 0, et donc

A = 0 est la matrice nulle. ⋄

Si V est muni d’un produit scalaire (·|·), on peut maintenant définir

• une norme,

∥v∥ :=
√

(v |v) ,

ce qui permet ensuite de parler de la distance entre deux vecteurs u, v ∈V , définie par ∥u − v∥.

• la notion d’orthogonalité : deux vecteurs u, v ∈V sont orthogonaux, noté u ⊥ v , si

(u|v) = 0.

• pour un sous-espace vectoriel W ⊆V , le complément orthogonal dans V est

W ⊥ := {v ∈V : v ⊥ w∀w ∈W } .

212 NumChap: chap-prod-scal-orthogonalite, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

botafogo.saitis.net

11.4. Définition abstraite de produit scalaire et exemples

11.4.2 Structure euclidienne sur les espaces de fonctions⋆

Considérons l’espace vectoriel de toutes les fonctions continues sur un intervalle fermé et borné, f : [a,b] →
R, noté C ([a,b]).

Notons (voir le cours d’Analyse 1) que les fonctions continues sont intégrables. Donc si f , g ∈C ([a,b]), leur
produit étant aussi une fonction continue, on peut définir le nombre

(f |g) :=
∫ b

a
f (t)g (t)d t .

Lemme 11.28. Cette expression définit un produit scalaire sur C ([a,b]).

Preuve: D’abord,

(f |g) =
∫ b

a
f (t)g (t)d t =

∫ b

a
g (t) f (t)d t = (g | f) .

Ensuite, si on fixe g , alors pour tous f1, f2 ∈C ([a,b]), λ1,λ2 ∈R, les propriétés de linéarité de l’intégrale impliquent

(λ1 f1 +λ2 f2|g) =
∫ b

a

(
λ1 f1(t)+λ2 f2(t)

)
g (t)d t

=λ1

∫ b

a
f1(t)g (t)d t +λ2

∫ b

a
f2(t)g (t)d t

=λ1(f1|g)+λ2(f2|g) .

En utilisant la symétrie (première propriété), et la propriété précédente,

(f |λ1g1 +λ2g2) = (λ1g1 +λ2g2 | f)

=λ1(g1 | f)+λ2(g2 | f)

=λ1(f |g1)+λ2(f |g2) .

Puisque l’intégrale d’une fonction non-négative est non-négative,

(f | f) =
∫ b

a
f (t)2︸ ︷︷ ︸
⩾0

d t ⩾ 0.

De plus, l’intégrale de f (t)2 est nulle si et seulement si f (t) = 0 pour tout t ∈ [a,b] (voir cours d’analyse), ce qui

implique que f est la fonction identiquement nulle : f = 0.

Ainsi, muni de ce produit scalaire, C ([a,b]) est un espace préhilbertien (mais pas euclidien puisque C ([a,b])
est de dimension infinie). En particulier :

• La norme de f ∈C ([a,b]) se calcule avec

∥ f ∥ =
√∫ b

a
f (t)2 d t .

• La distance entre f , g ∈C ([a,b]) est donnée par

∥ f − g∥ =
√∫ b

a
| f (t)− g (t)|2 d t .

Intuitivement, deux fonctions f , g continues sur [a,b] sont proches, au sens de ∥·∥, si l’aire géométrique qui
sépare leurs graphes est petite :

NumChap: chap-prod-scal-orthogonalite, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) 213

botafogo.saitis.net

11.5. À propos de Col(A) et Lgn(A)

x

y

a
b

g

f

(Malgré tout, ce n’est pas exactement cette aire qui apparaît puisqu’on intègre le carré | f (t)− g (t)|2.)

L’interprétation du produit scalaire, par contre, est moins évidente.

Exemple 11.29. Sur C ([0,π]), considérons les fonctions f (t) := t et g (t) := sin(t), et calculons leur produit
scalaire en utilisant une intégration par parties :

(f |g) =
∫ π

0
t sin(t)d t

= t
(−cos(t)

)∣∣∣π
0
+

∫ π

0
cos(t)d t =π .

Ensuite, si h(t) = cos(t), alors

(g |h) =
∫ π

0
sin(t)cos(t)d t

= 1

2

∫ π

0
sin(2t)d t

= 1

4

(−cos(2t)
)∣∣∣π

0
= 0,

donc g ⊥ h. ⋄

11.5 À propos de Col(A) et Lgn(A)

Rappelons que si A est une matrice de taille m ×n,

• Col(A) ⊆Rm est le sous-espace engendré par ses colonnes, et

• Lgn(A) ⊆Rn est le sous-espace engendré par ses lignes.

Théorème 11.30. Si A est une matrice de taille m ×n, alors

1) Lgn(A)⊥ = Ker(A),

2) Col(A)⊥ = Ker(AT).

Preuve: Nous avons déjà vu dans la Sous-section 7.7.3 que l’on peut toujours exprimer une matrice de taille m ×n à
l’aide de ses lignes :

A =

ℓ
T
1
...
ℓT

m

 ,

où ℓ1, . . . ,ℓm ∈Rn .

214 NumChap: chap-prod-scal-orthogonalite, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

botafogo.saitis.net

11.6. Familles orthogonales

1) On a

v ∈ Lgn(A)⊥ ⇐⇒ v ·ℓ j = 0 ∀ j = 1, . . . ,m

⇐⇒ ℓT
j v = 0 ∀ j = 1, . . . ,m .

On peut exprimer ces m conditions simultanément en écrivantℓ
T
1
...
ℓT

m

v =

0
...
0

 ,

qui n’est autre que Av = 0.

2) Comme Col(A) = Lgn(AT), l’affirmation suit de la première partie :

Col(A)⊥ = (
Lgn(AT)

)⊥ = Ker(AT) .

11.6 Familles orthogonales

Définition 11.31. Une famille de vecteurs {w1, . . . ,wk } ⊆Rn est dite

• orthogonale si ses vecteurs sont orthogonaux deux à deux (i.e. wi ⊥ w j pour tout i ̸= j),

• orthonormée (ou orthonormale) si elle est orthogonale et si, de plus, tous ses vecteurs sont
unitaires (i.e. ∥w j∥ = 1 pour tout j).

Exemple 11.32. La base canonique de Rn , Bcan = (e1, . . . ,en), est une famille orthonormée, puisque

ei ·e j =
{

1, si i = j ,

0 , si i ̸= j .

⋄
Remarque 11.33. Si {w1, . . . ,wk } est orthogonale, et si aucun de ses vecteurs n’est le vecteur nul, alors on la
rend orthonormale en divisant chacun de ses vecteurs par sa norme :{

w1

∥w1∥
, . . . ,

wk

∥wk∥
}

.

⋄
Exemple 11.34. Dans R3, la famille 

1
2
1

 ,

 1
0
−1

 ,

−2
2
−2


est orthogonale, mais pas orthonormée. Comme aucun de ses vecteurs n’est nul, on peut le diviser par sa
norme,  1p

6

1
2
1

 ,
1p
2

 1
0
−1

 ,
1p
12

−2
2
−2


pour obtenir une famille orthonormale. ⋄

NumChap: chap-prod-scal-orthogonalite, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) 215

botafogo.saitis.net

11.6. Familles orthogonales

Une propriété importante des familles orthogonales :

Lemme 11.35. Si {w1, . . . ,wk } est orthogonale, et si aucun de ses vecteurs n’est nul, alors elle est libre.

Preuve: Considérons la relation

α1w1 +·· ·+αk wk = 0 .

Si l’on effectue le produit scalaire de cette relation avec w j ,

α1(w j ·w1︸ ︷︷ ︸
=0

)+·· ·+α j (w j ·w j︸ ︷︷ ︸
̸=0

)+·· ·+αk (w j ·wk︸ ︷︷ ︸
=0

) = 0 ,

qui donne α j ∥w j ∥2 = 0. Puisque par hypothèse w j ̸= 0, ceci implique α j = 0. Comme ceci vaut pour tout j = 1, . . . ,k,

on a bien montré que la famille est libre.

Le grand avantage de travailler avec des bases orthogonales :

Théorème 11.36. Soit W un sous-espace vectoriel de Rn , et soit B = (w1, . . . ,wk) une base orthogonale
de W . Alors la décomposition d’un w ∈W relative à B,

w = γ1w1 +·· ·+γk wk ,

a ses coefficients γ j donnés par

γ j =
w ·w j

w j ·w j
= w ·w j

∥w j∥2 .

En particulier, si B est orthonormée, alors γ j = w ·w j .

Preuve: Considérons la décomposition

w = γ1w1 +·· ·+γk wk .

En prenant le produit scalaire de cette expression avec w j , l’orthogonalité de la base fait qu’il ne survit qu’un seul
terme dans le membre de droite :

w j ·w = γ j (w j ·w j) .

Ceci démontre l’affirmation.

Informel 11.37. Rappelons qu’en principe, trouver les coordonnées d’un vecteur relatives à une base
se fait en résolvant un système. Ici, on voit le grand avantage de travailler avec des bases orthogo-
nales : pour avoir une composante, il suffit de calculer un produit scalaire.

Exemple 11.38. Considérons

B =


1
2
1

 ,

 1
0
−1

 ,

−2
2
−2

 .

On a vu plus haut que cette famille est orthogonale, et donc libre puisqu’aucun de ses vecteurs n’est nul, ce
qui en fait une base de R3. Si on prend un vecteur quelconque de Rn , par exemple

v =
 7
−5
3

 ,

216 NumChap: chap-prod-scal-orthogonalite, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

botafogo.saitis.net

11.6. Familles orthogonales

on calcule ses coordonnées relatives à B :

γ1 = v ·b1

∥b1∥2 = 0

6
= 0,

γ2 = v ·b2

∥b2∥2 = 4

2
= 2,

γ3 = v ·b3

∥b3∥2 = −30

12
= −5

2
,

ce qui donne

[v]B =
 0

2
−5/2

 ,

c’est-à-dire

v = 0

1
2
1

+2

 1
0
−1

− 5

2

−2
2
−2

 .

Bien-sûr, on trouverait la même chose en cherchant les coordonnées comme on le faisait avant, en étudiant
le système

γ1

1
2
1

+γ2

 1
0
−1

+γ3

−2
2
−2

=
 7
−5
3

 .

⋄

Définition 11.39. Une matrice A de taille m ×n est orthogonale si

AT A = In .

Lemme 11.40. Une matrice A = [a1 . . .an] de taille m ×n est orthogonale si et seulement si la famille
{a1, . . . ,an} ⊆Rm formée des colonnes de A est orthonormée.

Preuve: Si l’on écrit une matrice carrée à l’aide de ses colonnes, A = [a1 · · ·an], alors on peut interpréter chaque coef-
ficient du produit AT A comme un produit scalaire :

AT A =


a1 ·a1 a1 ·a2 · · · a1 ·an

a2 ·a1 a2 ·a2 · · · a2 ·an
...

...
. . .

...
an ·a1 an ·a2 · · · an ·an

 .

Ainsi, A est orthogonale (AT A = In) si et seulement si

ai ·a j =
{

1, si i = j ,

0 , si i ̸= j ,

Exemple 11.41. A =

 1/
p

3 −1/
p

2 1/
p

6
1/
p

3 1/
p

2 1/
p

6
−1/

p
3 0 2/

p
6

 est orthogonale, puisque ses colonnes forment une famille

orthonormée de R3. Par conséquent, son inverse est donné par

A−1 = AT =

 1/
p

3 1/
p

3 −1/
p

3
−1/

p
2 1/

p
2 0

1/
p

6 1/
p

6 2/
p

6

 .

⋄

NumChap: chap-prod-scal-orthogonalite, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) 217

botafogo.saitis.net

11.7. Projection sur un vecteur

Il y a donc autant de matrices orthogonales de taille m×n qu’il y a de familles orthonormales de n vecteurs
dans Rm .

11.7 Projection sur un vecteur

La notion d’orthogonalité permet d’introduire en algèbre linéaire plusieurs notions géométriques très utiles.
La première est celle de projection.

Comme motivation, fixons un vecteur w ∈ Rn , et posons la question suivante : Pour un deuxième v ∈ Rn

donné, comment définir la projection orthogonale de v sur w ?

Informel 11.42. On a déjà considéré, dans le plan, la projection d’un vecteur sur une droite. Mais
ici, on est en dimension quelconque n ! Et nous allons commencer par projeter sur un vecteur, mais
plus loin nous projetterons sur un sous-espace vectoriel quelconque de Rn .

Un schéma peut aider à comprendre comment nous allons procéder (attention : cette image est représentée
dans le plan, mais l’argument qui suit fonctionne en toute dimension!) :

(1)

(2)

w

v∥

v

v⊥

La projection orthogonale de v sur w, que nous noterons v∥ pour commencer, doit permettre de décompo-
ser v en deux composantes vectorielles,

v = v∥+v⊥ ,

où

1) v∥ est colinéaire (parallèle) à w,

2) v⊥ est orthogonal à w.

Il se trouve que ces deux conditions caractérisent entièrement v∥ et v⊥.

En effet, pour que v∥ soit colinéaire à w, il doit exister un scalaire α tel que

v∥ =αw .

Puis, pour que v⊥ soit orthogonal à w, il faut que

0 = v⊥ ·w = (v−v∥) ·w = (v−αw) ·w .

De cette dernière relation, on tire que

α= v ·w

w ·w
= v ·w

∥w∥2 .

En utilisant ce scalaire particulier dans v∥ =αw, ceci motive la définition suivante :

218 NumChap: chap-prod-scal-orthogonalite, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

botafogo.saitis.net

11.7. Projection sur un vecteur

Définition 11.43. Soit w ∈Rn , w ̸= 0. La projection orthogonale de v ∈Rn sur w est définie par

projw(v) := v ·w

w ·w
w = v ·w

∥w∥2 w .

Exemple 11.44. Dans R5, la projection orthogonale de

v =


0
2
−3
1
−1

 sur w =


1
0
−1
0
1


est donnée par

projw(v) = v ·w

∥w∥2 w = 2

3


1
0
−1
0
1

=


2/3

0
−2/3

0
2/3

 .

⋄
Remarque 11.45. La définition de projw(v) dépend uniquement de la direction de w, pas de son sens ni de
sa norme. En effet, la projection sur un vecteur colinéaire à w, w′ =λw, donne le même résultat, puisque

projw′(v) = v ·w′

∥w′∥2 w′

= v · (λw)

∥λw∥2 (λw)

= v ·w

∥w∥2 w

= projw(v) .

Donc il est plus juste de penser à la projection sur un vecteur comme à la projection sur la droite engendrée
par ce vecteur. ⋄

La projection de v sur w est aussi optimale, dans le sens où c’est elle qui réalise la distance minimale entre
v et un vecteur quelconque de la droite dirigée par w :

Théorème 11.46. Soit w ∈Rn non-nul, et soit W = Vect{w}. Alors

∥v−projw(v)∥⩽ ∥v−x∥ , ∀x ∈W .

Comme projw(v) ∈W , ceci implique

∥v−projw(v)∥ = min
x∈W

∥v−x∥ .

De plus, projW (v) est l’unique vecteur de W qui réalise ce minimum. On dit ainsi que projW (v) donne
la meilleure approximation à v avec des vecteurs de W .

En d’autres termes, projw(v) est le vecteur de W dont la distance à v est minimale :

NumChap: chap-prod-scal-orthogonalite, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) 219

botafogo.saitis.net

11.8. Projection sur un sous-espace vectoriel

(1)

(2)

x

projw(v)

w

v

v−projw(v)

v−x

Preuve: Pour tout x ∈W , on peut écrire

v−x = (v−projw(v)︸ ︷︷ ︸
∈W ⊥

)+ (projw(v)−x︸ ︷︷ ︸
∈W

) .

On a donc

∥v−x∥2 = ∥v−projw(v)∥2 +∥projw(v)−x∥2︸ ︷︷ ︸
⩾0

⩾ ∥v−projw(v)∥2 .

Supposons maintenant qu’il existe, en plus de v∥ = projw(v), un autre vecteur de W satisfaisant la même propriété ;
notons-le v′∥. Alors par définition,

∥v−v∥∥ = min
x∈W

∥v−x∥ = ∥v−v′∥∥ .

Aussi,

∥v−v′∥∥2 = ∥(v−v∥︸ ︷︷ ︸
∈W ⊥

)+ (v∥−v′∥︸ ︷︷ ︸
∈W

)∥2

= ∥v−v∥∥2 +∥v∥−v′∥∥2 .

On a donc
∥v∥−v′∥∥2 = 0,

qui implique v∥ = v′∥.

Le fait que projw(v) réalise un minimum indique que certains problèmes d’optimisation pourront trouver
une solution par l’utilisation de projections. (Voir plus loin, Méthode des moindres carrés.)

11.8 Projection sur un sous-espace vectoriel

11.8.1 Motivation : projection sur un plan de R3

Pour motiver la définition générale de projection sur un sous-espace vectoriel W , nous commencerons par
un cas légèrement plus compliqué que la projection sur une droite (section précédente), en considérant
une projection sur un plan.

Exemple 11.47. Considérons les deux vecteurs non-colinéaires

w1 =
 1

1
−1

 , w2 =
−2

1
1

 ,

220 NumChap: chap-prod-scal-orthogonalite, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

botafogo.saitis.net

11.8. Projection sur un sous-espace vectoriel

ainsi que le plan contenant l’origine, engendré par ces deux vecteurs :

W = Vect{w1,w2} .

Si v =
 5

2
−3

, comment calculer sa projection orthogonale sur W ?

v∥

W

v

v⊥

(2)

(1)

(3)

Comme dans la section précédente, nous commencerons par représenter la projection de v sur W à l’aide
du symbole v∥. Cette projection doit permettre de décomposer v en deux composantes vectorielles,

v = v∥+v⊥ ,

où

1) v∥ ∈W ,

2) v⊥ ∈W ⊥.

La première condition impose que v∥ soit une combinaison linéaire de w1 et w2 :

v∥ =α1w1 +α2w2 ,

et la deuxième impose que {
0 = v⊥ ·w1 = (v−α1w1 −α2w2) ·w1 ,

0 = v⊥ ·w2 = (v−α1w1 −α2w2) ·w2 .

Comme ∥w1∥2 = 3, ∥w2∥2 = 6, w1 ·w2 =−2, v ·w1 = 10, v ·w2 =−11, on en déduit que les coefficients α1,α2

sont solutions du système

(∗)

{
3α1 − 2α2 = 10,
−2α1 + 6α2 = −11.

On a donc α1 = 19
7 , α2 =−13

14 . Ainsi, la projection de v sur le plan W est donnée par

v∥ =
19

7
w1 − 13

14
w2 =

 32/7
25/14
−51/14

 .

⋄

NumChap: chap-prod-scal-orthogonalite, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) 221

botafogo.saitis.net

11.8. Projection sur un sous-espace vectoriel

11.8.2 Cas général

Dans le cas général, énonçons d’abord le résultat général qui garantit que la projection orthogonale sur un
sous-espace vectoriel existe toujours :

Théorème 11.48. Soit W un sous-espace vectoriel de Rn , et soit v ∈Rn . Alors il existe une unique paire
de vecteurs, v∥ et v⊥, telle que

v = v∥+v⊥ ,

et telle que

1) v∥ ∈W ,

2) v⊥ ∈W ⊥.

Le vecteur v∥ est appelé projection orthogonale de v sur W , et sera noté

v∥ ≡ projW (v) .

De plus, projW (v) est l’unique vecteur de W qui minimise la distance à v :

∥v−projW (v)∥ = min
x∈W

∥v−x∥ .

On dit ainsi que projW (v) donne la meilleure approximation à v avec des vecteurs de W .

Dans le cas où on connaît une famille génératrice pour W ,

W = Vect{w1, . . . ,wk } ,

on peut calculer projW (v) comme on l’a fait dans la section précédente, en commençant par l’écrire comme
une combinaison linéaire

v∥ =α1w1 +·· ·αk wk ,

où les coefficients doivent satisfaire simultanément aux k conditions suivantes :
0 = (v−α1w1 · · ·−αk wk) ·w1 ,

0 = (v−α1w1 · · ·−αk wk) ·w2 ,
...

0 = (v−α1w1 · · ·−αk wk) ·wk .

Sans présenter de difficulté particulière, cette approche requiert malgré tout la résolution d’un système de
taille n ×k.

11.8.3 Cas où W est décrit par une base orthogonale

Lorsque W est décrit à l’aide d’une base orthogonale, la projection sur W prend une forme plus explicite :

Théorème 11.49. Soit W un sous-espace vectoriel deRn , et soit B = (w1, . . . ,wk) une base orthogonale
de W . Alors la projection orthogonale d’un vecteur v ∈Rn sur W est donnée par

projW (v) =
k∑

j=1

v ·w j

∥w j∥2 w j .

En particulier, l’application v 7→ projW (v) est linéaire.

222 NumChap: chap-prod-scal-orthogonalite, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

botafogo.saitis.net

11.8. Projection sur un sous-espace vectoriel

Preuve: Comme décrit plus haut, la projection est de la forme

projW (v) =α1w1 +·· ·αk wk ,

où les α j doivent satisfaire 
0 = (v−α1w1 · · ·−αk wk) ·w1 ,

0 = (v−α1w1 · · ·−αk wk) ·w2 ,
...

0 = (v−α1w1 · · ·−αk wk) ·wk .

Mais comme la base B est orthogonale, wi ·w j = 0 si i ̸= j . Il reste donc
0 = (v−α1w1) ·w1 ,

...

0 = (v−αk wk) ·wk ,

qui donne bien α j = v·w j

∥w j ∥2 pour tout j = 1, . . . ,k.

Vérifions la linéarité :

projW (β1v1 +β2v2) =
k∑

j=1

(β1v1 +β2v2) ·w j

∥w j ∥2 w j

=
k∑

j=1

(
β1

v1 ·w j

∥w j ∥2 w j +β2
v2 ·w j

∥w j ∥2 w j

)

=β1

k∑
j=1

v1 ·w j

∥w j ∥2 w j +β2

k∑
j=1

v2 ·w j

∥w j ∥2 w j

=β1projW (v1)+β2projW (v2) .

La linéarité de la projection fait qu’on peut chercher sa matrice relative à une base.

Exemple 11.50. Considérons les deux vecteurs non-colinéaires

w1 =
 2

5
−1

 , w2 =
−2

1
1

 ,

ainsi que le plan contenant l’origine, engendré par ces deux vecteurs :

W = Vect{w1,w2} .

Commençons par prendre un vecteur, par exemple

v =
 1
−2
3

 ,

et calculons sa projection sur W . On pourrait procéder comme on l’a fait plus haut, mais on remarque tout
de suite que cette fois, {w1,w2} est orthogonale car w1 ·w2 = 0. On peut donc écrire la projection directement
à l’aide de la formule du théorème :

projW (v) = v ·w1

∥w1∥2 w1 + v ·w2

∥w2∥2 w1

= −11

30

 2
5
−1

+ −1

6

−2
1
1

=
−2/5

−2
1/5

 .

NumChap: chap-prod-scal-orthogonalite, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) 223

botafogo.saitis.net

11.8. Projection sur un sous-espace vectoriel

Considérons ensuite la matrice de la projection, relative à la base canonique :

[projW]Bcan =
[
[projW (e1)] [projW (e2)] [projW (e3)]]

]
=

 4/5 0 −2/5
0 1 0

−2/5 0 1/5

 .

⋄

11.8.4 Cas où W est décrit par une base orthonormée

Si l’on exige en plus que la famille qui engendre W soit formée de vecteurs unitaires, alors la projection est
encore plus simple à décrire :

Théorème 11.51. Soit W un sous-espace vectoriel deRn , et soit B = {u1, . . . ,uk } une base orthonormée
de W . Alors la projection orthogonale d’un vecteur v ∈Rn sur W est donnée par

projW (v) =
k∑

j=1
(v ·u j)u j .

De plus, la matrice de projW :Rn →Rn (relative à la base canonique) est donnée par

[projW] =UU T ,

où U est la matrice de taille n ×k dont les colonnes sont les vecteurs de la base B :

U = [
u1 · · · uk

]
.

Preuve: Par le théorème précédent, et comme ∥u j ∥ = 1 pour tout j , la projection est bien donnée par

projW (v) = (v ·u1)u1 +·· ·+ (v ·uk)uk .

Profitons de la structure de cette expression pour la récrire sous forme d’un produit matriciel :

[projW (v)] = (v ·u1)u1 +·· ·+ (v ·uk)uk

= [
u1 · · · uk

]v ·u1
...

v ·uk



= [
u1 · · · uk

]uT
1 v
...

uT
k v



= [
u1 · · · uk

]︸ ︷︷ ︸
=:U

uT
1
...

uT
k


︸ ︷︷ ︸
=U T

v .

Remarque 11.52. La projection est une application de Rn dans Rn , donc la matrice qui la représente est de
taille n ×n. C’est bien le cas ici puisque

[projW] = U︸︷︷︸
n×k

U T︸︷︷︸
k×n︸ ︷︷ ︸

n×n

.

⋄

224 NumChap: chap-prod-scal-orthogonalite, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

botafogo.saitis.net

11.8. Projection sur un sous-espace vectoriel

Exemple 11.53. Considérons la même projection orthogonale que celle vue plus haut, sur le plan W engen-
dré par

w1 =
 2

5
−1

 , w2 =
−2

1
1

 ,

On sait que la base
B = {w1,w2}

est orthogonale, et on peut la rendre orthonormée en divisant chaque vecteur par sa norme :

B′ =
{ w1

∥w1∥
,

w2

∥w2∥
}

.

On peut maintenant utiliser le théorème pour obtenir la matrice de la projection sur W relative à la base
canonique :

[projW]Bcan = U︸︷︷︸
3×2

U T︸︷︷︸
2×3

=
[w1

∥w1∥
w2

∥w2∥
] wT

1
∥w1∥
wT

2
∥w2∥


=

 2/
p

30 −2/
p

6
5/
p

30 1/
p

6
−1/

p
30 1/

p
6

(
2/
p

30 5/
p

30 −1/
p

30
−2/

p
6 1/

p
6 1/

p
6

)

=
 4/5 0 −2/5

0 1 0
−2/5 0 1/5

 ,

qui est bien la même que nous avions trouvé plus haut. On peut maintenant utiliser cette matrice pour
projeter n’importe quel vecteur sur W . Par exemple,

projW

 1
−2
3

=
 4/5 0 −2/5

0 1 0
−2/5 0 1/5

 1
−2
3

=
−2/5

−2
1/5

 .

⋄
Exemple 11.54. Considérons la projection projd sur une droite d passant par l’origine et faisant un angle de
θ avec e1 :

Cette droite d est un sous-espace de R2, engendrée par le vecteur unitaire

u1 =
(
cosθ
sinθ

)
.

NumChap: chap-prod-scal-orthogonalite, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) 225

botafogo.saitis.net

11.9. Le procédé d’orthogonalisationet d’orthonormalisation de Gram-Schmidt

Par la formule du théorème ci-dessus, sa matrice relative à la base canonique est donc donnée par

[projd] =UU T

= u1uT
1

=
(
cosθ
sinθ

)(
cosθ sinθ

)
=

(
cos2θ cosθ sinθ

cosθ sinθ sin2θ

)
.

⋄
Remarque 11.55. Il est important d’apprécier l’ordre des matrices apparaissant dans la formule

[projW] =UU T .

Le fait que les matrices soient dans cet ordre (“U fois U T ”) font de leur produit une application linéaire
non-triviale, qui projette sur l’espace engendré par les colonnes de U . Car si l’on multiplie ces matrices
dans l’ordre inverse, on obtient une matrice de taille k ×k contenant les produits scalaires

uT
i u j = ui ·u j =

{
∥ui∥ = 1, si i = j ,

0 , sinon,

et donc

U T U =


u1 ·u1 u1 ·u2 · · · u1 ·uk

u2 ·u1 u2 ·u2 · · · u2 ·uk
...

...
. . .

...
uk ·u1 uk ·u2 · · · uk ·uk



=


∥u1∥2 0 · · · 0

0 ∥u2∥2 · · · 0
...

...
. . .

...
0 0 · · · ∥uk∥2


= Ik .

⋄

11.9 Le procédé d’orthogonalisationet d’orthonormalisation de Gram-Schmidt

Les sections précédentes ont montré tout l’avantage de travailler avec une base orthogonale (ou orthonor-
mée) pour un sous-espace W , puisque cela permet par exemple d’accéder directement aux composantes
d’un vecteur relativement à cette base, ou de calculer plus facilement des projections orthogonales sur W .

Mais il se peut que le sous-espace W soit défini dès le départ par une base B qui n’est pas orthogonale. Pour
profiter des avantages décrits ci-dessus, il est donc naturel de chercher une autre base de W , B′, qui soit
elle orthogonale.

Nous allons voir qu’une telle base existe toujours, et nous verrons comment la construire en modifiant la
base de départ, par un algorithme appelé le procédé d’orthogonalisation de Gram-Schmidt.

Informel 11.56. L’idée est de “tordre” un à un les vecteurs de B, de façon à les rendre progressive-
ment orthogonaux deux-à-deux, et en garantissant qu’ils engendrent toujours W .

Voyons comment faire sur un exemple très simple d’une base ne contenant que deux vecteurs.

226 NumChap: chap-prod-scal-orthogonalite, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

botafogo.saitis.net

11.9. Le procédé d’orthogonalisationet d’orthonormalisation de Gram-Schmidt

11.9.1 L’idée, sur un exemple où dim(W) = 2

Considérons le plan de R3, W = Vect{w1,w2}, où

w1 =
 3
−1
2

 , w2 =
1

2
1

 .

La paire B = {w1,w2} est une base de W , mais elle n’est pas orthogonale car

w1 ·w2 = 3 ̸= 0.

Voyons comment modifier B de façon à la transformer en une autre base pour W , orthogonale cette fois.

La nouvelle base sera B′ = {v1,v2}, avec

v1 := w1 ,

v2 := w2 −αw1 .

Voyons ce qui se passe lorsque α varie :

Informel 11.57. Remarquons que l’on “tord” w2 en lui rajoutant un multiple de w1, ce qui fait que
v2 reste dans le plan W !

C’est évident sur l’animation ci-dessus, mais écrivons-le explicitement :

Lemme 11.58. Peu importe la valeur du scalaire α, B′ = {v1,v2} est toujours une base de W .

Preuve: (en exercice)

Il s’agit ensuite de choisir α de façon à ce que B′ soit orthogonale. Or la seule condition à satisfaire est que

v1 ·v2 = 0,

qui se traduit par
w1 · (w2 −αw1) = 0,

et qui implique

α= w1 ·w2

∥w1∥2 .

NumChap: chap-prod-scal-orthogonalite, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) 227

botafogo.saitis.net

11.9. Le procédé d’orthogonalisationet d’orthonormalisation de Gram-Schmidt

Ainsi, αw1 = w1·w2
∥w1∥2 w1, qui n’est autre que la projection de w2 sur w1 (c’est-à-dire sur v1). En résumé, on a

pris B′ = {v1,v2}, où

v1 := w1 ,

v2 := w2 −projv1
(w2) ,

qui donne

v1 =
 3
−1
2

 , v2 = 1

14

 5
31
8

 .

Maintenant, B′ = {v1,v2} est orthogonale puisque v1 ·v2 = 0.

La construction décrite dans l’exemple ci-dessus n’a rien de particulier à R3, et peut s’utiliser pour orthogo-
naliser la base de n’importe quel sous-espace de dimension 2 :

Exemple 11.59. Considérons le plan de R5 engendré par

w1 =


1
0
1
−1
0

 , w2 =


0
−2
0
1
1

 .

La base B = {w1,w2} de ce plan n’est pas orthogonale, mais en prenant v1 := w1, et

v2 := w2 −projw1
(w2) =


0
−2
0
1
1

− −1

3


1
0
1
−1
0

=


1/3
−2
1/3
2/3

1

 ,

on obtient une base B′ = {v1,v2} orthogonale. ⋄

11.9.2 Cas général

Dans le cas général, considérons un sous-espace W de R3, de dimension k ⩽ n, muni d’une base (a priori
pas orthogonale)

B = {w1, . . . ,wk } ,

et voyons comment l’utiliser pour construire une nouvelle base de W ,

B′ = {v1, . . . ,vk } ,

qui soit orthogonale. Cette construction est le procédé d’orthogonalisation de Gram-Schmidt.

L’idée est de procéder de manière inductive, le j -ème vecteur v j de B′ étant construit à partir des j premiers
vecteurs de B, de façon à ce que pour tout j = 1, . . . ,k, deux conditions soient satisfaites :

• {v1, . . . ,v j } est orthogonale (et donc libre),

• Vect{v1, . . . ,v j } = Vect{w1, . . . ,w j }.

La vérification de ces conditions implique qu’à la fin, lorsque j = k, on a bien construit une famille {v1, . . . ,vk }
qui est orthogonale (et donc libre), et qui engendre W .

228 NumChap: chap-prod-scal-orthogonalite, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

botafogo.saitis.net

11.9. Le procédé d’orthogonalisationet d’orthonormalisation de Gram-Schmidt

L’exemple précédent a suggéré de commencer par modifier w2 en lui soustrayant sa projection sur w1. Pour
les suivants, on peut continuer à soustraire à chaque vecteur sa projection sur l’espace engendré par les
précédents :

v1 := w1 ,

v2 := w2 −projVect{w1}(w2) ,

v3 := w3 −projVect{w1,w2}(w3) ,

...

v j := w j −projVect{w1,...,w j−1}(w j) ,

...

vk := wk −projVect{w1,......,wk−1}(wk) .

Remarquons que le procédé nécessite, à l’étape j , de calculer la projection sur le sous-espace Vect{w1, . . . ,w j−1}.
Or, comme

Vect{w1, . . . ,w j−1} = Vect{v1, . . . ,v j−1} ,

on a, pour tout j ,

projVect{w1,...,w j−1}(w j) = projVect{v1,...,v j−1}(w j) .

Maintenant, comme {v1, . . . ,v j−1} est orthogonale, la formule de la section précédente permet d’écrire cette
dernière projection comme

projVect{v1,...,v j−1}(w j) =
j−1∑
i=1

w j ·vi

∥vi∥2 vi .

Donc on peut écrire le procédé comme suit :

v1 := w1 ,

v2 := w2 − w2 ·v1

∥v1∥2 v1 ,

v3 := w3 −
2∑

i=1

w3 ·vi

∥vi∥2 vi ,

...

vk := wk −
k−1∑
i=1

wk ·vi

∥vi∥2 vi .

Remarque 11.60. • Une fois le procédé terminé, on peut toujours normaliser les vecteurs de B′ pour
en faire une base orthonormée de W :

B′′ =
{

v1

∥v1∥
, . . . ,

vk

∥vk∥
}

.

• La convention est que l’algorithme du procédé de Gram-Schmidt se fait en respectant l’ordre qui est
est fixé dans la base de départ.

⋄

NumChap: chap-prod-scal-orthogonalite, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) 229

botafogo.saitis.net

11.9. Le procédé d’orthogonalisationet d’orthonormalisation de Gram-Schmidt

Méthode d’orthogonalisation et d’orthonormalisation de Gram-Schmidt d’une base B =
{w1, . . . ,wk } d’un sous-espace vectoriel W ⊆Rn .

On produit une base orthogonale B′ = {v1, . . . ,vk } de W et ensuite une base orthonormée B′′ =
{u1, . . . ,uk } de W via

v1 := w1 ,

v2 := w2 − w2 ·v1

∥v1∥2 v1 ,

v3 := w3 − w3 ·v1

∥v1∥2 v1 − w3 ·v2

∥v2∥2 v2 ,

...

vk := wk −
wk ·v1

∥v1∥2 v1 −·· ·− wk ·vk−1

∥vk−1∥2 vk−1 ,

u1 := v1

∥v1∥
,

u2 := v2

∥v2∥
,

u3 := v3

∥v3∥
,

...

uk := vk

∥vk∥
.

Remarque 11.61. La preuve du fait que B′ = {v1, . . . ,vk } est une base orthogonale de W = Vect{w1, . . . ,wk }
suit par récurrence sur k. En effet, c’est clair si k = 1. On suppose que c’est vrai pour k −1⩾ 1 et on va le
démontrer pour k. Or, par hypothèse de la récurrence on sait que Vect{w1, . . . ,wk−1} = Vect{v1, . . . ,vk−1} et
que {v1, . . . ,vk−1} est orthogonale. En outre, par définition de projection orthogonale,

wk −projVect{w1,...,wk−1}(wk) = wk −projVect{v1,...,vk−1}(wk) = wk −
wk ·v1

∥v1∥2 v1 −·· ·− wk ·vk−1

∥vk−1∥2 vk−1

est orthogonal à Vect{w1, . . . ,wk−1} = Vect{v1, . . . ,vk−1}, où l’on a utilisé que {v1, . . . ,vk−1} est orthogonale pour
calculer la projection orthogonale de wk . En conséquence, si l’on pose

vk = wk −
wk ·v1

∥v1∥2 v1 −·· ·− wk ·vk−1

∥vk−1∥2 vk−1 ,

la famille {v1, . . . ,vk } est orthogonale. En outre, la définition de vk nous dit que

Vect{w1, . . . ,wk−1,wk } = Vect{v1, . . . ,vk−1,wk } ⊇ Vect{v1, . . . ,vk−1,vk } ,

tandis que

wk = vk +
wk ·v1

∥v1∥2 v1 −·· ·− wk ·vk−1

∥vk−1∥2 vk−1

nous dit que
Vect{w1, . . . ,wk−1,wk } = Vect{v1, . . . ,vk−1,wk } ⊆ Vect{v1, . . . ,vk−1,vk } .

On conclut que
Vect{w1, . . . ,wk−1,wk } = Vect{v1, . . . ,vk−1,wk } = Vect{v1, . . . ,vk−1,vk } ,

et donc B′ = {v1, . . . ,vk } est une base orthogonale de W = Vect{w1, . . . ,wk }. Le fait que B′′ = {u1, . . . ,uk } est
une base orthonormée de W = Vect{w1, . . . ,wk } est direct. ⋄
Exemple 11.62. Considérons, dans R4, le sous-espace W défini par

W = Vect{w1,w2,w3} ,

où

w1 :=


1
0
1
0

 , w2 :=


−1
0
0
1

 , w3 :=


0
1
−1
0

 .

230 NumChap: chap-prod-scal-orthogonalite, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

botafogo.saitis.net

11.9. Le procédé d’orthogonalisationet d’orthonormalisation de Gram-Schmidt

Appliquons le procédé de Gram-Schmidt. D’abord, v1 := w1, puis

v2 := w2 − w2 ·v1

∥v1∥2 v1

=


−1
0
0
1

− (−1)

2


1
0
1
0

=


−1/2

0
1/2

1

 ,

et pour finir

v3 := w3 − w3 ·v1

∥v1∥2 v1 − w3 ·v2

∥v2∥2 v2

=


0
1
−1
0

− −1

2


1
0
1
0

− −1/2

3/2


−1/2

0
1/2

1



=


1/3

1
−1/3
1/3

 .

Remarquons que B′ = {v1,v2,v3} est bien orthogonale puisque, par construction,

v1 ·v2 = v1 ·v3 = v2 ·v3 = 0.

⋄

Dans ce dernier exemple, on aurait pu remarquer dès le début que w2 ⊥ w3, et donc obtenir une base or-
thogonale {v′1,v′2,v′3}, en gardant deux vecteurs inchangés, et en ne modifiant que w1 :

v′2 := w2 ,

v′3 := w3 ,

v′1 := w1 −
w1 ·v′2
∥v′2∥2 v′2 −

w1 ·v′3
∥v′3∥2 v′3 .

Donc en général, il y a plusieurs façons d’orthogonaliser une base, mais en général, lorsqu’on implémente
le procédé de Gram-Schmidt, la convention est de modifier les vecteurs dans l’ordre donné par la base de
départ.

11.9.3 Propriété d’unicité de la base orthonormée obtenue par le procédé de Gram-Schmidt⋆

La base orthonormée de Gram-Schmidt peut être caractérisée de façon unique à partir de la propriété sui-
vante.

Théorème 11.63. Soit B = {w1, . . . ,wk } une base d’un sous-espace vectoriel W ⊆ Rn . Alors, la base
orthonormée B′′ = {u1, . . . ,uk } obtenue du procédé de Gram-Schmidt appliqué à B est la seule base
orthonormée de W qui satisfait aux propriétés suivantes :

(GS.1) Vect{u1, . . . ,u j } = Vect{w1, . . . ,w j } pour j = 1, . . . ,k ;

(GS.2) u j ·w j > 0 pour j = 1, . . . ,k.

NumChap: chap-prod-scal-orthogonalite, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) 231

botafogo.saitis.net

11.10. La décomposition QR

Preuve: On montre d’abord que la base orthonormée B′′ = {u1, . . . ,uk } obtenue du procédé de Gram-Schmidt appli-
qué à B vérifie les propriétés (GS.1) et (GS.2). L’identité (GS.1) a été démontrée dans la remarque précédente. On va
montrer que la propriété (GS.2) est aussi vérifiée. Pour le faire, on note d’abord que

0 <
∥∥∥w j −

j−1∑
i=1

w j ·vi

∥vi∥2 vi

∥∥∥2
=

(
w j −

j−1∑
i=1

w j ·vi

∥vi∥2 vi

)
·
(
w j −

j−1∑
i=1

w j ·vi

∥vi∥2 vi

)
= ∥w j ∥2 −

j−1∑
i=1

(w j ·vi)2

∥vi∥2 =
(
w j −

j−1∑
i=1

w j ·vi

∥vi∥2 vi

)
·w j .

En conséquence, l’inégalité précédente et la définition de la base B′′ = {u1, . . . ,uk } nous dit que

u j ·w j =
v j

∥v j ∥
·w j = 1

∥v j ∥
(
w j −

j−1∑
i=1

w j ·vi

∥vi∥2 vi

)
·w j = 1

∥v j ∥
(
∥w j ∥2∥vi∥2 −

j−1∑
i=1

w j ·vi

∥vi∥2 vi

)
·w j > 0,

ce qui montre que la base orthonormée B′′ obtenue du procédé de Gram-Schmidt appliqué à B vérifie les propriétés
(GS.1) et (GS.2).
On va montrer maintenant que la base B′′ est l’unique base orthonormée de W qui vérifie les propriétés (GS.1) et
(GS.2). Soit B′′′ = {u′

1, . . . ,u′
k } une base orthonormée de W qui vérifie les propriétés (GS.1) et (GS.2). On va montrer

que u′
j = u j pour tout j = 1, . . . ,k. D’abord, (GS.1) pour j = 1 nous dit que Vect{u1} = Vect{w1} = Vect{u′

1}, ce qui nous

dit que u1 = λu′
1 avec λ ̸= 0. Comme 1 = ∥u1∥ = |λ|.∥u′

1∥ = |λ|, alors λ = −1 ou λ = 1. Si λ = −1, alors u′
1 = −u1,

ce qui implique que u′
1 ·w1 = −u1 ·w1 < 0, par la condition (GS.2) pour j = 1 et la base B′′. Cela nous donne une

contradiction avec la condition (GS.2) pour j = 1 et la base B′′′. En conséquence, u′
1 = u1. On suppose que u′

j = u j

pour tout j = 1, . . . ,ℓ. Si ℓ< k, on va montrer que u′
ℓ+1 = uℓ+1. En effet, comme B′′ et B′′′ sont des bases orthonormées,

uℓ+1 ∈ Vect{u1, . . . ,uℓ}⊥ et u′
ℓ+1 ∈ Vect{u′

1, . . . ,u′
ℓ

}⊥. La condition (GS.1) pour j = ℓ nous dit donc que Vect{u1, . . . ,uℓ}⊥ =
Vect{w1, . . . ,wℓ}⊥ = Vect{u′

1, . . . ,u′
ℓ

}⊥, ce qui implique que uℓ+1,u′
ℓ+1 ∈ Vect{w1, . . . ,wℓ}⊥. La condition (GS.1) pour j =

ℓ+1 nous dit que uℓ+1,u′
ℓ+1 ∈ Vect{w1, . . . ,wℓ,wℓ+1}, ce qui implique que

uℓ+1,u′
ℓ+1 ∈ Vect{w1, . . . ,wℓ,wℓ+1}∩Vect{w1, . . . ,wℓ}⊥.

Or, le sous-espace vectoriel Vect{w1, . . . ,wℓ,wℓ+1}∩Vect{w1, . . . ,wℓ}⊥ a dimension 1, ce qui nous dit que uℓ+1 = λu′
ℓ+1

avec λ ̸= 0. Comme 1 = ∥uℓ+1∥ = |λ|.∥u′
ℓ+1∥ = |λ|, alors λ = −1 ou λ = 1. Si λ = −1, alors u′

ℓ+1 = −uℓ+1, ce qui im-

plique que u′
ℓ+1 ·wℓ+1 = −uℓ+1 ·wℓ+1 < 0, par la condition (GS.2) pour j = ℓ+1 et la base B′′. Cela nous donne une

contradiction avec la condition (GS.2) pour j = ℓ+1 et la base B′′′. En conséquence, u′
ℓ+1 = uℓ+1. Par un argument de

récurrence sur ℓ on conclut que u′
j = u j pour tout j = 1, . . . ,k.

11.10 La décomposition QR

La décomposition QR est une méthode qui permet de factoriser une matrice, c’est-à-dire de l’écrire comme
un produit de deux autres matrices particulières (un peu comme une matrice carrée inversible peut être
factorisée en un produit de matrices élémentaires).

On le verra, pouvoir écrire une matrice comme un produit de matrices plus simples possédera de nombreux
avantages.

11.10.1 Cas général

Soit A une matrice non nulle de taille m ×n, que l’on écrit à l’aide de ses colonnes :

A = [a1 · · ·an] ,

où chaque a j ∈Rm . On note {ai1 , . . . ,air } l’ensemble des colonnes-pivot de A, qui donne une base de Img(A),
et, en particulier, r = rang(A). Cette base n’est a priori pas orthogonale, on peut donc lui appliquer le pro-

232 NumChap: chap-prod-scal-orthogonalite, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

botafogo.saitis.net

11.10. La décomposition QR

cédé de Gram-Schmidt :

v1 := ai1 ,

v2 := ai2 −
ai2 ·v1

∥v1∥2 v1 ,

v3 := ai3 −
2∑

i=1

ai3 ·vi

∥vi∥2 vi ,

...

vr := air −
r−1∑
i=1

air ·vi

∥vi∥2 vi .

Normalisons chacun des v j , en définissant

u1 := v1

∥v1∥
, . . . , u: = vr

∥vr ∥
,

et on définit les matrices

Q := [u1 · · · ur] ∈Mm×r (R) et R :=QT A ∈Mr×n(R) . (11.1)

Théorème 11.64. Soit A une matrice non nulle de taille m×n de rang rang(A) = r . Alors, les matrices
Q ∈Mm×r (R) et R ∈Mr×n(R) définies précédemment satisfont aux propriétés

(Q) la matrice Q est orthogonale, i.e. QT Q = Ir ,

(R) la matrice R est échelonnée telle que le premier coefficient non nul de chaque ligne non nulle est
positif,

(QR) A =QR.

En plus, il existe une unique paire de matrices Q et R qui satisfont aux propriétés (Q), (R) et (QR). Cette
factorisation est la factorisation QR de A. On remarque que le rang des matrices Q et R est r = rang(A),
et donc R n’a pas en fait de lignes nulles.

Preuve:⋆ On va démontrer d’abord que les matrices Q et R définies ci-dessus satisfont aux propriétés (Q), (R) et (QR).
Comme la famille {u1, . . . ,ur } est orthonormée, par construction, la matrice Q définie ci-dessus est orthogonale, ce qui
nous donne (Q).

On va démontrer que R est échelonnée. Pour le faire, on va montrer le résultat intermédiaire suivant : u j ·ak = 0 pour
tous 1 ⩽ k ⩽ i j − 1 et 1 ⩽ j ⩽ r . En effet, par le Corollaire de la Section 7.6, Vect{a1, . . . ,ai j −1} = Vect{a1, . . . ,ai j−1 } et,

comme u j ·ai1 = ·· · = u j ·ai j−1 = 0 par définition de u j , on conclut que u j ∈ Vect{a1, . . . ,ai j−1 }⊥ = Vect{a1, . . . ,ai j −1}⊥,
comme on voulait démontrer. Or, par définition de R on a

R :=QT A =QT [a1 · · · an] =

u1 ·a1 · · · u1 ·an
...

. . .
...

ur ·a1 · · · ur ·an

 ,

i.e. R j ,k = u j · ak . Alors, u j · ak = 0 pour tous 1 ⩽ k ⩽ i j − 1 et 1 ⩽ j ⩽ r . Comme i1 < ·· · < ir , on conclut que R est
échelonnée.

On montre maintenant que le premier coefficient non nul de chaque ligne de R est positif. On note d’abord que, par
définition le premier coefficient non nul de la j -ème ligne de R est

R j ,i j = u j ·ai j .

NumChap: chap-prod-scal-orthogonalite, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) 233

botafogo.saitis.net

11.10. La décomposition QR

Or, on remarque que le procédé de Gram-Schmidt pour obtenir les colonnes de Q nous dit que

ai1 = ∥v1∥u1 ,

ai2 = (ai2 ·u1)u1 +∥v2∥u2 ,

ai3 =
(

2∑
i=1

(ai3 ·ui)ui

)
+∥v3∥u3 ,

...

air =
(

r−1∑
i=1

(air ·ui)ui

)
+∥vn∥un .

En conséquence,

R j ,i j = u j ·ai j = u j ·
(j−1∑

p=1
(ai j ·up)up

)
+∥vi j ∥u j

= ∥v j ∥u j ·u j = ∥v j ∥ > 0,

où l’on a utilisé dans la troisième égalité que {u1, . . . ,ur } est une famille orthogonale. On conclut que le premier coef-
ficient non nul de chaque ligne de R est positif. Cela montre que la matrice R satisfait à la propriété (R).
On montre maintenant que la propriété (QR) est aussi vérifiée. Comme {u1, . . . ,ur } est une base orthonormée de
Img(A), la matrice QQT est la matrice canonique de la projection orthogonale sur Img(A), d’après le dernier théo-
rème de la Section 11.8. En particulier, QQT Ax = Ax pour tout x ∈ Rn , ce qui implique que QQT A = A. L’identité
R =QT A implique ainsi QR =QQT A = A, ce qui montre (QR).
Finalement, on va démontrer qu’il existe une unique paire de matrices Q et R qui satisfont aux propriétés (Q), (R) et
(QR). On montre d’abord que, si Q ′ et R ′ deux matrices qui satisfont aussi aux propriétés (Q), (R) et (QR), alors le rang
de Q ′ et R ′ est r . En effet, que le rang de Q ′ est r suit du fait que le noyau de Q ′ est trivial et le Théorème du Rang. Pour
R ′, on note que la taille de R nous dit que rang(R ′)⩽ r . En outre, comme A =Q ′R ′, le théorème de la Section 7.4 nous
dit que rang(R ′)⩾ rang(A) = r , ce qui implique que rang(R ′) = r , comme on voulait démontrer.
Les propriétés (Q) et (QR) nous disent que

RT R = RT In R = RT QT QR = (RQ)T (QR) = AT A = (R ′Q ′)T (Q ′R ′) = R ′T Q ′T Q ′R ′ = R ′T In R ′ = R ′T R ′ .

Si l’on écrit R = [r1 · · · rn] et R ′ = [r′1 · · · r′n], RT R = R ′T R ′ équivaut à

r j · rk = r′j · r′k (11.2)

pour tous 1⩽ j ⩽ k ⩽ n. On va aussi écrire rk,p et r ′
k,p les p-ème coordonnées de rk et de r′k , respectivement. Soient

R̂ = [rp1 · · · rpr] et R̂ ′ = [r′
p ′

1
· · · r′

p ′
r
] les matrices formées des colonnes-pivots de R et de R ′, respectivement. On affirme

que {p1 < ·· · < pr } = {p ′
1 < ·· · < p ′

r } et rp j = r′
p ′

j
pour tout 1⩽ j ⩽ r . Si ce n’est pas le cas, soit 1⩽ ℓ⩽ r le premier entier

positif tel que pℓ ̸= p ′
ℓ

, ou pℓ = p ′
ℓ

et rpℓ ̸= r′
p ′
ℓ

. Si pℓ ̸= p ′
ℓ

, on peut supposer sans perte de généralité que pℓ < p ′
ℓ

. Or,

(11.2) pour j = ps et k = pℓ avec 1⩽ s < ℓ nous dit que

rps · rpℓ = r′ps
· r′pℓ = rps · r′pℓ ,

vu que rps = r′ps
, ce qui implique que

rps · (rpℓ − r′pℓ) = 0

et, en conséquence, la s-ème coordonnée de rpℓ −r′pℓ est nulle pour tout 1⩽ s < ℓ, i.e. rpℓ,s = r ′
pℓ,s pour tout 1⩽ s < ℓ.

En outre, (11.2) pour j = k = pℓ nous dit que

ℓ∑
s=1

r 2
pℓ,s = ∥rpℓ∥2 = ∥r′pℓ∥2 =

ℓ∑
s=1

r ′2
pℓ,s ,

où l’on a utilisé que rpℓ,s = r ′
pℓ,s = 0 pour s > ℓ, vu que R et R ′ sont échelonnées. Comme rpℓ,s = r ′

pℓ,s pour tout
1⩽ s < ℓ, on conclut que

0 < r 2
pℓ,pℓ = r ′2

pℓ,pℓ , (11.3)

vu que rpℓ est le ℓ-ème vecteur de R, qui satisfait la propriété (R). Or, si pℓ < p ′
ℓ

, alors r ′
pℓ,pℓ = 0, ce qui implique

′
pℓ,pℓ = 0, ce qui est absurde d’après (11.3). En outre, si pℓ = p ′

ℓ
, la propriété (R) pour R et R ′ nous dit que rpℓ,pℓ = rpℓ,pℓ ,

et donc rpℓ = r′
p ′
ℓ

, qui contredit la définition de ℓ. En conséquence,

R̂ = R̂ ′ ,

234 NumChap: chap-prod-scal-orthogonalite, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

botafogo.saitis.net

11.10. La décomposition QR

comme on voulait démontrer.
Or, l’identité QR = A =Q ′R ′ nous donne QR̂ =Q ′R̂ ′, et comme R̂ = R̂ ′, on conclut que QR̂ =Q ′R̂. En outre, par défini-
tion la matrice carrée R̂ = R̂ ′ de taille r a rang r , et elle est donc inversible. En conséquence,

Q =Q Ir =QR̂R̂−1 =Q ′R̂R̂−1 =Q ′ Ir =Q ′,

ce qui implique aussi

R = Ir R =QT QR =QT A =Q ′T A =Q ′T Q ′R ′ = Ir R ′ = R ′ ,

ce qui montre l’unicité affirmée.

En conséquence, la factorisation QR d’une matrice A peut s’obtenir comme suit :

Calcul de la décomposition QR d’une matrice non nulle A = [a1 · · ·an] de rang r

(QR.1) Calculer la matrice A′ = [ai1 · · · air] formé de colonnes-pivot de A ;

(QR.2) appliquer le procédé de Gram-Schmidt aux colonnes de A′, et normaliser les vecteurs obtenus,
pour obtenir Q := [u1 · · ·ur] ;

(QR.3) calculer R :=QT A.

11.10.2 Lorsque les colonnes de A sont indépendantes

Le théorème précédent est d’habitude trop général. On va utiliser souvent la version particulière suivante,
qui suffit largement pour les cas que l’on va considérer.

Théorème 11.65. Soit A une matrice non nulle de taille m×n de rang rang(A) = n. Alors, les matrices
Q ∈Mm×n(R) et R ∈Mn×n(R) définies précédemment satisfont aux propriétés

(Q) la matrice Q est orthogonale, i.e. QT Q = Ir ,

(R) la matrice R est triangulaire supérieure telle que tout coefficient de la diagonale est positif,

(QR) A =QR.

Preuve: On remarque que la matrice R est dans ce cas carrée de taille n de rang n. Cela implique que le premier

coefficient non nul de chaque ligne, qui est positif, est dans la diagonale de R. En plus, comme R est échelonnée, elle

est triangulaire supérieure.

Remarque 11.66. Dans le cas du dernier théorème, on peut donner une preuve plus directe de la decompo-
sition QR. En effet, on remarque que le procédé de Gram-Schmidt pour obtenir les colonnes de Q nous dit
que

a1 = ∥v1∥u1 ,

a2 = (a2 ·u1)u1 +∥v2∥u2 ,

a3 =
(

2∑
i=1

(a3 ·ui)ui

)
+∥v3∥u3 ,

...

air =
(

r−1∑
i=1

(ar ·ui)ui

)
+∥vn∥un .

NumChap: chap-prod-scal-orthogonalite, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) 235

botafogo.saitis.net

11.10. La décomposition QR

Ensuite, considérons la matrice triangulaire supérieure R de taille n ×n formée à partir des coefficients
apparaissant dans les combinaisons linéaires ci-dessus :

R :=



∥v1∥ a2 ·u1 a3 ·u1 · · · an−1 ·u1 an ·u1

0 ∥v2∥ a3 ·u2 · · · an−1 ·u2 an ·u2

0 0 ∥v3∥ · · · an−1 ·u2 an ·u3
...

...
...

. . .
...

...
0 0 0 · · · ∥vn−1∥ an ·un−1

0 0 0 · · · 0 ∥vn∥


.

En d’autres termes, les coefficients apparaissant dans la k-ème colonne de R sont les coefficients de la
combinaison linéaire donnant ak . On affirme que QR = A. Pour le voir explicitement, on peut écrire

R = [r1 · · ·rn] ,

où

r1 = ∥v1∥e1 ,

r2 = (a1 ·u1)e1 +∥v2∥e2 ,

...

rn =
(

n−1∑
i=1

(ai ·ui)ei

)
+∥vn∥en .

Ainsi, la k-ème colonne de QR = [Qr1 · · ·Qrn] est donnée par

Qrk =Q

(
k−1∑
i=1

(ai ·ui)ei +∥vk∥ek

)

=
k−1∑
i=1

(ai ·ui)(Qei)+∥vk∥Qek

=
k−1∑
i=1

(ai ·ui)ui +∥vk∥uk

= ak .

On remarque que l’expression de R ci-dessus, pleine de produits scalaires, coïncide avec l’expression au
début de cette section. En effet, remarquons que si l’on multiplie (à gauche) les deux côtés de l’identité
A =QR par QT on trouve

QT A =QT (QR) = (QT Q)R = In R = R .

⋄

La factorisation QR d’une matrice A ∈Mm×n(R) dont les colonnes sont linéairement indépendantes peut
s’obtenir comme suit :

Calcul de la décomposition QR d’une matrice A = [a1 · · ·an] dont les colonnes sont linéairement
indépendantes

(QR’.1) Appliquer le procédé de Gram-Schmidt aux colonnes de A′, et normaliser les vecteurs obtenus,
pour obtenir Q := [u1 · · ·un] ;

(QR’.2) calculer R :=QT A.

236 NumChap: chap-prod-scal-orthogonalite, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

botafogo.saitis.net

11.11. Résumé du chapitre sur le produit scalaire et l’orthogonalité

Exemple 11.67. Calculons une factorisation QR de

A =
1 1

1 2
0 2

 .

Ici, A = [a1 a2], où a1 et a2 sont indépendants, donc le théorème s’applique. Le procédé de Gram-Schmidt
donne

v1 := a1 =
1

1
0

 , v2 := a2 − a2 ·a1

∥a1∥2 a1 =
−1/2

1/2
2

 .

On a donc, après normalisation,

Q =


p

2/2 −p2/6p
2/2

p
2/6

0 2
p

2/3

 .

Ensuite,

R =QT A =
(p

2/2
p

2/2 0
−p2/6

p
2/6 2

p
2/3

)1 1
1 2
0 2


=

(p
2 3

p
2/2

0 3
p

2/2

)
.

Remarquons que cette dernière est bien

R =
(∥v1∥ a2 ·u1

0 ∥v2∥
)

,

où u1 = v1
∥v1∥ . ⋄

11.11 Résumé du chapitre sur le produit scalaire et l’orthogonalité

NORME EUCLIDIENNE DE x ∈Rn :

∥x∥ :=
√

x2
1 +·· ·+x2

n −−−→ VECTEUR UNITAIRE : ∥x∥ = 1

PROPRIÉTÉS DE LA NORME EUCLIDIENNE :

(NOR.1) ∥λx∥ = |λ|∥x∥,∀λ ∈R,x ∈Rn ;

(NOR.2) ∥x∥⩾ 0 ET ∥x∥ = 0 ⇔ x = 0

(NOR.3) ∥x+y∥⩽ ∥x∥+∥y∥

DISTANCE EUCLIDIENNE ENTRE x ∈Rn ET y ∈Rn :

dist(x,y) := ∥x−y∥
PRODUIT SCALAIRE EUCLIDIEN DE x ∈Rn ET y ∈Rn :

x ·y := x1 y1 +x2 y2 +·· ·+xn yn

NumChap: chap-prod-scal-orthogonalite, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) 237

botafogo.saitis.net

11.11. Résumé du chapitre sur le produit scalaire et l’orthogonalité

PROPRIÉTÉS DU PRODUIT SCALAIRE EUCLIDIEN :

(PS.1) x ·y = y ·x

(PS.2.1) x · (y1 +λy2) = x ·y1 +λx ·y2

(PS.2.2) (x1 +λx2) ·y = x1 ·y+λx2 ·y

(PS.3) x ·x⩾ 0,∀x ∈Rn ET x ·x = 0 ⇔ x = 0

(NRM) x ·x = ∥x∥2

(C-S) |x ·y|⩽ ∥x∥∥y∥

ORTHOGONALITÉ DE x ∈Rn ET y ∈Rn :

x ⊥ y ≡ x ·y = 0 ⇔ ∥x+y∥2 = ∥x∥2 +∥y∥2

COMPLÉMENT ORTHOGONAL DE W ⊆Rn :

W ⊥ := {
v ∈Rn |v ⊥ w ∀w ∈W

}−−→ SEV DE Rn

CALCUL DU COMPLÉMENT ORTHOGONAL DU SEV W ⊆Rn :

1 CALCUL D’UNE BASE {w1, · · · ,wk } DE W

2 W ⊥ = Ker
(
[w1 · · · wk]T

)
PROPRIÉTÉS DU COMPLÉMENT ORTHOGONAL :

1) (W ⊥)⊥ =W 2) dim(W)+dim(W ⊥) = n

PRODUIT SCALAIRE ABSTRAIT (u|v) ∈R POUR u, v DANS EV V :

(PS.1) (u|v) = (v |u)

(PS.2.1) (u +λu′|v) = (u|v)+λ(u′|v)

(PS.2.2) (u|v +λv ′) = (u|v)+λ(u|v ′)

(PS.3) (u|u)⩾ 0,∀u ∈V ET (u|u) = 0 ⇔ u = 0V

ORTHOGONALITÉ ENTRE LIGNES ET COLONNES DE MATRICE A :

Lgn(A)⊥ = Ker(A) ET Col(A)⊥ = Ker(AT) (VOIR THM 11.30)

FAMILLE ORTHOGONALE ET ORTHONORMÉE {w1, . . . ,wk } ⊆Rn :

{w1, . . . ,wk } ⊆Rn ORTHOGONALE ≡ wi ⊥ w j ,∀i ̸= j

{w1, . . . ,wk } ⊆Rn ORTHONORMÉE ≡ ORTHOGONALE ET ∥wi∥ = 1,∀i

BASE ORTHOGONALE (BO) ET BASE ORTHONORMÉE (BON) :

• BASE ORTHOGONALE = BASE ET FAMILLE ORTHOGONALE

• BASE ORTHONORMÉE = BASE ET FAMILLE ORTHONORMÉE

RÉSULTAT REMARQUABLE :

{w1, . . . ,wk } ⊆Rn ORTHOGONALE ET wi ̸= 0,∀i ⇒ {w1, . . . ,wk } LIBRE (VOIR LEMME 11.35)

BASE ORTHOGONALE ET COORDONNÉES DE w ∈W :

B = {w1, . . . ,wk } ⊆Rn BO DE SEV W ET w ∈W −−−→ [w]B =


w·w1
∥w1∥2

...
w·wk

∥wk∥2


MATRICE ORTHOGONALE :

A ∈Mm×n(R) ORTHOGONALE ≡ AT A = In

238 NumChap: chap-prod-scal-orthogonalite, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

botafogo.saitis.net

11.11. Résumé du chapitre sur le produit scalaire et l’orthogonalité

PROJECTION ORTHOGONALE DE v ∈Rn SUR SEV W ⊆Rn :

RESULTAT FONDAMENTAL : ∃!v⊥ ∈W ⊥,∃! v∥︸︷︷︸
=:projW (v)

∈W TELS QUE v = v∥+v⊥ (VOIR THM 11.48)

SI {v1, . . . ,vk } BO DE W : projW (v) = v ·v1

∥v1∥2 v1 +·· ·+ v ·vk

∥vk∥2 vk

projection orthogonale

COMMENT CALCULER projW (v) :

MÉTHODE D’ORTHOGONALISATION ET D’ORTHONORMALISATION DE GRAM-SCHMIDT (GS) :

B = {w1, . . . ,wk } BASE DE SEV W ⊆Rn −−−→ B′ = {v1, . . . ,vk } BO DE W

−−−→ B′′ = {u1, . . . ,uk } BON DE W

v1 := w1

v2 := w2 − w2 ·v1

∥v1∥2 v1

v3 := w3 − w3 ·v1

∥v1∥2 v1 − w3 ·v2

∥v2∥2 v2

...

vk := wk −
wk ·v1

∥v1∥2 v1 −·· ·− wk ·vk−1

∥vk−1∥2 vk−1

u1 := v1

∥v1∥
u2 := v2

∥v2∥
u3 := v3

∥v3∥
...

uk := vk

∥vk∥

DÉCOMPOSITION QR D’UNE MATRICE A = [a1 · · · an] ∈Mm×n(R) AVEC rang(A) = n :

1 GS À {a1, · · · ,an} POUR OBTENIR BON {u1, · · · ,un}

2 A =QR OÙ Q = [u1 · · · un] ET R =QT A

NumChap: chap-prod-scal-orthogonalite, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) 239

botafogo.saitis.net

Chapitre 12

La méthode des moindres carrés

12.1 Introduction

12.1.1 Description générale

La méthode des moindres carrés, également appelée régression linéaire (least squares ou linear regression
en anglais), est une technique qui permet de modéliser des données expérimentales à l’aide d’un modèle li-
néaire optimal (dans un sens que nous préciserons). Elle est utilisée dans beaucoup de domaines, et consti-
tue en particulier un des piliers des méthodes de base rencontrées en machine learning.

De notre point de vue, la méthode des moindres carrés sera une application de l’algèbre linéaire à des pro-
blèmes d’optimisation.

Avant de la décrire en toute généralité, nous allons la motiver sur un exemple simple, de petite dimension,
qui nous permettra de comprendre l’idée de base, qui sera ensuite généralisée.

Objectifs de ce chapitre

À la fin de ce chapitre vous devriez être capable de

(O.1) appliquer la méthode moindres carrées pour calculer la pseudo-solution d’un SEL ;

(O.2) appliquer la décomposition QR pour calculer la pseudo-solution d’un SEL.

Nouveau vocabulaire dans ce chapitre

• régression linéaire
• méthode des moindres carrées
• pseudo-solution (ou solution au sens des

moindres carrées)

• meilleure approximation d’une solution
d’un SEL

• équation normale

12.1.2 Motivation : Celsius vs Fahrenheit?

Supposons que l’on souhaite étudier la relation permettant de convertir les unités de mesure d’une tempé-
rature, de Celsius (notée TC) en Fahrenheit (notée TF).

On se souvient que cette relation est du type suivant :

(t) : TF =αTC +β ,

mais on ne se souvient plus des valeurs de α et β.

240 NumChap: chap-moindres-carres, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

https://fr.wikipedia.org/wiki/Régression_linéaire
https://en.wikipedia.org/wiki/Linear_regression
botafogo.saitis.net

12.1. Introduction

Si on dispose de deux thermomètre, un qui mesure en Celsius, l’autre en Fahrenheit, on peut prendre des
mesures et les utiliser pour essayer de retrouver les valeurs des coefficients α et β. Si ces thermomètres
permettaient de faire des mesures “parfaites”, il suffirait de faire deux mesures de températures assez dif-
férentes, (T (1)

C ,T (1)
F) (au milieu du laboratoire par exemple) et (T (2)

C ,T (2)
F) (dans le frigo par exemple), de les

injecter dans (t),

αT (1)
C +β= T (1)

F ,

αT (2)
C +β= T (2)

F ,

et de résoudre ce système pour trouver α et β.

Mais on sait que des mesures empiriques ne sont par définition pas parfaites : un processus de mesure de
ce genre peut contenir de multiples sources d’erreur : mauvaise calibration des appareils, minivariations de
températures entre les points où la température est mesurée, imprécisions lors de la lecture de la tempéra-
ture sur les thermomètres, etc.

Supposons pour simplifier que l’on fasse trois mesures. On les reporte dans un tableau :

TC TF

2 30
12 52
65 147

Encore une fois, comme nos mesures ne sont pas exactes, il est très peu probable que les trois points satis-
fassent simultanément la relation TF =αTC +β, pour des coefficients α,β bien définis. En d’autres termes,
le système 

2α + β = 30,
12α + β = 52,
65α + β = 147

est incompatible.

Mais on ne doit pas pour autant abandonner la recherche de la vraie relation qui lie ces températures !
Car si des mesures expérimentales ne permettent pas de retrouver exactement une relation théorique, elles
permettent néanmoins de s’en approcher.

D’un point de vue graphique, le problème rencontré ci-dessus peut s’exprimer comme suit : les trois paires
(TC ,TF) mesurées en laboratoire peuvent être représentées comme des points dans le plan :

TC

TF

?

NumChap: chap-moindres-carres, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) 241

botafogo.saitis.net

12.1. Introduction

Si ces points ne sont pas sur une même droite, ils doivent quand-même être proches de la droite théorique
“TF =αTC +β”. Et on peut donc se poser la question de savoir s’il est possible, à partir de nos trois mesures,
de calculer une paire (α̂, β̂) qui donne une droite TF = α̂TC + β̂ qui approxime au mieux ce nuage de trois
points. Comment définir cette droite ?

Pour répondre à cette question, utilisons le langage de l’algèbre linéaire pour formuler précisément le pro-
blème. On l’a dit, avec nos trois mesures, on est mené au système de taille 3×2 donné par

 2 1
12 1
65 1


︸ ︷︷ ︸

=A

(
α

β

)
︸︷︷︸
=x

=
 30

52
147


︸ ︷︷ ︸

=b

,

qui est incompatible, et qui le sera en général dès que ces trois mesures sont faites en laboratoire. Il est
utile de formuler géométriquement l’absence de solution au problème Ax = b ci-dessus, en reprenant la
définition de base du produit matriciel :

α

 2
12
65


︸ ︷︷ ︸
=:a1

+β
1

1
1


︸︷︷︸
=:a2

=
 30

52
147


︸ ︷︷ ︸

=:b

.

Ce système posséderait une solution (α,β) si b appartenait à Col(A), c’est-à-dire au plan engendré par a1 et
a2. Mais le plus probable est que b ne soit pas dans ce plan :

b

a1

a2

Col(A)

Cette image suggère que malgré tout, si on ne peut pas trouver de paire telle que la combinaison linéaire
αa1+βa2 soit exactement égale à b, on pourrait chercher la paire telle que la combinaison linéaireαa1+βa2

soit aussi proche que possible de b, c’est à dire la paire (α,β) qui minimise la distance

∥(αa1 +βa2)−b∥ .

On sait, par les résultats démontrés dans le chapitre précédent, que la combinaison linéaire qui réalise ce
minimum est précisément celle qui est égale à la projection de b sur l’espace engendré par a1 et a2, à savoir
Col(A) :

242 NumChap: chap-moindres-carres, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

botafogo.saitis.net

12.1. Introduction

projCol(A)(b)

b

a1

a2

Col(A)

Pour résumer, au lieu de résoudre le système incompatible

(∗) : Ax = b ,

on cherche le x qui minimise la distance

∥Ax−b∥ ,

et on sait que ce x correspond à la solution de

(∗)MC : Ax = projCol(A)(b) .

Ce deuxième système possède toujours une solution x, puisque par définition, la projection projCol(A)(b) ∈
Col(A). Calculons donc la projection de b sur W = Col(A) = Vect{a1,a2}.

Informel 12.1. Attention, les calculs qui suivent sont simples, mais mènent à des fractions que l’on
ne peut pas forcément simplifier. Pas grave, c’est la vie ! La plupart du temps, dès qu’on s’attaque à
un problème venu d’une situation pratique, il apparaît toujours des nombres moins jolis que ceux
qu’on est habitués à trouver dans les séries d’exercices. (Et le plus probable est que l’on implémente
l’algorithme sur un ordinateur, donc on ne fera pas à la main ces calculs de fractions.)

Comme les colonnes de A ne sont pas orthogonales, on peut d’abord faire (Gram-Schmidt) :

a′
2 := a2 −proja1

(a2) =
1

1
1

− 79

4373

 2
12
65

=
4215/4373

3425/4373
−762/4373

 .

La projection peut maintenant se calculer :

projCol(A)(b) = b ·a1

∥a1∥2 a1 +
b ·a′

2

∥a′
2∥2 a′

2

= 10239

4373

 2
12
65

+ 192536

30077494

4215
3425
−762


=

 31.6644. . .
50.0215. . .

147.3140. . .

 .

NumChap: chap-moindres-carres, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) 243

botafogo.saitis.net

12.2. Méthode générale

Maintenant, on peut résoudre le système Ax = projCol(A)(b) : 2 1
12 1
65 1

(
α

β

)
=

 31.6644. . .
50.0215. . .

147.3140. . .

 .

On trouve :

α= 1.8357. . . ,

β= 27.9930. . . ,

Donc nos trois mesures, et le raisonnement géométrique menant à projeter sur les colonnes de la matrice
A, nous ont mené à la version suivante de la relation entre degrés Celsius et Fahrenheit :

TF = 1.8357. . .TC +27.9930. . . ,

Cette droite est celle qui approxime le mieux nos mesures, au sens des moindre carrés (voir la section
suivante pour l’explication de cette terminologie).

Pour information, la vraie relation, que l’on trouve par exemple ici, est la suivante :

TF = 9

5
TC +32 = 1.8TC +32.

Avec seulement trois points, notre méthode fournit donc des coefficients dont l’erreur avec la relation théo-
rique est d’environ 2% pour α, et 13% pour β.

Informel 12.2. Bien-sûr, on obtiendrait un bien meilleur résultat en faisant beaucoup plus que trois
mesures ! Si on faisait 100 mesures par exemple, l’erreur sur α et β serait bien plus petite. Pourtant,
on traiterait le problème exactement de la même façon : avec 100 mesures, on devrait considérer un
système incompatible

A︸︷︷︸
100×2

x︸︷︷︸
∈R2

= b︸︷︷︸
∈R100

.

On projetterait alors b ∈ R100 sur le plan Col(A) ⊆ R100, pour finalement obtenir une droite qui ap-
proxime notre nuage, formé par les 100 points des mesures faites en laboratoire.

12.2 Méthode générale

12.2.1 Généralités

Considérons un système de taille m ×n,
(∗) : Ax = b ,

que l’on supposera incompatible, ce qui signifie

min
x∈Rn

∥Ax−b∥ > 0.

Définition 12.3. On dit que x̂ ∈ Rn est une pseudo-solution de (∗), ou solution de (∗) au sens des
moindres carrés si

∥Ax̂−b∥ = min
x∈Rn

∥Ax−b∥ .

On dit ainsi que la pseudo-solution x̂ donne l’une des meilleures approximations à la solution du
système d’équations linéaires (∗).

Schématiquement :

244 NumChap: chap-moindres-carres, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

https://fr.wikipedia.org/wiki/Degré_Fahrenheit
botafogo.saitis.net

12.2. Méthode générale

Rn

Col(A)

Rm

x̂

Ax̂

b

A

Remarque 12.4. À propos de la terminologie “moindres carrés”, trouver le x qui minimise une certaine
norme revient au même que de trouver le x qui minimise le carré de cette norme , donc la recherche d’une
pseudo-solution revient à minimiser la fonction

x 7→ ∥Ax−b∥2 =
m∑

k=1

(
(Ax)k −bk

)2 ,

qui est une somme de carrés. ⋄
On présente de façon explicite les arguments indiqués dans la section précédente.

Théorème 12.5. Un vecteur x̂ ∈ Rn est solution de Ax = b au sens des moindres carrés si et seulement
si x̂ est solution de

Ax = projCol(A)(b) .

Preuve: Par la dernière propriété de la projection orthogonale dans le deuxième théorème de la Section 11.8, on sait
que

∥projCol(A)(b)−b∥ = min
x∈Rn

∥Ax−b∥ ,

ce qui nous dit que toute préimage x̂ ∈ Rn de projCol(A)(b) par A est solution de Ax = b au sens des moindres carrés.
De façon réciproque, si x̂ ∈Rn est solution de Ax = b au sens des moindres carrés, alors

∥Ax̂−b∥ = min
x∈Rn

∥Ax−b∥ .

Comme Ax̂ est dans Col(A), la dernière propriété de la projection orthogonale dans le deuxième théorème de la Sec-

tion 11.8 nous dit que Ax̂ = projCol(A)(b), comme on voulait démontrer.

12.2.2 L’équation normale

Considérons une pseudo-solution x̂ :

∥Ax̂−b∥ = min
x∈Rn

∥Ax−b∥ .

Comme on sait, considérer tous les produits q := Ax possibles, lorsque x varie, revient à considérer toutes les
combinaisons linéaires possibles des colonnes de A, et donc à parcourir tout le sous-espace Col(A). Donc
on peut tout aussi bien écrire

min
x∈Rn

∥Ax−b∥ = min
q∈Col(A)

∥q−b∥ .

Or on a vu que le minimum de cette distance est réalisé lorsque q est la projection de b sur Col(A) :

q̂ = projCol(A)(b)

On peut toujours calculer cette projection, typiquement en extrayant une base de Col(A), et en l’orthogo-
nalisant avec le procédé de Gram-Schmidt. (C’est ce que nous avons fait dans l’exemple de l’introduction.)

NumChap: chap-moindres-carres, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) 245

botafogo.saitis.net

12.2. Méthode générale

Mais nous allons voir qu’il est possible de passer outre le calcul explicite de cette projection.

Théorème 12.6. Un vecteur x̂ ∈ Rn est solution de Ax = b au sens des moindres carrés si et seulement
si x̂ est solution de l’équation normale, donnée par

AT Ax = AT b .

Preuve: Si x̂ ∈Rn est solution de Ax = b au sens des moindres carrés, alors le premier théorème de cette section nous
dit que Ax = projCol(A)(b). Or, on rappelle que b∥ = projCol(A)(b) est caractérisé par le fait que b⊥ := b−b∥ est orthogonal
à Col(A), i.e. b⊥ ∈ Col(A)⊥ :

b⊥ = projCol(A)(b)

b
b∥

a1
a2

a3

an

Col(A)

En outre, on a montré dans la Section 11.5 que

Col(A)⊥ = Ker(AT) .

Ainsi, b⊥ doit satisfaire AT b⊥ = 0, qui donne
AT (b−b∥) = 0 ,

c’est-à-dire
AT b∥ = AT b .

Réciproquement, si x̂ est solution de l’équation normale AT Ax = AT b, on a que AT (Ax̂−b) = 0, ce qui implique que
Ax̂−b ∈ Ker(AT) = Col(A)⊥. Comme

Ax̂−b = (
Ax̂−projCol(A)(b)

)︸ ︷︷ ︸
∈Col(A)

+ (projCol(A)(b)−b)︸ ︷︷ ︸
∈Col(A)⊥

,

alors Ax̂−projCol(A)(b) ∈ Col(A)⊥∩Col(A) = {0}, ce qui nous dit que x̂ est solution de (*) au sens des moindres carrés,

d’après le premier théorème de cette section.

Exemple 12.7. Considérons l’exemple de l’introduction, où le système incompatible Ax = b de départ était 2 1
12 1
65 1

(
α

β

)
=

 30
52

147

 .

Donnons la solution de cette équation sans passer par la projection, en utilisant le théorème ci-dessus. On
obtient l’équation normale en multipliant des deux côtés par AT , qui donne

(
2 12 65
1 1 1

) 2 1
12 1
65 1

(
α

β

)
=

(
2 12 65
1 1 1

) 30
52

147

 ,

246 NumChap: chap-moindres-carres, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

botafogo.saitis.net

12.2. Méthode générale

c’est-à-dire (
4373 79

79 3

)(
α

β

)
=

(
10239

229

)
.

La solution de ce dernier est donnée par

α= 12626

6878
= 1.8357. . . ,

β= 192536

6878
= 27.9930. . . ,

comme nous avions trouvé en utilisant la projection. ⋄

Informel 12.8. Si A est une matrice de taille m ×n, AT A est une matrice de taille n ×n, et donc
l’équation normale représente un système carré de taille n ×n qui possède toujours une solution.

Dans l’exemple précédent, la solution de l’équation normale était unique. Mais il peut arriver que l’équa-
tion normale possède plus d’une solution, ce que l’on aimerait éviter dans les problèmes pratiques. Voyons
comment garantir l’unicité de la pseudo-solution :

Théorème 12.9. Soit A une matrice de taille m ×n. Sont équivalents :

1) pour tout b ∈Rm , la pseudo-solution de Ax = b est unique ;

2) pour tout b ∈Rm , la solution de l’équation normale AT Ax = AT b est unique ;

3) la matrice carrée AT A de taille n ×n est inversible ;

4) les colonnes de A sont linéairement indépendantes.

Ainsi, lorsque la pseudo-solution x̂ du système Ax = b est unique, elle s’exprime explicitement par

x̂ = (AT A)−1 AT b .

Pour la preuve des équivalences énoncées dans le théorème, nous aurons besoin du résultat préliminaire
suivant :

Lemme 12.10. Pour toute matrice A de taille m ×n, Ax = 0 si et seulement si AT Ax = 0.

Preuve: Il est évident que si Ax = 0, alors AT Ax = 0.

Inversément, si AT Ax = 0, alors
∥Ax∥2 = (Ax)T (Ax) = xT (AT Ax) = 0 ,

ce qui implique ∥Ax∥ = 0, c’est-à-dire Ax = 0.

Passons maintenant à la preuve du théorème :
Preuve: 1. ⇔ 2. : clair par ce que nous avons montré ci-dessus (un x est pseudo-solution si et seulement si c’est une
solution de l’équation normale).

2. ⇔ 3. : On sait qu’un système carré Mx = y possède une unique solution pour tout y si et seulement si M est inver-
sible.

3. ⇔ 4. : En effet, les colonnes de A sont indépendantes si et seulement si l’équation Ax = 0 ne possède que la solution

triviale, et par le lemme ci-dessus, ceci est équivalent à dire que AT Ax = 0 ne possède que la solution triviale, qui

encore une fois est équivalent à dire que AT A est inversible, qui est 2.

NumChap: chap-moindres-carres, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) 247

botafogo.saitis.net

12.2. Méthode générale

Exemple 12.11. Le système incompatible


1 2 3
1 −3 −2
0 5 5
−1 1 0


x1

x2

x3

=


1
2
3
4


possède une infinité de pseudo-solutions. En effet, la troisième colonne de A est égale à la somme des deux
premières ; par le théorème, ceci implique que la solution n’est pas unique. On conclut que le nombre de
solutions est infini, par le Théorème “0,1,∞” appliqué à AT Ax = AT b. ⋄

Plus tard, nous appliquerons la méthode des moindres carrés pour résoudre d’autres problèmes d’optimi-
sation, inspirés de l’analyse.

12.2.3 Droite de régression

Supposons que l’on ait un nuage de points dans le plan, obtenu en prenant des mesures

P = {
(x1, y1), . . . , (xN , yN)

}
,

sensées obéir à une relation affine théorique de la forme

y =αx +β .

Dans ce cas, le système d’équations linéaires de taille N ×2


αx1 + β = y1 ,
αx2 + β = y2 ,

...
αxN + β = yN

est en général incompatible, et la solution au sens des moindres carrés correspond à minimiser

x =
(
α

β

)
7→

N∑
k=1

(
(αxk +β)− yk

)2.

La paire (α̂, β̂) qui minimise cette fonction fournit donc une droite qui approxime le nuage P , au sens des
moindres carrés, i.e. (α̂, β̂) est la solution au sens des moindres carrés de

 x1 1
...

...
xN 1


︸ ︷︷ ︸

A

(
α

β

)
︸︷︷︸

x

=

 y1
...

yN


︸ ︷︷ ︸

b

.

La droite y = α̂x + β̂ ainsi obtenue est appelée la droite de régression de la famille de points

P = {
(x1, y1), . . . , (xN , yN)

}⊆R2 .

248 NumChap: chap-moindres-carres, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

botafogo.saitis.net

12.2. Méthode générale

x

y

y = α̂x + β̂

Par exemple, avec seulement N = 3 (comme dans l’exemple de motivation) :

Pour une animation semblable, mais fonctionnant avec un nombre arbitraire de points, cliquer ici (Stats
applets).

Exemple 12.12. On considère la famille P = {(−6,−1), (−2,2), (1,1), (7,6)} de points du plan. La droite de
régression y = α̂x + β̂ associée est obtenue à partir de la solution de moindres carrées de

−6 1
−2 1
1 1
7 1


(
α

β

)
=


−1
2
1
6

 .

Si l’on utilise l’équation normale, on cherche donc à résoudre

(
90 0
0 4

)(
α

β

)
=

(−6 −2 1 7
1 1 1 1

)
−6 1
−2 1
1 1
7 1


(
α

β

)
=

(−6 −2 1 7
1 1 1 1

)
−1
2
1
6

=
(
45
8

)
,

qui admet la solution unique (
α̂

β̂

)
=

(
1/2

2

)
.

En conséquence, la droite de régression est y = 1
2 x +2. ⋄

NumChap: chap-moindres-carres, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) 249

http://digitalfirst.bfwpub.com/stats_applet/stats_applet_5_correg.html
http://digitalfirst.bfwpub.com/stats_applet/stats_applet_5_correg.html
botafogo.saitis.net

12.3. Utilisation de la décomposition QR

12.3 Utilisation de la décomposition QR

La décomposition QR intervient dans la recherche des solutions d’un système au sens des moindres carrés.

En effet, considérons un système incompatible

Ax = b .

Théorème 12.13. Soit A une matrice de taille m ×n quelconque, et soit A = QR une décomposition
QR de A. Alors un vecteur x ∈R est la solution de Ax = b au sens des moindres carrés si et seulement si
il est solution du système

Rx =QT b .

Remarque 12.14. L’avantage du système Rx =QT b est qu’il est triangulaire. ⋄
Preuve: Supposons d’abord que x est pseudo-solution de Ax = b. On sait que cela signifie que

b− Ax ∈ Col(A)⊥ = Col(Q)⊥ = Ker(QT) .

Dans la première égalité, on a utilisé le fait que les colonnes de Q, par définition, engendrent le même sous-espace
que celles de A.

On a donc
QT (b− Ax) = 0 ,

et comme QT A = R, cette dernière implique que x est solution de

Rx =QT b .

Inversément, supposons que x est solution de ce dernier système, que l’on écrit plutôt

QT Ax =QT b .

En multipliant des deux côtés par RT et en utilisant RT QT = (QR)T = AT , on obtient

AT Ax = AT b ,

donc x est solution de l’équation normale.

Exemple 12.15. Considérons le système Ax = b incompatible suivant :2 1
2 0
1 1

(
x1

x2

)
=

 1
−5
2

 .

Puisque les colonnes de A sont indépendantes, la solution au sens des moindres carrés est unique, et on va
la calculer en utilisant le théorème ci-dessus.

Le procédé de Gram-Schmidt appliqué aux colonnes de A, suivi d’une normalisation, donne

Q =
2/3 1/3

2/3 −2/3
1/3 2/3

 .

On a donc

R =QT A =
(
3 1
0 1

)
et QT b =

(−2
5

)
.

Ainsi, Rx =QT b est le système triangulaire donné par(
3 1
0 1

)(
x1

x2

)
=

(−2
5

)
.

La solution de ce dernier est x1 =−7/3, x2 = 5. On peut bien-sûr vérifier que cette solution est la même que
celle de l’équation normale associée au système incompatible initial. ⋄

250 NumChap: chap-moindres-carres, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

botafogo.saitis.net

12.4. Résumé du chapitre sur la méthode des moindres carrés

12.4 Résumé du chapitre sur la méthode des moindres carrés

PSEUDO-SOLUTION (OU SOLUTION DE MOINDRES CARRÉES) DE Ax = b :

x̂ PSEUDO-SOLUTION DE Ax = b ≡ ∥Ax̂−b∥ = min
x∈Rn

∥Ax−b∥ .

RÉSULTATS FONDAMENTAUX :

x̂ PSEUDO-SOLUTION DE Ax = b ⇔ AT Ax̂ = AT b︸ ︷︷ ︸
équation normale

(VOIR THM 12.6)

∃!x̂ PSEUDO-SOLUTION DE Ax = b ⇔ COLONNES DE A LIBRES (VOIR THM 12.9)

DROITE DE RÉGRESSION y = α̂x + β̂ POUR {(p1, q1), · · · , (pN , qN)} ⊆R2 :

CALCULER PSEUDO-SOLUTION x̂ =
(
α̂

β̂

)
DE

 p1 1
...

...
pN 1


︸ ︷︷ ︸

A

(
α

β

)
︸︷︷︸

x

=

 q1
...

qN


︸ ︷︷ ︸

b

x

y

(p1, q1)

(pN , qN)

(p2, q2)

y = α̂x + β̂

PSEUDO-SOLUTION À PARTIR DE LA DÉCOMPOSITION QR A =QR :

x̂ PSEUDO-SOLUTION DE Ax = b ⇔ R x̂ =QT b (VOIR THM 12.13)

NumChap: chap-moindres-carres, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) 251

botafogo.saitis.net

Chapitre 13

Diagonalisation de matrices symétriques via
matrices orthogonales

13.1 Introduction

Dans ce chapitre, on montrera un résultat fondamental de l’algèbre linéaire, qui a des applications dans
toutes les branches de mathématiques et d’autres disciplines comme la physique et la biologie : que toute
matrices symétrique est diagonalisable par des matrices orthogonales.

Objectifs de ce chapitre

À la fin de ce chapitre vous devriez être capable de

(O.1) connaître les propriétés des matrices orthogonales ;

(O.2) calculer la décomposition spectrale d’une matrice symétrique.

Nouveau vocabulaire dans ce chapitre

• matrice orthogonale • décomposition spectrale

13.2 Rappel sur les matrices symétriques et orthogonales

Dans ce chapitre, on ne traitera que des matrices carrées.

Définition 13.1. On rappelle qu’une matrice A de taille n ×n est symétrique si AT = A, c’est-à-dire
si

A j ,i = Ai , j , ∀i , j = 1,2, . . . ,n .

Donc une matrice symétrique a ses coefficients symétriques par rapport à la diagonale.

Exemple 13.2. • La matrice identité In est symétrique.

• B =
1 2 3

2 0 −5
3 −5 7

 est symétrique.

252 NumChap: chap-matrices-symetriques, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

botafogo.saitis.net

13.3. Sur les espaces propres d’une matrice symétrique

• C =


1 0 1 1 1
0 0 2 0 1
1 2 2 0 1
1 0 0 0 2
1 2 1 2 1

 n’est pas symétrique.

⋄
Avant de commencer l’étude des propriétés remarquables des matrices symétriques, introduisons une autre
classe de matrices, intimement liées (comme on le verra) aux matrices symétriques :

Définition 13.3. On rappelle qu’une matrice A de taille n ×n est orthogonale si

AT A = In .

Remarque 13.4. On affirme qu’une matrice carrée A de taille n est orthogonale si et seulement si

AT A = A AT = In .

C’est clair que si A vérifie la condition précédente elle est orthogonale. Réciproquement, par sa définition,
une matrice carrée A de taille n orthogonale a noyau trivial. En effet, si Av = 0, alors

v = In v = AT Av = AT 0 = 0,

ce qui nous dit que le noyau de A est trivial. Comme A est une matrice carrée, elle est donc inversible. En
plus, A−1 = AT , car

AT = AT In = AT (A A−1) = (AT A)A−1 = In A−1 = A−1,

ce qui nous dit qu’une matrice carrée orthogonale A vérifie

AT A = A AT = In .

⋄
En général, dans le cas des matrices de taille n ×n, on parle des matrices orthogonales de déterminant 1
comme des rotations, puisqu’elles représentent des transformations rigides, qui préservent l’orthogonalité.
Nous reviendrons là-dessus.

13.3 Sur les espaces propres d’une matrice symétrique

Commençons par une propriété élémentaire du produit scalaire :

Lemme 13.5. Soit B une matrice de taille n ×n quelconque. Alors pour tous x,y ∈Rn ,

(Bx) ·y = x · (B T y) .

En particulier, si B est symétrique, alors

(Bx) ·y = x · (By) .

Preuve: Par l’interprétation matricielle du produit scalaire,

(Bx) ·y = (Bx)T y = xT B T y = xT (B T y) = x · (B T y) .

NumChap: chap-matrices-symetriques, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) 253

botafogo.saitis.net

13.3. Sur les espaces propres d’une matrice symétrique

Une conséquence immédiate :

Corollaire 13.6. Soit G une matrice orthogonale de taille n ×n. Alors pour tous x,y ∈Rn ,

• (Gx) · (Gy) = x ·y,

• ∥Gx∥ = ∥x∥.

Preuve: Supposons que G est orthogonale. Par le lemme précédent,

(Gx) · (Gy) = x · (GT Gy) = x ·y .

La deuxième identité s’obtient en prenant y = x.

Remarque 13.7. La deuxième propriété montre qu’une application linéaire définie par une matrice ortho-
gonale est une isométrie, c’est-à-dire qu’elle ne change pas la longueur d’un vecteur (seulement sa direc-
tion). ⋄
Exemple 13.8. Un exemple typique d’isométrie est la rotation d’angle θ dans le plan :

Rappelons que la matrice de cette rotation relative à la base canonique est donnée par

[rotθ]Bcan =
(
cos(θ) −sin(θ)
sin(θ) cos(θ)

)
.

Cette matrice est orthogonale puisque ses colonnes sont unitaires et perpendiculaires entre elles :

[rotθ]Bcan
T [rotθ]Bcan =

(
cos(θ) sin(θ)
−sin(θ) cos(θ)

)(
cos(θ) −sin(θ)
sin(θ) cos(θ)

)
= I2 .

⋄
On sait que pour une matrice quelconque, des vecteurs propres associés à des valeurs propres distinctes
sont indépendants. Pour une matrice symétrique, cette propriété est vérifiée dans un sens plus fort :

Corollaire 13.9. Soit A une matrice symétrique de taille n×n. Si v1 et v2 sont deux vecteurs propres de
A associés à des valeurs propres distinctes, alors v1 ⊥ v2.

Preuve: Si Av1 =λ1v1, Av2 =λ2v2, alors

λ1(v1 ·v2) = (λ1v1) ·v2 = (Av1) ·v2

= v1 · (Av2) = v1 · (λ2v2) =λ2(v1 ·v2) ,

qui implique (λ1 −λ2)(v1 ·v2) = 0. Donc si λ1 ̸=λ2, on a forcément que v1 ·v2 = 0.

Dans l’exemple suivant, nous vérifierons ce résultat sur un exemple concret, et nous observerons encore
une propriété qui sera énoncée comme un résultat général dans la prochaine section.

254 NumChap: chap-matrices-symetriques, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

botafogo.saitis.net

13.3. Sur les espaces propres d’une matrice symétrique

Exemple 13.10. Étudions les espaces propres de la matrice symétrique

A =
 3 −2 4
−2 6 2
4 2 3

 .

On calcule son polynôme caractéristique,

P A(λ) = det

3−λ −2 4
−2 6−λ 2
4 2 3−λ


= det

7−λ −2 4
0 6−λ 2

7−λ 2 3−λ


= det

7−λ −2 4
0 6−λ 2
0 4 −1−λ


=−(λ+2)(λ−7)2 .

Donc A possède deux valeurs propres, λ1 = −2 et λ2 = 7. Les espaces propres associés se calculent facile-
ment :

• E−2 = Vect{v}, où v =
 2

1
−2

,

• E7 = Vect{w1,w2}, où w1 =
1

0
1

, w2 =
−1

2
0

.

On remarque qu’effectivement, v ⊥ w1, et v ⊥ w2, et donc n’importe quel vecteur de E−2 est orthogonal à
n’importe quel autre vecteur de E7. En d’autres termes :

E−2
⊥ = E7 , E7

⊥ = E−2 .

(Pourtant, w1 et w2 ne sont pas orthogonaux entre eux.)

w1

w2

E7 E−2

v

Remarquons aussi que
2∑

k=1
multg (λk) = 1+2 = 3,

ce qui implique que A est diagonalisable. En prenant par exemple

D =
−2 0 0

0 7 0
0 0 7

 , P = [v w1 w2] =
 1 1 −1/2

1/2 0 1
−1 1 0

 ,

NumChap: chap-matrices-symetriques, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) 255

botafogo.saitis.net

13.4. Théorème de décomposition spectrale

on obtient la diagonalisation A = PDP−1.

Mais rappelons que l’on peut former la matrice de changement de base en choisissant les vecteurs propres
que l’on veut, tant qu’ils forment une base des espaces propres concernés, et que l’on respecte l’ordre des
valeurs propres dans la matrice diagonale D .

Donc on peut très bien, si on veut, commencer par orthogonaliser la base de E7 avant de mettre en place P :

w′
1 := w1 ,

w′
2 := w2 −projw1

(w2) =
−1/2

2
1/2

 .

Ainsi, une autre diagonalisation de A serait A =QDQ−1, avec la même matrice D qu’avant, et

Q = [v w′
1 w′

2] =
 1 1 −1/2

1/2 0 2
−1 1 1/2

 .

Cette fois, les colonnes de Q sont orthogonales deux à deux. Or rien ne nous empêche de les normaliser
avant de définir Q :

R =
[

v

∥v∥
w′

1

∥w′
1∥

w′
2

∥w′
2∥

]
,

qui donne une troisième diagonalisation de A : A = RDR−1 (avec D la même matrice qu’avant). Mais ici, R
étant orthogonale, son inverse est R−1 = RT , et donc le changement de base devient

A = RDRT .

On a donc pu diagonaliser A dans une base orthonormée de R3. ⋄
Nous verrons, dans la section suivante, que ce que nous avons fait sur ce dernier exemple peut se faire avec
n’importe quelle matrice symétrique.

13.4 Théorème de décomposition spectrale

13.4.1 Le Théorème Spectral

Un des résultats importants de l’algèbre linéaire :

Théorème 13.11 (Théorème spectral). Soit A une matrice de taille n ×n. Alors A symétrique si et
seulement si elle peut se diagonaliser à l’aide d’une matrice de changement de base orthogonale.

On dit que les matrices symétriques sont orthogonalement diagonalisables.
Preuve:⋆ ⇐) Supposons que A peut se diagonaliser à l’aide d’une matrice de changement de base G orthogonale :
A =GDGT . Alors

AT = (GDGT)T = (GT)T DT GT =GDGT = A ,

donc A est symétrique.

⇒) Pour montrer ce résultat on va utiliser le résultat suivant.

Lemme 13.12. Soit A une matrice de taille n ×n symétrique. Alors A possède un vecteur propre v ∈ Rn avec
valeur propre λ ∈R.

256 NumChap: chap-matrices-symetriques, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

botafogo.saitis.net

13.4. Théorème de décomposition spectrale

Preuve: Pour 0 < s < r , soient Cs,r := {x ∈Rn : s⩽ ∥x∥⩽ r } et l’application f :Rn \ {0} →R définie par

f (x) = x · (Ax)

x ·x
=

∑n
i , j=1 xi Ai , j x j∑n

j=1 x2
j

.

Alors, f est continue. Comme f est continue et Cs,r est fermé et borné, alors f admet un maximum v ∈Cs,r dans Cs,r .
En plus, comme f (tx) = f (x) pour tout t ∈R\ {0} et x ∈Rn \ {0}, v est un maximum de f dans Rn \ {0}, vu que, pour tout
x ∈Rn \ {0},

f (x) = f

(
s

x

∥x∥
)
⩽ f (v) .

En conséquence, étant donné w ∈ Rn , l’application fv,w : R→ R donnée par f (t) = fv,w(v+ tw) admet un maximum
local en t = 0, ce qui nous dit que

0 = f ′
v,w(0) = 2

w · (Av− f (v)v
)

v ·v
= 2w ·

(Av− f (v)v

v ·v

)
,

où l’on a utilisé la règle de dérivation en chaîne. Comme cette identité est vrai pour tout w ∈Rn , on conclut que

Av− f (v)v

v ·v
= 0,

ce qui nous dit que Av− f (v)v = 0, i.e. Av = f (v)v. En conséquence, v est un vecteur propre avec valeur propreλ= f (v),
comme on voulait démontrer.

On revient à la preuve du théorème. Il suffit de montrer qu’il existe une base orthogonale {v1, . . . ,vn} de Rn formée de
vecteurs propres de A, car dans ce cas la matrice

G =
[

v1

∥v1∥
· · · vn

∥vn∥
]

est orthogonale et GT AG est diagonale. On va le démontrer par induction sur la taille n de la matrice A. Si n = 1, le
résultat suit du lemme précédent. On suppose que le théorème est vrai pour tout entier positif strictement inférieur
à n > 1, et on va le démontrer pour n. D’après le lemme précédent, A possède un vecteur propre v ∈ Rn avec valeur
propre λ ∈ R. Comme v ∈ Rn est un vecteur propre, il es non nul, ce qui nous dit que Vect{v} a dimension 1. On pose
W = Vect{v}⊥ ⊆ Rn . En conséquence, d’après la dernière proposition dans la Section 11.3, on conclut que dim(W) =
n −1. On note que Aw ∈W pour tout w ∈W , vu que

(Aw) ·v = w · (Av) = w · (λv) =λw ·v = 0,

où l’on a utilisé le lemme de la section précédente. Soit {w1, . . . ,wn−1} une base orthonormée de W et soit Q ∈Mn×(n−1)(R)
la matrice orthogonale

Q = [w1 · · · wn−1] .

On définit aussi la matrice B =QT AQ ∈Mn−1(R). Alors, B est symétrique, vu que

B T = (QT AQ)T =QT AT (QT)T =QT AQ = B .

Par hypothèse de la récurrence, il existe une base orthonormée {u1, . . . ,un−1} ⊆ Rn−1 formée de vecteurs propres de
B . Comme Q est orthogonale, i.e. QT Q = In−1, et {u1, . . . ,un−1} ⊆ Rn−1 est orthonormée, on conclut que la famille
{Qu1, . . . ,Qun−1} est aussi orthonormée, vu que

(Qui) · (Qu j) = (Qui)T (Qu j) = uT
i QT Qu j = uT

i u j = ui ·u j = δi , j .

On affirme en plus que {Qu1, . . . ,Qun−1} ⊆ W = Vect{v}⊥ est une famille de vecteur propres de A. Pour le démontrer,
on rappelle d’abord que QQT est la matrice canonique de l’application linéaire projW : Rn → Rn , d’après le dernier
théorème de la Section 11.8. Or, comme u j est un vecteur propre de B il existe λ j ∈ R tel que Bu j = λ j u j , i.e. que
QT AQu j =λ j u j , ce qui implique

AQu j = projW (AQu j) =QQT AQu j =Qλ j u j =λ j Qu j ,

où la première égalité suit du fait que Aw ∈ W pour tout w ∈ W . En conséquence, {Qu1, . . . ,Qun−1} est une famille de
vecteur propres de A.

Comme {Qu1, . . . ,Qun−1} ⊆ W = Vect{v}⊥, alors {Qu1, . . . ,Qun−1,v} ⊆ Rn est une famille orthogonale formée de vec-

teurs propres de A, et donc une base orthogonale de Rn par le premier lemme de la Section 11.6. On a ainsi montré

qu’il existe une base orthogonale de Rn formée de vecteurs propres de A, comme on voulait démontrer.

NumChap: chap-matrices-symetriques, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) 257

botafogo.saitis.net

13.4. Théorème de décomposition spectrale

Remarque 13.13. Pour être plus concret, donnons aussi la preuve dans le cas n = 2. Soit A une matrice de
taille 2×2 symétrique, que l’on écrit comme suit :

A =
(

a b
b c

)
.

Montrons que A est toujours diagonalisable, quelles que soient les valeurs de a,b,c ∈R. Commençons donc
par calculer les valeurs propres, à l’aide du polynôme caractéristique :

P A(λ) = det

(
a −λ b

b c −λ
)

= (a −λ)(c −λ)−b2

=λ2 − (a + c)λ+ (ac −b2) .

Calculons le discriminant

∆= (a + c)2 −4(ac −b2) = (a − c)2 +4b2 .

Cette dernière ligne montre que l’on a toujours ∆⩾ 0, et donc toujours au moins une valeur propre. Distin-
guons les cas.

1) Cas ∆= (a−c)2 +4b2 = 0. Ceci signifie que a = c et b = 0, et donc que A est en fait la matrice

A =
(

a 0
0 a

)
,

qui est déjà diagonale ! On peut évidemment l’écrire comme A = I2 A IT
2 .

2) Cas ∆> 0. Dans ce cas, P A possède deux racines distinctes

λ± = a + c ±p
∆

2
.

Si on considère un vecteur propre quelconque v+ associé à λ+, et un vecteur propre quelconque v−
associé à λ−, on sait par le corollaire de la section précédente que v+ ⊥ v−. Ainsi, la matrice

G =
[

v+
∥v+∥

v−
∥v−∥

]
est orthogonale, et permet de diagonaliser A : A =GDGT , où D = diag(λ+,λ−).

⋄
Exemple 13.14. La matrice 

1
p

2
p

3
p

5
p

7
p

8
p

11p
2

p
π π π2 π3 π2 πp

3 π −1 e −e e −ep
5 π2 e 0 0 0 0p
7 π3 −e 0 1 1 1p
8 π2 e 0 1 2 2p

11 π −e 0 1 2 3


étant symétrique, le Théorème Spectral s’applique : elle est diagonalisable. Il existe une matrice diagonale
D et une matrice orthogonale G telles que A =GDGT . ⋄

258 NumChap: chap-matrices-symetriques, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

botafogo.saitis.net

13.4. Théorème de décomposition spectrale

13.4.2 Décomposition spectrale

Voyons comment le Théorème Spectral permet de représenter l’application linéaire T : Rn → Rn associée à
une matrice symétrique A de taille n ×n,

x 7→ T (x) := Ax .

En effet, le Théorème Spectral garantit que A peut être diagonalisée à l’aide d’une matrice de changement
de base orthogonale :

A =GDG−1 =GDGT .

Ici, D = diag(λ1, . . . ,λn) est formée de valeurs propres de A (pas forcément distinctes), et G est formée de
vecteurs propres associés, formant une base orthonormale {u1, · · · , un} de Rn :

G = [
u1 · · · un

]
.

On peut donc écrire, pour un x ∈Rn quelconque,

T (x) = Ax =GDGT x = [
u1 · · · un

]
D

uT
1 x
...

uT
n x



= [
λ1u1 · · · λnun

]uT
1 x
...

uT
n x


=

n∑
k=1

λk uk uT
k x

=
(

n∑
k=1

λk uk uT
k

)
x .

On peut donc écrire A comme une combinaison linéaire de matrices :

A =
n∑

k=1
λk uk uT

k .

On sait que chaque uk uT
k est une matrice de taille n×n, et représente le projecteur sur uk . En effet, comme

chaque uk est unitaire,

uk uT
k x = (x ·uk)uk = x ·uk

∥uk∥2 uk = projuk
(x) .

On a donc pu récrire l’applications linéaire T comme la combinaison linéaire de projecteurs :

T =
n∑

k=1
λk projuk

.

Définition 13.15. Les représentations de A et T à l’aide de projecteurs sur les espaces propres de A
sont appelées décompositions spectrales.

Remarque 13.16. La représentation spectrale dépend bien-sûr du choix des vecteurs propres pour la ma-
trice ; elle n’est donc pas unique. ⋄

NumChap: chap-matrices-symetriques, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) 259

botafogo.saitis.net

13.4. Théorème de décomposition spectrale

Une décomposition spectrale fournit une interprétation très géométrique de comment A agit sur un vecteur
x.

En effet, l’expression

Ax =
n∑

k=1
λk projuk

(x)

montre que Ax est une somme vectorielle, dans laquelle chaque terme, λk projuk
(x), a une interprétion très

claire :

1) projeter x sur uk ;

2) amplifier cette projection par la valeur propre λk .

L’intérêt est que l’on peut travailler indépendamment pour chaque k = 1,2, . . . ,n, puis les sommer.

Voyons comment réaliser concrètement cette décomposition, dans des cas particuliers.

Exemple 13.17. Considérons la matrice symétrique

A =
(
1 2
2 1

)
.

On vérifie facilement que les valeurs propres de A sontλ1 =−1,λ2 = 3, et que leurs espaces propres associés
sont

• E−1 = Vect{v}, où v =
(

1
−1

)
;

• E3 = Vect{w}, où w =
(
1
1

)
.

(On observe à nouveau, comme on sait, que ces espaces sont orthogonaux.) Pour faire la décomposition
spectrale, on a besoin de vecteurs propres unitaires. On peut par exemple prendre

u1 := v

∥v∥ =
(

1/
p

2
−1/

p
2

)
, u2 := w

∥w∥ =
(
1/
p

2
1/
p

2

)
.

Maintenant, la décomposition spectrale de A est donnée par

Ax =
2∑

k=1
λk uk uT

k x

= (−1)u1uT
1 +3u2uT

2

= (−1)proju1
(x)+3proju2

(x) .

L’interprétation géométrique de la transformation x 7→ Ax devient limpide :

260 NumChap: chap-matrices-symetriques, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

botafogo.saitis.net

13.4. Théorème de décomposition spectrale

Vérifions encore, pourquoi pas :

(−1)u1uT
1 +3u2uT

2 =

= (−1)

(1p
2−1p
2

)(
1p
2

−1p
2

)
+3

(1p
2

1p
2

)(
1p
2

1p
2

)
= (−1)

(1
2 −1

2
−1

2
1
2

)
+3

(1
2

1
2

1
2

1
2

)
=

(
1 2
2 1

)
= A .

⋄
Exemple 13.18. Considérons la matrice symétrique déjà étudiée plus haut :

A =
 3 −2 4
−2 6 2
4 2 3

 .

A possède deux valeurs propres, λ1 = −2 et λ2 = 7, et nous avions appliqué le procédé de Gram-Schmidt
pour trouver

• E−2 = Vect{v}, où v =
 1

1/2
−1

,

• E7 = Vect{w1,w2}, où w′
1 =

1
0
1

, w′
2 =

−1/2
2

1/2

.

En normalisant ces vecteurs,

u1 := v

∥v∥ , u2 := w′
1

∥w′
1∥

, u3 := w′
2

∥w′
2∥

,

on obtient une matrice de passage qui est orthogonale de la forme

R = [u1 u2 u3] ,

NumChap: chap-matrices-symetriques, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) 261

botafogo.saitis.net

13.5. Résumé du chapitre sur la diagonalisation de matrices symétriques via matrices orthogonales

qui donne A = RDRT .

Donc la décomposition spectrale obtenue est

A = (−2)u1uT
1 +7u2uT

2 +7u3uT
3 .

⋄

13.5 Résumé du chapitre sur la diagonalisation de matrices symétriques via
matrices orthogonales

MATRICE ORTHOGONALE :

A ∈Mn×n(R) ORTHOGONALE ⇔ AT A = A AT = In

THEORÈME SPECTRAL (DIAGONALISATION DE MATRICES SYMÉTRIQUES) :

A ∈Mn×n(R) SYMÉTRIQUE ⇔ ∃Q ∈Mn×n(R) ORTHOGONALE TELLE QUE QT AQ DIAGONALE

(VOIR THM 13.11)

SI {u1, . . . ,un} BON DE VECTEURS PROPRES : Q = [u1 . . . un]

DÉCOMPOSITION SPECTRALE DE MATRICES SYMÉTRIQUES :

SI {u1, . . . ,un} BON DE VECTEURS
PROPRES DE A AVEC VALEURS

PROPRES λ1, . . . ,λn RESP.
⇒ A =λ1u1uT

1 +·· ·+λnunuT
n

262 NumChap: chap-matrices-symetriques, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

botafogo.saitis.net

Chapitre 14

La décomposition en valeurs singulières

14.1 Introduction

“Today, singular value decomposition has spread through many branches of science, in particular psycho-
logy and sociology, climate and atmospheric science, and astronomy. It is also extremely useful in machine
learning and in both descriptive and predictive statistics. ”

Peter Mills

“Eigenvalues and eigenvectors are restricted to square matrices. But data comes in rectangular matrices. ”

Gilbert Strang

Si la diagonalisation a permis de comprendre la nature géométrique de certaines applications linéaires, elle
exige malheureusement que l’application considérée se prête à cette analyse (qu’elle soit diagonalisable
justement), et surtout : elle ne s’applique qu’à des matrices carrées.

Objectifs de ce chapitre

À la fin de ce chapitre vous devriez être capable de

(O.1) calculer la décomposition en valeurs singulières d’une matrice.

Nouveau vocabulaire dans ce chapitre

• décomposition en valeurs singulières
• vecteurs singuliers à gauche

• vecteurs singuliers à droite
• valeurs singulières

14.1.1 Le résultat

La décomposition en valeurs singulières (en anglais, SVD=Singular Value Decomposition) est une méthode
très générale de factorisation qui donne une nouvelle interprétation géométrique de n’importe quelle ap-
plication linéaire T : Rn → Rm . Elle consiste à factoriser une matrice quelconque A de taille m ×n en un
produit,

A =UΣV T ,

où

1) U est une matrice orthogonale de taille m ×m, i.e. U T U =UU T = Im ;

2) Σ est une matrice non négative diagonale de taille m ×n, i.e. Σi , j = 0 si i ̸= j et Σi , j ⩾ 0 ;

NumChap: chap-decomp-val-singulieres, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) 263

https://medium.com/cube-dev/singular-value-decomposition-tutorial-52c695315254
https://www.youtube.com/watch?v=YPe5OP7Clv4&ab_channel=LexFridman
botafogo.saitis.net

14.1. Introduction

3) V est une matrice orthogonale de taille n ×n, i.e. V T V =V V T = In .

On sait d’une part que les matrices orthogonales représentent des isométries, c’est-à-dire des transfor-
mations rigides de l’espace, comme des rotations. D’autre part, une matrice diagonale de taille m ×n a
pour effet d’étirer les vecteurs dans certaines directions (avec un changement de dimension, voir plus bas).
Donc la décomposition en valeurs singulières permet de décomposer l’application T :Rn →Rm définie par
T (x) = Ax en trois parties :

Rn Rn Rm RmV T

(isométrie)
Σ

(étirement)

U

(isométrie)

Il est important d’insister sur le fait que la décomposition en valeurs singulières ne suppose rien sur A ; elle
est toujours possible. En particulier, elle s’applique à des matrices qui ne sont pas forcément carrées.

14.1.2 Structure

Dans la section suivante, nous établirons rigoureusement la décomposition en valeurs singulières. Pour
l’instant, supposons qu’une décomposition

A =UΣV T

soit donnée, et voyons ce que cela dit déjà sur les matrices U , Σ et V .

Nommons les colonnes de V , U et Σ :

U = [u1 · · ·um] , uk ∈Rm ,

Σ= [σ1 · · ·σn] , σi ∈Rm ,

V = [v1 · · ·vn] , v j ∈Rn .

Comme U et V sont orthogonales, les familles {u1, . . . ,um} ⊆Rm et {v1, . . . ,vn} ⊆Rn sont orthogonales.

La matrice Σ représente une application Rn → Rm dont la simplicité rappelle celle des matrices diagonales
carrées. Nous noterons σi les éléments diagonaux de Σ. Notons que si m > n (resp., m < n), alors certaines
lignes (resp., colonnes) de Σ sont nulles.

Exemple 14.1. Si m = 7 et n = 4, alors les 3 dernières lignes de Σ sont nulles :

Σ=



σ1 0 0 0
0 σ2 0 0
0 0 σ3 0
0 0 0 σ4

0 0 0 0
0 0 0 0
0 0 0 0


.

Notons Bcan et B′
can les bases canoniques de R4 et R7 :

Bcan = {e1,e2,e3,e4} ,

B′
can = {e′1,e′2,e′3,e′4,e′5,e′6,e′7} .

L’application x 7→Σx représente des “stretches” pour les 4 vecteurs de Bcan,

Σe1 =σ1e′1 , Σe2 =σ2e′2 , Σe3 =σ3e′3 , Σe4 =σ4e′4 .

⋄

264 NumChap: chap-decomp-val-singulieres, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

botafogo.saitis.net

14.1. Introduction

Exemple 14.2. Si m = 3, n = 5, alors les 2 dernières colonnes de Σ sont nulles :

Σ=
σ1 0 0 0 0

0 σ2 0 0 0
0 0 σ3 0 0

 .

Notons Bcan et B′
can les bases canoniques de R5 et R3 :

Bcan = {e1,e2,e3,e4,e5} ,

B′
can = {e′1,e′2,e′3} .

On a des “stretches” pour les 3 premiers vecteurs de Bcan,

Σe1 =σ1e′1 , Σe2 =σ2e′2 , Σe3 =σ3e′3 ,

mais les deux derniers sont tous envoyés sur le vecteur nul :

Σe4 =Σe5 = 0 .

⋄
Remarque 14.3. Les relations ci-dessus, “Σe j = σ j e′j ”, rappellent celles du type “Av = λv”. La grande diffé-

rence ici est que e j et e′j vivent dans des espaces différents ! ⋄
Pour comprendre les relations entre les uk , les v j et la matrice Σ (toujours en supposant que la décomposi-
tion A =UΣV T est déjà connue), on multiplie A par sa transposée pour obtenir une matrice de taille n ×n
donnée par

AT A = (UΣV T)T (UΣV T)

=V ΣT U T UΣV T

=V (ΣTΣ)V T .

On a, dans le terme de droite, trois matrices de taille n ×n. Puisque ΣTΣ est diagonale, et puisque V T est
l’inverse de V (car cette dernière est orthogonale), on voit que ce produit de trois matrices carrées repré-
sente une diagonalisation de la matrice symétrique AT A. En particulier, les colonnes de V sont des vecteurs
propres orthonormés de AT A, associés à des valeurs propres qui sont les éléments diagonaux deΣTΣ, à sa-
voir σ2

i :

(AT A)v j =σ2
j v j , ∀ j = 1, . . . ,n .

De même pour A AT : c’est une matrice de taille m ×m, et

A AT =U (ΣΣT)U T ,

qui implique que les colonnes de U sont des vecteurs propres orthonormés de A AT , associés à des valeurs
propres qui sont les éléments diagonaux de ΣΣT :

A AT uk =σ2
k uk , ∀k = 1, . . . ,m .

Remarquons encore que dans les deux cas, les matrices diagonales ΣTΣ et ΣΣT ont des coefficients diago-
naux donnés par les carrés σ2

i .

Cette discussion montre que si une décomposition en valeurs singulières existe, alors les matrices U et V se
calculent en diagonalisant A AT et AT A. (On verra comment simplifier un peu ce procédé par la suite.)

Ce qui n’est pas du tout démontré par l’argument ci-dessus, c’est si la décomposition existe effectivement ;
nous le démontrerons dans la section suivante.

NumChap: chap-decomp-val-singulieres, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) 265

botafogo.saitis.net

14.1. Introduction

14.1.3 Matrices définies par blocs

Dans ce chapitre, nous définirons et manipulerons des matrices définies par blocs, ce qui signifie définies
comme composées de sous-matrices. On utilisera l’indice “□” pour indiquer qu’une matrice est définie par
blocs.

Exemple 14.4. Avec

A =
(

a b c
d e f

)
, B =

(
1 2
3 4

)
,

on peut définir [
A B

]
□ =

(
a b c 1 2
d e f 3 4

)
.

⋄

Les blocs qui composent une matrice par blocs doivent avoir des dimensions compatibles.

Plus généralement, si l’on possède quatre matrices,

A de taille m ×k , B de taille m × l , C de taille h ×k , D de taille h × l ,

on peut définir

• la matrice de taille m × (k + l) : [
A B

]
□ ,

• la matrice de taille (m +h)×k : [
A
C

]
□

.

• la matrice de taille (m +h)× (k + l) : [
A B
C D

]
□

.

14.1.4 Le polynôme caractéristique de AB et B A⋆

Théorème 14.5. Soient A ∈Mm×n(R) et B ∈Mn×m(R), avec m ⩽ n. Alors, les polynômes caractéris-
tiques de AB et de B A satisfont

PB A(λ) =λn−mP AB (λ) .

Preuve: On commence avec la preuve pour le cas m = n. Soit r = rang(A). Alors, il existe des matrices inversibles
P,Q ∈Mn×n(R) telles que

A = P

[
Ir 0
0 0

]
□

Q ,

où 0 indiquée ci-dessus désigne la matrice nulle dans Mr×(n−r)(R), M(n−r)×r (R) ou M(n−r)×(n−r)(R), selon la position
dans la matrice définie par blocs. On écrit aussi

B =Q−1
[

B1,1 B1,2

B2,1 B2,2

]
□

P−1 ,

où B1,1 ∈Mr×r (R), B1,2 ∈Mr×(n−r)(R), B2,1 ∈M(n−r)×r (R) et B2,1 ∈M(n−r)×(n−r)(R). Alors,

AB = P

[
Ir 0
0 0

]
□

QQ−1
[

B1,1 B1,2

B2,1 B2,2

]
□

P−1 = P

[
B1,1 B1,2

0 0

]
□

P−1 ,

266 NumChap: chap-decomp-val-singulieres, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

botafogo.saitis.net

14.2. Existence

ce qui nous dit que P AB (λ) = (−λ)n−r PB1,1 (λ), vu que

det(AB −λ In) = det

(
P

[
B1,1 B1,2

0 0

]
□

P−1 −P

[
λ Ir 0

0 λ In−r

]
□

P−1
)

= det

(
P

[
B1,1 −λ Ir B1,2

0 −λ In−r

]
□

P−1
)

= det

([
B1,1 −λ Ir B1,2

0 −λ In−r

]
□

)
= (−λ)n−r det(B1,1 −λ Ir)

= (−λ)n−r PB1,1 (λ) ,

et

B A =Q−1
[

B1,1 B1,2

B2,1 B2,2

]
□

P−1P

[
Ir 0
0 0

]
□

Q =Q−1
[

B1,1 0
B2,1 0

]
□

Q ,

ce qui nous dit que P AB (λ) = (−λ)n−r PB1,1 (λ), vu que

det(B A−λ In) = det

(
Q−1

[
B1,1 0
B2,1 0

]
□

Q −Q−1
[
λ Ir 0

0 λ In−r

]
□

Q

)
= det

(
Q−1

[
B1,1 −λ Ir 0

B2,1 −λ In−r

]
□

Q

)
= det

([
B1,1 −λ Ir 0

B2,1 −λ In−r

]
□

)
= (−λ)n−r det(B1,1 −λ Ir)

= (−λ)n−r PB1,1 (λ) .

En conséquence, P AB (λ) = (−λ)n−r PB1,1 (λ) = PB A(λ), comme on voulait démontrer.

On va démontrer le cas général. Soit Â ∈Mm×n(R) la matrice obtenue de B en ajoutant n −m lignes nulles en bas de
A et soit B̂ ∈Mn×m(R) la matrice obtenue de B en ajoutant m −n colonnes nulles à droite de B . En outre, on voit bien
que B̂ Â = B A ∈Mn×n(R) et

ÂB̂ =
[

AB 0
0 0

]
□
∈Mn×n(R) .

En conséquence,

P ÂB̂ (λ) = det

([
AB −λ Im 0

0 −λ In−m

]
□

)
= (−λ)m−n det(AB −λ Im) = (−λ)m−nP AB (λ) .

Alors,

PB A(λ) = PB̂ Â(λ) = P ÂB̂ (λ) = (−λ)m−nP AB (λ) ,

comme on voulait démontrer.

14.2 Existence

Dans cette section, on montre que toute matrice possède une décomposition en valeurs singulières :

NumChap: chap-decomp-val-singulieres, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) 267

botafogo.saitis.net

14.2. Existence

Théorème 14.6 (Existence d’une décomposition en valeurs singulières). Toute matrice A de taille
m ×n peut s’écrire comme un produit,

A =UΣV T ,

où

1) U est une matrice orthogonale de taille m×m, i.e. U T U =UU T = Im ; ses colonnes sont appelées
vecteurs singuliers à gauche de A ;

2) Σ est une matrice non négative diagonale de taille m ×n, i.e. Σi , j ⩾ 0 pour tous i , j et Σi , j =
0 si i ̸= j , les coefficients situés sur sa diagonale sont non négatifs, et sont appelés les valeurs
singulières de A ;

3) V est une matrice orthogonale de taille n ×n, i.e. V T V = V V T = In , ses colonnes sont appelées
vecteurs singuliers à droite de A.

14.2.1 Les matrices AT A et A AT

Notre point de départ :

Lemme 14.7. Pour une matrice A de taille m ×n quelconque,

(i) AT A est une matrice symétrique de taille n×n et A AT est une matrice symétrique de taille m×m ;

(ii) Ker(AT A) = Ker(A) et Ker(A AT) = Ker(AT) ;

(iii) rang(AT A) = rang(A) = rang(AT) = rang(A AT).

Preuve:
(i) Par les propriétés de la transposée,

(AT A)T = AT (AT)T = AT A ,

(A AT)T = (AT)T AT = A AT .

(ii) En remplaçant A par AT et en utilisant l’identité (AT)T = A, on note qu’il suffit de démontrer la première iden-
tité Ker(AT A) = Ker(A). Or, on voit bien aussi que Ker(AT A) ⊇ Ker(A), vu que Av = 0, i.e. v ∈ Ker(A), implique
AT Av = AT 0 = 0, i.e. v ∈ Ker(AT A). Pour montrer l’inclusion Ker(AT A) ⊆ Ker(A), on note que, si v ∈ Ker(AT A),
i.e. AT Av = 0, alors

∥Av∥2 = vT AT Av

= vT 0

= 0,

ce qui implique que Av = 0, i.e. v ∈ Ker(A).

(iii) L’item précédent et le Théorème du Rang nous disent que

rang(AT A) = n −dim
(

Ker(AT A)
)= n −dim

(
Ker(A)

)= rang(A) ,

rang(A AT) = m −dim
(

Ker(A AT)
)= n −dim

(
Ker(AT)

)= rang(AT) ,

tandis que l’égalité rang(A) = rang(AT) a été démontrée dans le dernier théorème de la Section 7.7.

Exemple 14.8. Si A =
−1 2

2 0
3 5

, alors

AT A =
(−1 2 3

2 0 5

)−1 2
2 0
3 5

=
(
14 13
13 29

)
,

268 NumChap: chap-decomp-val-singulieres, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

botafogo.saitis.net

14.2. Existence

et

A AT =
−1 2

2 0
3 5

(−1 2 3
2 0 5

)
=

 5 −2 7
−2 4 6
7 6 34

 .

⋄

Étant symétriques, le Théorème Spectral dans la Section 13.4 garantit que AT A et A AT sont diagonali-
sables :

• il existe une matrice orthogonale V de taille n ×n et une matrice diagonale D de taille n ×n telle que

AT A =V DV T ;

• il existe une matrice orthogonale U de taille m ×m et une matrice diagonale D ′ de taille m ×m telle
que

A AT =U D ′U T .

On sait que les éléments diagonaux de D (resp., D ′) sont les valeurs propres de AT A (resp., A AT), avec
éventuellement des répétitions selon les dimensions des espaces propres associés. Or ces valeurs propres
ont des propriétés particulières :

Lemme 14.9. Pour toute matrice A,

1) un scalaire λ ̸= 0 est valeur propre de AT A si et seulement s’il est également valeur propre de
A AT , et, de façon plus générale, la multiplicité algébrique de la valeur propre λ ̸= 0 de AT A est
égale à la multiplicité algébrique de la valeur propre λ ̸= 0 de A AT ;

2) si λ est valeur propre de AT A ou de A AT , alors λ⩾ 0.

Preuve: 1) Il s’agit d’une conséquence directe du dernier théorème de la Section 14.1.

2) Maintenant avec une valeur propre λ de AT A, et un vecteur propre v ̸= 0, AT Av =λv, on peut écrire

λ∥v∥2 =λ(v ·v)

= v · (λv)

= v · (AT Av)

= (Av) · (Av)

= ∥Av∥2⩾ 0.

Comme ∥v∥ > 0, on en déduit que λ⩾ 0.

Remarque 14.10. On peut donner une preuve directe de la première partie du premier item du lemme pré-
cédent. Pour le faire, supposons que λ ̸= 0 est valeur propre de AT A. Alors il existe v ∈Rn , non-nul, tel que

(AT A)v =λv .

Remarquons que Av ̸= 0 puisque AT Av ̸= 0.

Ensuite, en multipliant les deux côtés de l’identité de dessus par A, on obtient

A AT (Av) =λ(Av) ,

qui signifie que λ est aussi valeur propre de A AT , associée au vecteur propre Av ∈ Rm (qui est non-nul
comme on a dit). Le même argument montre que toute valeur propre non-nulle de A AT est également
valeur propre de AT A. ⋄

NumChap: chap-decomp-val-singulieres, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) 269

botafogo.saitis.net

14.2. Existence

Les résultats ci-dessus impliquent :

Corollaire 14.11. Pour toute matrice A de taille m ×n, il existe au plus min{m,n} valeurs propres
non-nulles communes de AT A et A AT .

Preuve: On sait que AT A est une matrice de taille n ×n et possède donc au maximum n valeurs propres non-nulles,

et A AT est une matrice de taille m ×m et possède donc au maximum m valeurs propres non-nulles. Comme ces

matrices ont les mêmes valeurs propres non-nulles, le nombre de ces valeurs propres non-nulles est plus petit que n

et que m.

14.2.2 Preuve du théorème :

Considérons la diagonalisation de AT A :

AT A =V DV T .

En multipliant à gauche par V T puis à droite par V ,

V T (AT A)V = D .

L’identité précédente nous dit que rang(AT A) = rang(D). En plus, par le lemme ci-dessus, toutes les valeurs
propres de AT A, sur la diagonale de D , sont non négatives.

Sans perte de généralité, on peut supposer que la valeur propre nulle (éventuellement répétée) apparaît en
bas de la diagonale :

D = diag(λ1,λ2, . . . ,λℓ,0, . . . ,0) ,

avec λ1 ⩾ . . .⩾ λℓ > 0. Comme rang(D) = ℓ, on conclut que ℓ = rang(AT A) = rang(A). Distinguons ensuite
la sous-matrice diagonale de D qui contient les valeurs propres strictement positives, en écrivant :

D =
[

D∗ 0
0 0

]
□

,

où D∗ = diag(λ1, . . . ,λℓ) est une matrice de taille ℓ×ℓ, et les “0” sont des matrices nulles.

À l’ordre fixé par les valeurs propres dans D correspond un ordre des colonnes dans la matrice de change-
ment de base V :

V = [
V1 V2

]
□ ,

où

• V1 est une matrice de taille n × ℓ dont les colonnes forment une famille libre de vecteurs propres
associés aux valeurs propres non-nulles λ1, . . . ,λℓ.

• V2 est une matrice de taille n×(n−ℓ) dont les colonnes forment une famille libre de vecteurs propres
associés à la valeur propre λ= 0.

L’orthonormalité des colonnes de V implique que

V T
1 V1 = Iℓ , V T

2 V2 = In−ℓ ,

mais la relation V V T = In implique aussi que

In =V V T = [
V1 V2

]
□

[
V T

1
V T

2

]
□
=V1V T

1 +V2V T
2 .

270 NumChap: chap-decomp-val-singulieres, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

botafogo.saitis.net

14.2. Existence

Utilisons ces matrices V1 et V2 pour récrire la diagonalisation AT A =V DV T , qui est équivalente à V T (AT A)V =
D . Comme

V T (AT A)V =
[

V T
1

V T
2

]
□

AT A
[

V1 V2
]
□

=
[

V T
1

V T
2

]
□

[
AT AV1 AT AV2

]
□

=
[

V T
1 AT AV1 V T

1 AT AV2

V T
2 AT AV1 V T

2 AT AV2

]
□

,

et comme cette matrice est égale à

D =
[

D∗ 0
0 0

]
□

,

ceci implique que l’identité
V T

1 AT AV1 = D∗
de matrices de taille ℓ×ℓ et l’identité

V T
2 AT AV2 = 0

de matrices de taille (n −ℓ)× (n −ℓ). De cette dernière, on tire que (AV2)T (AV2) = 0, qui implique que

AV2 = 0 .

(En effet, on sait que pour toute matrice M , M T M contient tous les produits scalaires possibles entre les co-
lonnes de M , en particulier, sur sa diagonale, les carrés des normes des colonnes. Si M T M = 0, cela implique
que la norme de chaque colonne de M est nulle, et donc que M est la matrice nulle.)

Définissons maintenant la matrice de taille m ×ℓ :

U1 := AV1D−1/2
∗ ,

où
D−1/2

∗ := diag(1/
√
λ1, . . . ,1/

√
λℓ)

est bien définie puisque λk > 0 pour tout k = 1, . . . ,ℓ, et n’est rien d’autre que l’inverse de

D1/2
∗ := diag(

√
λ1, . . . ,

√
λℓ).

On remarque maintenant que les colonnes de U1 forment une famille orthonormale, puisque

U T
1 U1 = (AV1D−1/2

∗)T AV1D−1/2
∗

= D−1/2
∗ (V T

1 AT AV1)D−1/2
∗

= D−1/2
∗ D∗D−1/2

∗
= Iℓ .

Montrons que U1, D∗ et V1 fournissent déjà une première factorisation de A :

U1m

ℓ

D1/2∗ℓ

ℓ

V T
1ℓ

n

= Am

n

NumChap: chap-decomp-val-singulieres, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) 271

botafogo.saitis.net

14.2. Existence

En effet,

U1D1/2
∗ V T

1 = AV1 D−1/2
∗ D1/2

∗︸ ︷︷ ︸
=Iℓ

V T
1

= AV1V T
1

= A(In −V2V T
2)

= A− (AV2︸︷︷︸
=0

)V T
2

= A .

Cette première factorisation constitue la base de l’argument; il reste maintenant à modifier le produit ma-
triciel U1D1/2∗ V T

1 , en augmentant les tailles des matrices, de façon à ce qu’il devienne UΣV T .

On rajoute d’abord à V T
1 le bloc V T

2 , ce qui donne

V T =
[

V T
1

V T
2

]
□

.

Passons à U . Si ℓ = m, alors on peut prendre U = U1. Mais, si ℓ < m, U1 n’est pas carrées : ses colonnes
forment une base orthonormée de Col(U1) ⊆Rm , mais pas deRm , on peut donc compléter cette base en une
base deRm , et même, via un procédé de Gram-Schmidt si nécessaire, la compléter en une base orthonormée
de Rn . Les m−ℓ vecteurs rajoutés peuvent être rangés dans une matrice U2 de taille m× (m−ℓ) qui permet
de définir la matrice de taille m ×m orthogonale

U := [
U1 U2

]
□ .

Finalement, la matrice Σ de taille m×n est construite à partir de la matrice D1/2∗ de taille ℓ×ℓ) en rajoutant
des blocs nuls, si nécessaire (rappelons que ℓ⩽min{m,n}) :

Σ :=
[

D1/2∗ 0
0 0

]
□

.

où

• 0 est une matrice de taille l × (n −ℓ),

• 0 est une matrice de taille (m −ℓ)×ℓ,

• 0 est une matrice de taille (m −ℓ)× (n −ℓ).

Remarquons que ceci peut a priori faire apparaître des valeurs singulières nulles sur la diagonale de Σ.

Montrons que l’on a ce qu’on voulait :

U1 U2m

ℓ m −ℓ

D1/2∗ 0

0 0

ℓ

ℓ

m −ℓ

n −ℓ

V T
1

V T
2

ℓ

n −ℓ

n

= Am

n

U Σ V T

272 NumChap: chap-decomp-val-singulieres, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

botafogo.saitis.net

14.3. Exemples

En effet,

UΣV T = [
U1 U2

]
□

[
D1/2∗ 0

0 0

]
□

[
V T

1
V T

2

]
□

= [
U1 U2

]
□

[
D1/2∗ V T

1
0

]
□

=U1D1/2
∗ V T

1

= A .

Ceci termine la preuve de l’existence d’une décomposition en valeurs singulières.

Quelques remarques au vu de la preuve que l’on vient de donner :

• Les valeurs singulières non-nulles de A sont les racines carrées des valeurs propres de AT A (et A AT) :

σ j =
√
λ j .

Les valeurs singulières nulles sont possibles (elles apparaissent au moment où on complète D1/2∗ avec
des blocs de zéros), et sont liées au fait que AT A ou A AT peuvent posséder λ = 0 comme valeur
propre.

• On l’a dit, les colonnes de V forment une base orthonormée de Rn , formée de vecteurs propres de
AT A, et les colonnes de U forment une base orthonormale de Rm , formée de vecteurs propres de
A AT .

• La définition du bloc U1 = [u1 · · · uℓ] peut aussi s’exprimer comme suit :

U1 = AV1D−1/2
∗

= [Av1 · · · Avℓ]D−1/2
∗

=
[

1p
λ1

Av1 · · · 1p
λℓ

Avℓ
]

.

On a donc toujours un moyen direct de calculer les ℓ premières colonnes de U1 :

u j := 1p
λ j

Av j , j = 1,2, . . . ,ℓ ,

où v j est la j -ème colonne de V1, correspondant au vecteur propre orthonormé de AT A, associé à la
j -ème valeur propre λ j > 0.

• La décomposition en valeurs singulières existe toujours, mais n’est pas unique. En effet, le choix des
vecteurs propres, dans la construction de V , peut toujours se faire de multiples façons, menant à
autant de décompositions en valeurs singulières différentes.

Une conséquence de la preuve précédente est le résultat suivant :

Proposition 14.12. Le rang de la matrice A est égal au nombre ℓ de valeurs singulières non-nulles
(chacune comptée autant de fois que sa multiplicité).

14.3 Exemples

La preuve de la section précédente a montré clairement quelles sont les étapes menant à une décomposition
singulière d’une matrice A :

NumChap: chap-decomp-val-singulieres, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) 273

botafogo.saitis.net

14.3. Exemples

Méthode pour calculer la décomposition en valeurs singulières UΣV T d’une matrice A ∈Mm×n(R)

(SVD.1) Calculer les valeurs propres λ1 ⩾ . . .⩾ λn ⩾ 0 de AT A ∈Mn×n(R) (chacune est répétée autant
de fois que sa multiplicité algébrique), en distinguant ses valeurs propres positives λ1 ⩾ . . .⩾
λℓ > 0, où ℓ= rang(A) = rang(AT A). Les valeurs singulières de A sont

σ j :=
√
λ j , j = 1,2, . . . ,ℓ .

La matrice Σ ∈Mm×n(R) s’obtient alors

Σ :=


σ1 · · · 0
...

. . .
...

0 · · · σℓ

0

0 0


□

.

(SVD.2) Une base orthonormée {v1, . . . ,vn} de vecteurs propres de AT A, où vi est le vecteur propre de
valeur propre λi , donnent la matrice

V = [v1 · · · vn] ∈Mn×n(R) ,

les n −ℓ dernières colonnes étant associées à la valeur propre nulle (si besoin est).

(SVD.3) On définit d’abord
u j := 1p

λ j
Av j , j = 1,2, . . . ,ℓ .

Si ℓ= m, on pose
U := [u1 · · · um] ∈Mm×m(R) .

Si ℓ< m, on utilise une entre les deux méthodes ci-dessous :

(SVD.3.i) on complète {u1, . . . ,uℓ} en une base {u1, . . . ,uℓ,wℓ+1, . . . ,wm} de Rm , et on applique le
procédé d’orthonormalisation de Gram-Schmidt pour obtenir une base orthonormée
{u1, . . . ,uℓ,uℓ+1, . . . ,um} de Rm ;

(SVD.3.ii) on calcule une base {wℓ+1, . . . ,wm} du noyau de la matrice AT ∈ Mn×m(R) (ou A AT ∈
Mm×m(R)), et on applique le procédé d’orthonormalisation de Gram-Schmidt pour obte-
nir une base orthonormée {uℓ+1, . . . ,um} de Ker(AT) = Ker(A AT) ⊆Rm .

On pose finalement
U := [u1 · · · uℓ uℓ+1 · · · um] ∈Mm×m(R) .

Remarque 14.13. Le calcul des premiers u j peut également se faire comme suit :

u j := 1
∥Av j ∥ Av j , j = 1,2, . . . ,ℓ .

En effet, par un calcul que l’on a déjà fait,

∥Av j∥2 = (Av j) · (Av j) = v j · (AT Av j) = v j · (λ j v j) =λ j∥v j∥2 =λ j ,

et donc ∥Av j∥ =
√
λ j . ⋄

Informel 14.14. Remarquons que le travail nécessaire pour diagonaliser AT A et A AT peut être très
différent, étant donné que ces matrices sont a priori de tailles différentes !

274 NumChap: chap-decomp-val-singulieres, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

botafogo.saitis.net

14.3. Exemples

Exemple 14.15. Calculons la décomposition en valeurs singulières de

A =
(3

2
p

2
1

2
p

2
9

10
p

2
13

10
p

2

)
.

Comme A est una matrice de taille 2×2, sa décomposition A =UΣV T sera un produit de trois matrices de
taille 2×2.

On commence par calculer V , qui on le rappelle est formée de vecteurs propres de AT A. Or

AT A = 1

100

(
153 96
96 97

)
,

et on sait (voir exercices) que cette dernière possède deux valeurs propres, λ1 = 9/4, λ2 = 1/4, et que les
espaces propres associés sont

E9/4 = Vect

{(
4
3

)}
, E1/4 = Vect

{(−3
4

)}
,

qui donne, après normalisation,

E9/4 = Vect

{(
4/5
3/5

)}
, E1/4 = Vect

{(−3/5
4/5

)}
.

On peut donc prendre

V =
(
4/5 −3/5
3/5 4/5

)
,

qui correspond à une rotation d’angle θ = arccos(4/5). Ainsi, V T =V −1 correspond à une rotation de −θ.

Étant connues les valeurs propres de AT A, les valeurs singulières de A sont données par

σ1 =
√
λ1 = 3

2
, σ2 =

√
λ2 = 1

2
,

ce qui donne

Σ=
(
3/2 0

0 1/2

)
.

Ensuite, U a pour colonnes des vecteurs propres de A AT , or

A AT =
(
5/4 1

1 5/4

)
,

qui possède comme valeurs propres λ1 = 9/4 et λ2 = 1/4 (comme on sait, les mêmes que AT A !). Ses espaces
propres correspondants sont donnés par

E9/4 = Vect

{(
1
1

)}
, E1/4 = Vect

{(−1
1

)}
,

ou encore, après normalisation :

E9/4 = Vect

{(
1/
p

2
1/
p

2

)}
, E1/4 = Vect

{(−1/
p

2
1/
p

2

)}
,

On a donc

U =
(1p

2
−1p

2
1p
2

1p
2

)
,

NumChap: chap-decomp-val-singulieres, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) 275

botafogo.saitis.net

14.3. Exemples

qui n’est autre qu’une rotation de φ= π
4 .

Remarquons qu’on aurait aussi pu trouver les colonnes de U en faisant

u1 = 1

σ1
Av1 = 1

3/2

(3
2
p

2
1

2
p

2
9

10
p

2
13

10
p

2

)(
4/5
3/5

)
=

(
1/
p

2
1/
p

2

)
,

pareil pour u2.

On a donc la décomposition en valeurs singulières de A, qui permet de voir la transformation

x 7→ Ax =
(
1/
p

2 −1/
p

2
1/
p

2 1/
p

2

)(
3/2 0

0 1/2

)(
4/5 3/5
−3/5 4/5

)
x︸ ︷︷ ︸

V T x︸ ︷︷ ︸
ΣV T x︸ ︷︷ ︸

UΣV T x

.

comme une composition

1) d’une rotation d’angle −θ ≃−36.9o , suivie

2) d’un étirement le long des axes de coordonnées (3/2 selon e1, 1/2 selon e2), suivi

3) d’une rotation d’angle φ=+45o .

⋄
Remarque 14.16. Wolfram Alpha peut donner une décomposition en valeurs singulières de n’importe quelle
matrice. Par exemple, pour obtenir la décomposition de

M =
(
3 0
4 5

)
,

il suffit d’entrer

singular value decomposition [[3,0],[4,5]]

276 NumChap: chap-decomp-val-singulieres, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

https://www.wolframalpha.com/
botafogo.saitis.net

14.3. Exemples

⋄
Exemple 14.17. Calculons la décomposition en valeurs singulières de

A =
1 1

1 1
0 0

 .

On commence par

AT A =
(
2 2
2 2

)
,

qui possède deux valeurs propres, λ1 = 4 et λ2 = 0. Ainsi, A possède une seule valeur singulière non-nulle :
σ1 =

√
λ1 = 2. On trouve un vecteur propre unitaire pour chaque valeur propre, par exemple :

v1 =
(
1/
p

2
1/
p

2

)
, v2 =

(−1/
p

2
1/
p

2

)
,

qui donne déjà

V =
(
1/
p

2 −1/
p

2
1/
p

2 1/
p

2

)
,

Pour calculer U , on peut soit passer par l’étude de A AT , ou alors commencer par obtenir une de ses co-
lonnes en prenant

u1 = 1√
λ1

Av1 = 1

2

1 1
1 1
0 0

(
1/
p

2
1/
p

2

)
=

1/
p

2
1/
p

2
0

 .

On doit maintenant trouver deux colonnes u2 et u3, de façon à ce que U = [u1 u2 u3] soit orthogonale. On
peut par exemple prendre

u2 =
 1/

p
2

−1/
p

2
0

 , u3 =
0

0
1

 .

NumChap: chap-decomp-val-singulieres, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) 277

botafogo.saitis.net

14.3. Exemples

Il reste à produire Σ. Puisque A n’a qu’une seule valeur singulière non-nulle, et que Σ doit être de taille 3×2,
on rajoute des blocs appropriés :

Σ=
2 0

0 0
0 0

 .

On a donc une décomposition en valeurs singulières pour A :

A =
1 1

1 1
0 0


=

1/
p

2 1/
p

2 0
1/
p

2 −1/
p

2 0
0 0 1

2 0
0 0
0 0

(
1/
p

2 −1/
p

2
1/
p

2 1/
p

2

)T

,

⋄
Exemple 14.18. Étudions la décomposition en valeurs singulières de

A =
(

3 1 1
−1 3 1

)
,

pour laquelle on aura une matrice U de taille 2×2, une matrice Σ de taille 2×3 et une matrice V de taille
3×3. Commençons par

AT A =
10 0 2

0 10 4
2 4 2

 ,

qui a pour polynôme caractéristique

P AT A(λ) =−λ(λ−10)(λ−12) .

On a donc les valeurs propres, en ordre décroissant, λ1 = 12, λ2 = 10, λ3 = 0. On a donc deux valeurs singu-
lières strictement positives, σ1 =

p
12 = 2

p
3, σ2 =

p
10.

Les espaces propres sont :

E12 = Ker(AT A−12I3) = Vect


1

2
1

 ,

E10 = Ker(AT A−10I3) = Vect


−2

1
0

 ,

E0 = Ker(AT A) = Ker(A) = Vect


−1
−2
5

 .

On peut donc normaliser et obtenir

V = [v1 v2 v3] =

1/
p

6 −2/
p

5 −1/
p

30
2/
p

6 1/
p

5 −2/
p

30
1/
p

6 0 5/
p

30

 .

La matrice U = [u1 u2] s’obtient par

u1 = 1

σ1
Av1 = 1

2
p

3

(
3 1 1
−1 3 1

)1/
p

6
2/
p

6
1/
p

6

=
(
1/
p

2
1/
p

2

)
,

278 NumChap: chap-decomp-val-singulieres, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

botafogo.saitis.net

14.4. Représentation d’une matrice suite sa décomposition en valeurs singulières⋆

u2 = 1

σ2
Av2 = 1p

10

(
3 1 1
−1 3 1

)−2/
p

5
1/
p

5
0

=
(−1/

p
2

1/
p

2

)
.

Finalement, les deux valeurs singulières positives permettent d’écrire

Σ=
(
2
p

3 0 0
0

p
10 0

)
.

On a donc une décomposition en valeurs singulières pour A :

A =
(

3 1 1
−1 3 1

)

=
(
1/
p

2 −1/
p

2
1/
p

2 1/
p

2

)(
2
p

3 0 0
0

p
10 0

)1/
p

6 −2/
p

5 −1/
p

30
2/
p

6 1/
p

5 −2/
p

30
1/
p

6 0 5/
p

30


T

.

⋄

14.4 Représentation d’une matrice suite sa décomposition en valeurs singu-
lières⋆

14.4.1 Le résultat principal

Soit A une matrice de taille m ×n dont une décomposition en valeurs singulières est donnée :

A =UΣV T .

Comme nous avons fait avec la décomposition spectrale, nous allons profiter de la décomposition en va-
leurs singulières pour écrire A comme une combinaison linéaire de matrices plus simples.

On rappelle que l’on impose dans une décomposition en valeurs singulières que les valeurs apparaissent
sur la diagonale de Σ en ordre décroissant :

σ1⩾σ2⩾ . . .⩾σmin(m,n) .

En nommant les colonnes de U et de V :

U = [
u1 · · ·um

]
, V = [

v1 · · ·vn
]

.

Définissons alors l’indice de la plus petite valeur singulière strictement positive,

ℓ := max{1⩽ k ⩽min(m,n) : σk > 0} .

et procédons comme on l’a fait pour la décomposition spectrale en écrivant, pour tout x ∈Rn ,

Ax =UΣV T x = [
u1 · · · um

]
Σ

vT
1 x
...

vT
n x



= [
σ1u1 · · · σℓuℓ0 · · ·0]vT

1 x
...

vT
n x


=

ℓ∑
k=1

σk uk vT
k x

=
(

ℓ∑
k=1

σk uk vT
k

)
x .

NumChap: chap-decomp-val-singulieres, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) 279

botafogo.saitis.net

14.4. Représentation d’une matrice suite sa décomposition en valeurs singulières⋆

On a donc pu écrire A comme une somme :

A =
ℓ∑

k=1
σk uk vT

k ,

On retrouve bien, pour tout j ,

Av j =
ℓ∑

k=1
σk uk vT

k v j︸ ︷︷ ︸
=δk, j

=σ j u j .

Remarquons qu’à l’inverse de la décomposition spectrale, une matrice uk vT
k ne représente pas une pro-

jection puisqu’elle transforme un vecteur de Rn en un vecteur de Rm . Son seul point commun avec une
projection est que

rang(uk vT
k) = 1.

La décomposition en valeurs singulières fournit donc une représentation d’une matrice comme une somme
de matrices de rang égal à 1.

14.4.2 Approximation optimale par une matrice de rang fixé

Définissons, pour tout k ⩽ ℓ,

A(k) :=
k∑

j=1
σ j u j vT

j .

Alors A(k) est la matrice de rang k qui approxime le mieux A, dans le sens suivant :

Théorème 14.19 (Théorème d’Eckart-Young). Soit A une matrice de taille m×n de rang ℓ⩽ n. Pour
tout 1⩽ k ⩽ ℓ, A(k) est la matrice de rang k qui approxime le mieux A :

min
B

∥A−B∥ =
∥∥∥A− A(k)

∥∥∥ ,

où le minimum est pris sur toutes les matrices m ×n de rang au plus égal à k.

Preuve: D’une part, comme A(k) est de rang k, on a bien

min
B

∥A−B∥⩽ ∥∥A− A(k)
∥∥ .

Remarquons ensuite que ∥∥A− A(k)
∥∥=σk+1 .

Il reste à vérifier que si rang(B)⩽ k, alors ∥A−B∥⩾σk+1. En effet, par le théorème du rang, on sait que le noyau de B
a dimension au moins n −k. Les vecteurs v1 à vk+1 engendrent un sous-espace de dimension k +1, donc ces espaces
doivent s’intersecter. On prend un x qui est dans les deux à la fois, et on calcule

∥∥(A−B)x
∥∥2 = ∥Ax∥2 =

k+1∑
j=1

c2
jσ

2
j ⩾ (

∑
j

c2
j)σ2

k+1 =σ2
k+1∥x∥2 .

280 NumChap: chap-decomp-val-singulieres, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

botafogo.saitis.net

14.5. Élongations et ellipsoïdes⋆

14.5 Élongations et ellipsoïdes⋆

Dans cette section nous utiliserons la décomposition en valeurs singulières pour répondre à deux questions
géométrique naturelles à propos d’une application linéaire T : Rn → Rm définie par une matrice A, T (x) =
Ax :

1) Comment se transforme la sphère unité, définie par

S := {x ∈Rn : ∥x∥ = 1}

= {x ∈Rn : x2
1 +·· ·+x2

n = 1} ,

sous l’action de T ? (En d = 2, S est le cercle de rayon 1 centré à l’origine.)

2) Parmi les vecteurs x situés sur cette sphère, quels sont ceux qui subissent une élongation maximale/minimale,
à savoir ceux pour lesquels ∥Ax∥ est maximal/minimal?

Ces deux questions pourront être étudiées simultanément.

Exemple 14.20. Sur l’animation suivante, on observe que l’application linéaire T : R2 → R2 donnée trans-
forme le cercle S en ellipse. Les axes de cette ellipse doivent donner les directions d’élongation maximale
(grand axe) et minimale (petit axe) :

⋄

Soit A = UΣV T une décomposition en valeurs singulières de A, dans laquelle on suppose, comme précé-
demment, que les valeurs sur la diagonale de Σ sont arrangées en ordre décroissant :

σ1⩾σ2⩾ . . .⩾σmin(m,n) .

On rappelle qu’avec cet ordre, σ j =
√
λ j , où λ j ⩾ 0 est la j -ème plus grande valeur propre de AT A.

NumChap: chap-decomp-val-singulieres, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) 281

botafogo.saitis.net

14.5. Élongations et ellipsoïdes⋆

Proposition 14.21. L’élongation maximale d’un vecteur sur la sphère unité est donnée par

max
x∈S

∥Ax∥ = max
k

σk =σ1 .

L’élongation minimale d’un vecteur sur la sphère unité est donnée par 0 si Ker(A) ̸= {0}, et sinon par

min
x∈S

∥Ax∥ = min
k
σk .

De plus,

• le maximum est réalisé lorsque x est un vecteur propre unitaire de AT A associé à la plus grande
valeur propre de AT A (en l’occurence λ1).

• le minimum est réalisé lorsque x est un vecteur propre unitaire de AT A associé à la plus petite
valeur propre de AT A.

Nous utiliserons l’entier ℓ= rang(A), qui implique que σℓ > 0 et σℓ+1 = 0 si ℓ< min(m,n).
Preuve: Par l’orthogonalité de U (qui implique ∥U z∥ = ∥z∥ pour tout z ∈Rm), on peut écrire

∥Ax∥ = ∥UΣV T x∥ = ∥ΣV T x∥ ∀x ∈Rn .

On a donc

max
x∈S

∥Ax∥ = max
x∈S

∥ΣV T x∥
= max

y∈S
∥Σy∥

= max
y∈S

√
σ2

1 y2
1 +·· ·+σ2

ℓ
y2
ℓ

.

Dans la deuxième égalité, on a effectué le changement de variable y :=V T x (l’orthogonalité de V T implique que cette
transformation est bijective, et que la condition ∥x∥ = 1 est préservée puisque ∥V T x∥ = ∥x∥).
Ensuite, remarquons que si y ∈S , alors

σ2
1 y2

1 +·· ·+σ2
ℓy2

ℓ ⩽σ
2
1 y2

1 +·· ·+σ2
1 y2

ℓ

=σ2
1(y2

1 +·· ·+ y2
ℓ)

⩽σ2
1∥y∥2

=σ2
1 .

Ensuite, soit z ∈Rn le vecteur qui a toutes ses composantes nulles sauf la première, qui vaut 1. Alors z ∈S , et donc

max
y∈S

(σ2
1 y2

1 +·· ·+σ2
ℓy2

ℓ)⩾ (σ2
1z2

1 +·· ·+σ2
ℓz2

ℓ)

=σ2
1∥z∥2

=σ2
1 .

Ceci montre que maxx∈S ∥Ax∥ =σ1. Ensuite, on a déjà fait plusieurs fois ce calcul : si v1 est le vecteur propre unitaire
de AT A associé à λ1, alors

∥Av1∥2 = (Av1) · (Av1)

= v1 · (AT Av1)

= v1 · (λ1v1)

=λ1∥v1∥2

=λ1 ,

ce qui montre que
max
x∈S

∥Ax∥ =σ1 =
√
λ1 = ∥Av1∥ .

282 NumChap: chap-decomp-val-singulieres, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

botafogo.saitis.net

14.5. Élongations et ellipsoïdes⋆

Pour l’élongation minimale, le cas où Ker(A) ̸= {0} est immédiat puisque dans ce cas il existe x∗ ∈ S tel que Ax∗ = 0.
Dans le cas contraire, on commence de la même façon, en utilisant la décomposition en valeurs singulières pour écrire

min
x∈S

∥Ax∥ = min
x∈S

√
σ2

1 y2
1 +·· ·+σ2

ℓ
y2
ℓ
=σℓ = min

k
σk .

Exemple 14.22. On a déjà rencontré la matrice

A =
(3

2
p

2
1

2
p

2
9

10
p

2
13

10
p

2

)
,

qui possède comme valeurs singulières σ1 = 3
2 et σ2 = 1

2 . Par le théorème ci-dessus, les vecteur du cercle
unité qui subissent l’élongation maximale (d’amplitude 3

2) sous l’action de A sont

±v1 =±
(
4/5
3/5

)
,

dont l’image est

±Av1 =±σ1u1 =±3

2

(
1/
p

2
1/
p

2

)
,

et les vecteur du cercle unité qui subissent l’élongation minimale (d’amplitude 1
2) sous l’action de A sont

±v2 =±
(−3/5

4/5

)
,

dont l’image est

±Av2 =±σ2u2 =±1

2

(−1/
p

2
1/
p

2

)
,

⋄

NumChap: chap-decomp-val-singulieres, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) 283

botafogo.saitis.net

14.6. Résumé du chapitre sur la décomposition en valeurs singulières

14.6 Résumé du chapitre sur la décomposition en valeurs singulières

DÉCOMPOSITION EN VALEURS SINGULIÈRES D’UNE MATRICE A ∈Mm×n(R) :

A = [u1 · · · um]︸ ︷︷ ︸
=:U∈Mm (R)

Σ︸︷︷︸
∈Mm×n (R)

[v1 · · · vn]T︸ ︷︷ ︸
=:V T ∈Mn (R)

orthogonale :
U T U =UU T = Im

orthogonale :
V T V =V V T = In

non négative diagonale :
Σi , j = 0 si i ̸= j

et Σi , j ⩾ 0

VALEURS ET VECTEURS SINGULIÈRS DE MATRICE A ∈Mm×n(R) :

• VECTEURS SINGULIERS À GAUCHE DE A : u1, · · · ,um

• VALEURS SINGULIERS DE A : Σ1,1⩾ · · ·⩾Σp,p ⩾ 0, p := min(m,n)

• VECTEURS SINGULIERS À DROITE DE A : v1, · · · ,vn

DÉCOMPOSITION EN VALEURS SINGULIÈRES D’UNE MATRICE A ∈Mm×n(R) ET RANG :

rang(A) = #{ j :Σ j , j > 0} (VOIR PROPOSITION 14.12)

CALCUL DE DÉCOMPOSITION EN VALEURS SINGULIÈRES D’UNE MATRICE A ∈Mm×n(R) :

1 DIAGONALISER AT A ∈Mn×n(R) −−−→ VALEURS PROPRES λ1⩾ · · ·⩾λℓ > 0,λℓ+1 = ·· · =λn = 0

−−−→ Σ ∈Mm×n(R) :Σ1,1 :=
√
λ1, · · · ,Σℓ,ℓ :=

√
λℓ, D’AUTRES Σi , j := 0

FAIT IMPORTANT :
λ> 0 VALEUR PROPRE DE AT A ⇔λ> 0 VALEUR PROPRE DE A AT

ET ELLES ONT LA MÊME MULTIPLICITÉ ALGÉBRIQUE

(VOIR LEMME 14.9)

−−−→ BON DE VECTEURS PROPRES {v1, · · · ,vn} −−−→ V := [v1 · · · vn]

FAIT IMPORTANT : Σ1,1 = ∥Av1∥, . . . ,Σℓ,ℓ = ∥Avℓ∥
2 u1 := 1p

λ1
Av1, · · · ,uℓ := 1p

λℓ
Avℓ −−−→ COMPLÉTER EN BON VIA GS −−−→ {u1, · · · ,uℓ,uℓ+1, · · · ,um}

OU

−−−→ BASE DE Ker(AT) PUIS BON DE Ker(AT) VIA GS : {uℓ+1, · · · ,um}

−−−→ U := [u1 · · · um]

284 NumChap: chap-decomp-val-singulieres, Dernière compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)

botafogo.saitis.net

