Algebre Linéaire

Sacha Friedli (CMS, EPFL)
et
Stanislas Herscovich (CAPE, EPFL)

S(x)







Table des matieres

I Préface
L1 AProposdeCeCOUIS . . . . v vt v vt e e et e e e e e e
.2  Nouvelle Version . . . . . . . . . . . 0 e e e e e e e
[.3  Références bibliographiques . . . . .. . . . .. . . e
L4 Notation . . . . . . . . e e e e e e e e e

1 Systémes d’équations linéaires

1.1 Introduction . . . . . . . . . . e e e e e
1.1.1  Descriptiongénérale . . . . . . . . . . . . e e e
1.1.2  Motivation: Traficroutier . . . . . . . ... ... . . e

1.2 Définitionetexemples . . . . . . . . . e e e
1.2.1  Définition d’'un systeme d’équations linéaires . . . . . . ... ... .. ... ... ....
1.2.2  Résolution d'un systéme d’équations linéaires . . . . . .. .. ... .. ... .......

1.3  Surle nombre de solutions d'un systéme linéaire . . ... ... .. ... .. ... ........
1.3.1 Interprétation géométriquedanslecasn=2. ... ... ... ... . ... .. ......
1.3.2  Interprétation géométriquedanslecasn=3. ... ... ... ... ... ... ...,

1.4 Transformer un systéme en UN autre . . . . . . . o v v v v v v vt ot e e e e e e
1.4.1  Unidéal:lessystemes triangulaires . . . . ... ... .. ... ... ... ... ......
1.42  Opérations élémentaires. . . . . . . . . . . . e e

1.5 Matrices et algorithmede Gauss . . . ... ... ... .. .. ... ... e
1.5.1  Algorithmede Gauss-Jordan . . ... ... ... ... .. .. .. .. .. ..
1.5.2  Matrices assOCiées @ UNSYSIEIME . . . . . . . v v v v v vttt e et e e e e
1.5.3  Opérations élémentaires surlesmatrices . . . . . .. ... .. ... ... ... ......
1.5.4 Matriceséchelonnées . . ... .. ... .. .. ... . e
1.5.5 Laforme échelonnéeréduitede Gauss . . ... ... .. ... ... . ... ......

1.6  Résumé du chapitre sur les systémes d’équations linéaires . . . . ... ... ... .. ......

2 Vecteurs de R”

2.1 DEfinitions . . . . . . . . e e e
211 VECEEUIS . . . . o vt e e e e e
2.1.2  Addition et multiplication par des scalaires . ... ... .. ... ... ... ......

2.2 Colinéarité . . . . . . . . . e

2.3 Combinaisons linéaires et partiesengendrés . . . . . .. ... ... ... ... .. ... ... ..
2.3.1 Partiesengendrées . . . . . . .. . ... e
2.3.2 LabasecanoniquedeR"” . . . . .. ... ... ...

24 Indépendancelinéaire . . . . . . .. . . . . ...
2.4.1  Motivation : une caractérisation de la non-colinéarité . ... ... .. .. ... .. ...
2.4.2  Définition et propri€tés . . . . . . . . . e

2.5 Résumé du chapitre surlesvecteursde R . . . . .. .. ... ... .. .. ...

3 Formulation vectorielle des systemes d’équations linéaires
3.1  Systemes d’équations linéaires : formulation vectorielle . . ... ... ... ... ........

vi

vii

O 00 O U1 v W W W = = = -

b b e e et e
© OB B W W wo

21
21
21
22
25
26
28
29
30
30
31
33

35



Table des matieres

i

3.1.1 Descriptiongénérale . . . . . . . . ... e 35
3.1.2 Laformulationvectorielle . . . . .. ... ... ... .. ... . 35
3.2 Surle nombre de solutions d'un systéme d’équations linéaires (bis) . ... ... ... ... .. 39
3.3  Systemes d’équations linéaires homogenes etinhomogenes . . . . . ... ... ... ... ... 40
3.3.1  Solutions des systtmes homogénes . . ... ... ... ... ... .. .. .. ... ... 40
3.3.2  Systéemes homogenes et indépendance linéaire . . . .................... 42
3.3.3  Solutions des systemes d’équations linéaires inhomogeénes . . . ... ... ....... 43
3.4 Applications linéaires entre R” et R” :introduction . . . . . . . ... ... ... ......... 45
3.4.1 Applications:lepointdevuegénéral . ... ... ... ... .. ... ... ... 45
3.4.2 Définitiondelalinéarité . . . . . . . . .. ... e 46
3.5 Matrice d'une application linéaire entre R" et R™ . . . . . . .. .. ... ... ... ... 48
3.5.1 Résultatprincipal . . . . . . . . e e e 48
3.5.2 Pourlasuite.. . . ... .. 50

3.6  Résumé du chapitre sur la formulation vectorielle des systemes d’équations linéaires . ... 50

Définitions abstraites I : espaces vectoriels, sous-espaces vectoriels et applications linéaires entre

espaces vectoriels 52
4.1 Motivation . . . . . . . e e e e e 52
4.2 Définitionetexemples . . . . . . . . e e e e e 53
421  EspacesR™ . . .. 54
4.22 Espacesdefonctions . . . . .. . ... ... e 54
4.23 Espacesdepolyndmes . . . . . . . . .. ... e e 56
424 EspacedesmatriCes . . . . . . . . v v i i v it i e e e e e 57
425 Autresexemples. . . . . ... e e e 57
4.3 Colinéarité etindépendancelinéaire . . . . . . . . . . . .. . .. . e 58
43.1  Colinéarité . . . . . . . . e 58
4.3.2  Combinaisons linéaires et indépendance linéaire . . . . ... ... ... ......... 58
4.4 Sous-espacesvectoriels . . . . ... .. 60
4.5 Applicationslinéaires . . . . . . . . . .. e e 64
4.5.1 Généralitéssurlesapplications. . . . . . . . . . ... . 65
4.5.2  Définition d’applicationlinéaire . . . . . ... .. ... ... ... . . .. . ... 67
4.5.3 Noyaud'uneapplicationlinéaire . . . . ... ... ... .. .. .. .. .. .. ... 69
4,54  Applications linéaires de R" dans R™ injectives, surjectives et bijectives . . ... ... 70
4.6  Transformations géométriques™ . . . . . . . . . . . ... e 75
4.6.1 ProjectionsurunaxedeR? . .. . ... ... ... ... 75
4.6.2 RéflexionatraversunaxedeR? . .. .. .. ... ... ... 77
4.6.3 Rotation d’angle 6 autour de 'originedansR? . . . .. ... ................ 79

4.7  Résumé du chapitre sur les espaces vectoriels, les sous-espaces vectoriels et les applications
linéaires . . . . . . . . 80
Les opérations matricielles 82
5.1 Introduction . . . . . . . . . . e e e e 82
5.2  Produitmatriciel . . ... . . ... e 82
5.3 Transposition . . . . . . . . L e e e e e e e e e 85
5.3.1 Définitiongénérale . . . . . . . . ... e 85
5.3.2 TranspositiondeVvecteurs . . . . . . . . . . i it e e e 86
5.4  Propriétés du produit et de la transposition de matrices . . . . ... ... ... ... ... ... 87
5.5 Inversion de matrices : définition et propriétésdebase . . . . . . ... ... ... L .. 88
5,5.1  Motivation . . . . . . . . .. e e e e e e e 88
5.5.2  Définition et propriétés . . . . . . . . ... e e e e 89
5.5.3  Une application : inversion et résolution de systemes de taillenxn . . . ... ... .. 91

NumChap: claudia, Derniére compilation: 2025-01-13 12:27:17Z. (Version Web: bot afogo.saitis.net)


botafogo.saitis.net

Table des matieres

5.6 Inversion de matrices carréesdetaille2x2 . . . ... ... ... ... . e 92
5.7 Inversion de matrices carrées de taille n x n : matrices élémentaires et algorithme de Gauss-
Jordan . . . . . 94
571 Introduction . . . . . . . . . . . 94
5.7.2  Matrices élémentaires . . . . . . . . ... e e e 94
5.7.3 Lalgorithme . . . . . . . . . . e 99
5.8  Résumé du chapitre sur les opérations matricielles . . . . ... ... ... .. ... ....... 101
6 Déterminant 104
6.1 Introduction . . . . . . . . .. . . 104
6.2 Déterminant des matricesde taille2 x2revisité . . . ... .. ... ... ... ... .. ... .. 104
6.2.1  Propriétés algébriques du déterminant des matrices de taille2x2 . . . . ... ... .. 104
6.2.2  Linterprétation géométrique du déterminant des matricesde taille2x2 . . . . .. .. 106
6.3 Déterminantdes matricesdetaillenxn . ... .. ... ... . ... . ... . oo .. 108
6.3.1 Ladéfinition récursive dudéterminant . . . . . ... ... ... . L 0oL 108
6.3.2  Une caractérisation du déterminant a partir de ses propriétés algébriques™ . . . . . . 109
6.4 Propriétésdudéterminant. . . . . . . . . .. 111
6.4.1 Lecalcul du déterminant a partirdes propriétés. . . . . ... ... ... ... .. .... 111
6.4.2  Propriétésdudéterminant . ... ... ... .. ... 113
6.4.3 Unecuriositédanslecasn=3 ... .. ... ... . .. ... 116
6.5 Interprétation géométrique du déterminant de matricesde taille3x3 .. ... ... ... ... 117
6.6 Laformuledet(AB) =det(A)det(B) . . . . . . . . v i e, 117
6.6.1 Déterminantetinversibilité . . . . . ... .. ... L oL L L 118
6.6.2 Ledéterminantdelinverse . . . .. ... .. .. ... ... .. ... e 119
6.6.3 Ledéterminant comme invariant de similitude . . ... ... ... ... ... .. .... 120
6.7  Critéres d’'inversibilité de matricescarrées . . . .. .. ... .. ... .. .. .. .. ... 120
6.7.1  Lerésultat . . . . . . . . . e e e 120
6.7.2  Une application : une simplification de la définition d’inversibilit¢ ... ... ... .. 121
6.8 Formule de Cramer et CONSEqUENCES™ . . . . . . . v v i vt i ittt e et e et e et et 122
6.8.1  Résolution de systemes d’équations linéaires par déterminants . . ... ... ... .. 122
6.8.2  Une application intéressante : formule pour A™! . . ... ... ... ... ... ... 124
6.9 Résumé duchapitre surledéterminant . . . . . . ... ... ... 126
7 Définitions abstraites II : bases, dimension et théoréme du rang 129
7.1 Introduction . . . . . . . . e e e e 129
7.2 BaSES . .. e e e 129
7.2.1 Définitionetexemples . . . . . . . .. e 129
7.2.2  Extraire une base d'une famille génératrice. . . . .. .. ... ... ... ... ...... 132
7.3 DImMension . . . . ... .. e e 133
7.3.1 Lanotion fondamentale de dimension . . ... ... .. ... ...... ... .. .... 133
7.3.2  Complétion d'une famille libreenunebase .. ... ... ... ... .. ... .. .... 135
7.4  Lien entre familles libres, familles génératrices et applications linéaires . . . . . .. ... ... 136
7.5 UnebasepourKer(A) . . . . . . . i i i e e e 137
7.6  UnebasepourImg(A) . . . . . . . . . 139
7.6.1 Extraireunebasedescolonnes . . .. .. .. ... .. ... .. ... oo 139
7.6.2  Une méthode pour identifier les colonnesretirables . . . .. ... ... ......... 140
7.7 LeThéoremeduRang . ... ... ... . . ... e 143
7.7.1  Lethéoreme du rang pour des applications linéaires . . . .. ... .. ... ....... 143
7.7.2  Une version alternative du Théoreme du Rang: le cas des matrices . ... ... .. .. 144
7.7.3  Une application : 'espace engendré par les lignes d'une matrice . . . . .. ... .. .. 146
7.8  Résumé du chapitre sur les bases, la dimension et le ThéoremeduRang . ... ... .. ... 147

NumChap: claudia, Derniére compilation: 2025-01-13 12:27:17Z. (Version Web: botafogo.saitis.net) 111


botafogo.saitis.net

Table des matieres

8

9

Représentations en coordonnées et matricielles
8.1 Introduction . . . . .. . . . . . . e e
8.2 Coordonnées d'un vecteur relativesaunebase. . . . . ... ... ... .. ... L.
8.3  Représentation matricielle d'une application linéaire relative a deuxbases . . . .. ... ...
84 Lesmatricesdepassage . . . . . . . . . i e e e e
8.4.1 Motivation . . . . . . . . . e e e e
8.4.2 Ladéfinition de matricede passage . . . . . .. . .. ... e
8.5 Formule de changementdebase . . .. ... .. ... ... ... ... .. e
8.5.1 Changementdebasedanslecasgénéral T:V —-V' ... ... ..............
8.5.2 ChangementdebasedanslecasT:V—=V . ... ... ... ... .. .. .........
8.6 Exemples . . . . ... e e e
8.7  Résumé du chapitre sur les coordonnées et les représentations matricielles . ... ... ...
Valeurs et vecteurs propres
9.1  Motivation . . . . . . . e e e e e
9.2  Définitions de valeur propre, de vecteur propre et d’'espace propre . . . . . . .. .. ... ...
9.2.1  ESPACEePIOPIE . . . . o o o ottt e e e e e e e e e e e e e e e
9.2.2  Matrices inversibles etla valeur proprenulle . . . . . ... ... ... ... .. ......
9.3 Lepolyndme caractéristique . . . . .. .. ... ..
9.3.1  Recherche de vecteurs et valeurS propres . . . . . . .« v v v v v v i i v e e e
9.3.2  Le polynome caractéristique est un invariant de similitude . . ... ... ... ... ..
9.4  Multiplicités algébriques et géométriques . . . . . . . . . . .. L
9.5 Résumé du chapitre sur les valeurs et vecteurs propres . . . . . . . . . o .o it
10 Diagonalisation
10.1 Motivation etdéfinition . . . ... .. .. . . ..
10.1.1 Unidéal:les matricesdiagonales . .. ... .. ... ... ... ... ...,
10.1.2  Objectif . . . . . . o e e e
10.1.3 Diagonaliser une applicationdansleplan ... ... ... .. ... ... ... .....
10.1.4 Définition générale de la diagonalisabilité . . ... ... ... ... ... ... .....
10.2 Vecteurs propres associés a des valeurs propres distinctes . . . . .. ... ... .. .......
10.3 Criteredebase . . . . . . . . . e e e e
10.4 Deuxi€me CIiteIe . . . . . . . . v it i it e e e e e e e e e e e e e e e e e e e
10.5 Puissances de matrices diagonalisables . . . . . . ... ... ... . L L o L.
10.6 Diagonalisation dansle cas complexe™ . ... ... .. ... .. ... ... ...
10.7 Résumé du chapitre sur la diagonalisation . . .. .. ... ... ... ... ... .. ... ....
11 Produit scalaire et orthogonalité
11.1 Introduction . . . . . . . . . . i e e e e e
11.2 Norme etdistance euclidiennes . . . ... .. ... ... .. ... .. .
11.3 Produitscalaire euclidien . .. ... .. ... .. .. .. e
11.3.1 Définition et propriétés fondamentales . . . . ... ... ... ... .. ... .......
11.3.2 Orthogonalité . . . . . . . . . . . e
11.4 Définition abstraite de produit scalaireetexemples . . . . . ... ... ... .. ... ......
11.4.1 Définitionsgénérales. . . . . . . . . . . L e e e
11.4.2  Structure euclidienne sur les espaces de fonctions™ . . . .. ... ............
11.5 Aproposde Col(A) etLgn(A) . . . . . . oot i it e
11.6 Famillesorthogonales . . . . . . .. . . . . . .. e
11.7 Projection SUr UN VECLEUT . . . . . . o v v v vt e et e e e e e e e e e e e e e e e e e e
11.8 Projection sur un sous-espacevectoriel . . . . . . ... ... .. L L L o o o
11.8.1 Motivation : projectionsurunplandeR3 . . . .. ... ... ... ... ... ... .. ..

iv

150
150
151
153
159
159
161
165
165
166
167
170

172
172
173
176
178
178
179
180
181
184

185
185
185
186
186
188
188
189
192
194
199
201

NumChap: claudia, Derniére compilation: 2025-01-13 12:27:17Z. (Version Web: botafogo.saitis.net)


botafogo.saitis.net

Table des matieres

11.8.2 Casgénéral . ... ... . . . .. 222
11.8.3 Casou W est décrit par une base orthogonale . . . . ... ...... .. ... ....... 222
11.8.4 Casou W est décrit par une base orthonormée . . . ... ... ... .. ......... 224

11.9 Le procédé d’ orthogonalisationet d’orthonormalisation de Gram-Schmidt . . . . ... .. .. 226
11.9.1 Lidée, surunexempleoudim(W) =2 ... ... .. ... . ... 227
11.9.2 Casgénéral . . . ... . . . . . e e 228
11.9.3 Propriété d'unicité de la base orthonormée obtenue par le procédé de Gram-Schmidt*231
11.10 Ladécomposition QR . . . . . . . . . e e e 232
11.10.1 Casgénéral . .. . .. . . . . . e 232
11.10.2 Lorsque les colonnes de A sontindépendantes . . .. .. ................. 235
11.11 Résumé du chapitre sur le produit scalaire et 'orthogonalité . ... ... ... ... ...... 237
12 La méthode des moindres carrés 240
12.1 IntroduCtion . . . . . . . . . . i e e e e e e e 240
12.1.1 Descriptiongénérale . . . . . . . . . ... 240
12.1.2 Motivation : Celsius vs Fahrenheit? . . ... ... ... ... ... ... ... .. ..... 240

12.2 Méthodegénérale . . . . . . . . . . . e e e 244
1221 Généralités. . . . . . . . . 244
12.2.2 Léquationnormale . . . . . . . . . . e e e 245
12.2.3 Droite derégression . . . . . . . . . .. e e e 248

12.3 Utilisation de ladécomposition QR . . . . . . . . .. .. . e 250
12.4 Résumé du chapitre sur la méthode des moindrescarrés . . . . ... ... ... ... ...... 251
13 Diagonalisation de matrices symétriques via matrices orthogonales 252
13.1 Introduction . . . . . . . . . . e e e e e e 252
13.2 Rappel sur les matrices symétriques et orthogonales . . . . ... .. ... ... ... ...... 252
13.3 Sur les espaces propres d'une matrice symétrique . . . . . . ... ... ... 253
13.4 Théoreme de décompositionspectrale . . . ... ... ... ... ... 256
13.4.1 LeThéoreme Spectral . .. .. ... . . . . . .t e 256
13.4.2 Décompositionspectrale . . . . ... ... . . .. e 259

13.5 Résumé du chapitre sur la diagonalisation de matrices symétriques via matrices orthogonales262

14 La décomposition en valeurs singuliéres 263
14.1 Introduction . . . . . . . . . . o i e e e e e e 263
14.1.1 Lerésultat . . . . . . . . 263
14.1.2 SHIUCKUIE . . . . . o o o it e e e e e e e e e e e e 264
14.1.3 Matricesdéfiniesparblocs . . . ... .. ... .. 266
14.1.4 Lepolynéme caractéristiquede ABet BA™ . . . . . . ... ... .. 266

14.2 EXISTENCE . . . . . . o o o e e e e e e e e e e 267
14.2.1 Lesmatrices ATAet AAT . . .. 268
14.2.2 Preuveduthéoréme:. . . . . . . . . . . . 270

14.3 Exemples . . . . oo e e e e e e e e 273
14.4 Représentation d'une matrice suite sa décomposition en valeurs singulieres* . ... ... .. 279
14.4.1 Lerésultatprincipal . .. ... ... . . .. e 279
14.4.2 Approximation optimale par une matricederangfixé . .................. 280

14.5 Elongations et ellipsoides™ . . . . . . . . . . . ... e 281
14.6 Résumé du chapitre sur la décomposition en valeurs singuliéres . . . . ... ... ... .... 284

NumChap: claudia, Derniére compilation: 2025-01-13 12:27:17Z. (Version Web: botafogo.saitis.net) A\


botafogo.saitis.net

Chapitre I

Préface

I.1 A propos de ce cours

“For deep learning, it is linear algebra that matters the most. ”

Gilbert Strang, Linear algebra and learning from data

Ce polycopié, qui est en construction, contient I’essentiel de mon cours d’algebre linéaire, donné aux étu-
diant.e.s des sections de Génie Civil, Génie Electrique, et Sciences de I'’Environnement, a 'EPFL.

Initialement, la structure de ce cours était empruntée (a I'exception du dernier chapitre sur les chaines de
Markov) au cours donné par Simone Deparis (SMA, EPFL), lui-méme basé sur celui du Professeur Assyr
Abdulle (SMA, EPFL). Je remercie Simone et Assyr de m’avoir fourni ce matériel, qui a grandement facilité
la préparation de mes cours et de mes séries d’exercices a mon arrivée a I'EPFL.

Bien-sfir, la rédaction d’'un texte engendre ['utilisation d’'un style, des changements, des réarrangements,
des ajouts de matériel supplémentaire, etc. et donc le contenu de ce cours va progressivement s’écarter de
ce qu’était le cours d’Assyr.

Le format online de ce polycopié est emprunté de celui de mon cours d’Analyse 1. On trouvera sur ce dernier
plusieurs information additionnelles que je n’ai pas jugé nécessaire de reproduire ici.

I.2 Nouvelle version

Cette version du polycopié a été retravaillée dans 'automne 2024 par Stanislas Herscovich, avec I’accord de
Sacha Friedli, pour le cours d’Algebre linéaire MATH-111 de premiére année pour la section SV de 'EPFL. Le
texte a été réorganisé dans plusieurs endroits, mais en respectant la structure fondamentale. De nouveaux
résultats ont été ajoutés, avec le but de simplifier et compléter certaines preuves (e.g. les propriétés des
représentations matricielles des applications linéaires et des matrices de passage entre bases). En outre,
toutes les images du texte qui ne proviennent pas des logiciels de calcul mathématique ont été refaites avec
les paquets TikZ et PGF (voir le lien ici). Les passages (sections, sous-sections, théorémes, etc) marquées
avec une étoile rouge * sont considérés comme secondaires, et donc peuvent étre laissé de coté dans une
premiere lecture.

1.3 Références bibliographiques

e D.C. Lay, Algebre linéaire et applications. 4™¢ édition, Pearson. Ce texte est celui adopté par I'en-
semble des enseignants d’algebre linéaire. Il est volumineux mais tres facile a suivre. Contient de
nombreux exercices.

V1 NumChap: chap-preface, Derniére compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)
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I.4. Notation

1.4

Le MOOC (Massive Online Open Course) d’Algebre linéaire de Donna Testerman (SMA, EPFL) contient
tout ce qui est dit ici, et bien plus encore.

S. Balac et E Sturm, Algébre et analyse. 2°™¢ édition, Presses polytechniques et universitaires ro-
mandes. Ce livre est aussi une référence intéressante.

J. Rappaz et M. Picasso, Introduction a l'analyse numérique. Enseign. Math.[The Teaching of Ma-
thematics] Presses Polytechniques et Universitaires Romandes, Lausanne, 2004. x+256 pp. Ce livre
montre également quelques applications de I'algebre linéaire a la résolution numérique de certains
problemes classiques de physique.

H. Prado Bueno, Algebm Linear, Um segundo curso. Textos Universitdrios, Sociedade Brasileira de
Matematica.

Pour d’autres quiz (sur I'algebre linéaire et d’autres chapitres des mathématiques), créés par Terence
Tao, cliquer ici.

Notation

Comme d’habitude, on va noter ¢ 1'ensemble vide, i.e. 'ensemble sans aucun élément, N ={0,1,2,...} 'en-
semble des nombres naturels (contenant le zéro), N* = {1,2,...} 'ensemble des nombres naturels positifs,
Z=4{..,-2,-1,0,1,2,...} 'ensemble des nombres entiers, () 'ensemble de nombres rationnels, R I'’en-
semble des nombres réels et C I’ensemble des nombres complexes.

On rappelle que le symbole logique 3 signifie “il existe”, 3! signifie “il existe un unique”, V signifie “pour
tout” ou “quelque soit”, = signifie “est équivalent a”, et := dans une expression du type “A:= B” signifie que
le membre gauche “A” est défini a partir de I'expression “B”. Si A est un ensemble, on écrira {a € A|P} le
sous-ensemble de A formé des éléments a qui satisfont a la condition P.

On définit le symbole de Kronecker §; j par§; j =0sii# jetd;; =1. Etant données deux nombres entiers
met n,on définit [m,n]:={ie Zlm<i < n}.

NumChap: chap-preface, Derniére compilation: 2025-01-13 12:27:17Z. (Version Web: botafogo.saitis.net) vil
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Chapitre 1

Systemes d’équations linéaires

1.1 Introduction

1.1.1 Description générale

Ce premier chapitre présente les systemes d’équations linéaires, qui seront étudiés dans ce cours.

Objectifs de ce chapitre

Ala fin de ce chapitre vous devriez étre capable de

(0.1) reconnaitre un systeme d’équations linéaires (SEL) et ]'écrire sous forme matricielle;
(0.2) représenter graphiquement les solutions d'un SEL avec 2 variables;

(0.3) connaitre les SEL incompatibles et compatibles, déterminés et indéterminés;

(0.4) connaitre la notion de SEL équivalents, les opérations élémentaires, leur propriété fonda-
mentale, et les matrices échelonnées et échelonnées réduites;;

(0.5) calculer la forme échelonnée réduite d'une matrice, avec la méthode de Gauss-Jordan;
(0.6) déterminer les variables liées et variables libres;
(0.7) calculer les solutions d’'un SEL a partir de la forme échelonnée réduite.

Nouveau vocabulaire dans ce chapitre

o systeme d’équations linéaires (SEL)
 représentation matricielle d'un SEL
o SEL compatible in/déterminé

o opération élémentaire sur les lignes
o forme/matrice échelonnée

e solution d'un SEL

e matrice augmentée

SEL incompatible

SEL équivalents

forme/matrice échelonnée réduite
matrices ligne-équivalentes
algorithme de Gauss-Jordan
variables liées (ou de base)
variables libres (ou fondamentales)

1.1.2 Motivation : Trafic routier

Voyons comment les systémes d’équations linéaires peuvent apparaitre, dans des situations tres pratiques.
Dans une petite ville ne possédant que 4 croisements, on a mesuré les flux de voitures sur quelques axes
routiers entrants et sortants de la ville, dans le but de prévoir les flux résultant sur le réseau interne, et de
préparer les aménagements nécessaires :
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Ces mesures indiquent, par exemple, que le flux de voitures entrant au croisement B, venant de l'est de la
ville, est de 450 voitures par heure.

Etant données ces contraintes, se pose la question de savoir s'il est possible de calculer les flux résultants
sur les autres axes, indiqués par les lettres x; a x5 sur la figure.

Le principe régissant les flux a un croisement est le méme que celui utilisé dans les réseaux électriques (Loi
de Kirchhoff) : en chaque nceud du réseau, la somme des flux entrants doit étre égal a la somme des flux
sortants, ce qui donne, en chacun des points du réseau,

A: x1+x3=160,

B: 450=100+x; + x3,

C: Xp+x4=65+170,

D: 40=Xx3+ X4+ X5.

On peut récrire ces relations comme suit :

X1 + X3 = 160,
X1 + X = 350,
X2 + X4 = 235,

40.

X3 + X4 + X5

Plusieurs questions se posent :
o Existe-t-il des nombres x7, X2, X3, X4, X5 satisfaisant simultanément a ces 4 conditions?

« Si oui, ces nombres sont-ils tous positifs, pour respecter les sens imposés sur la figure, ou alors cer-
tains de ces nombres sont-ils négatifs (auquel cas on devra inverser le sens du trafic sur les axes
concernés)?

« Si oui toujours, est-ce que ces nombres sont uniques? Existe-t-il plusieurs solutions? Et s’ils ne sont
pas uniques, quelles contraintes y a-t-il sur les choix que I'on peut faire?

¢ FEtsilaville contenait des milliers de croisements, avec des centaines de flux entrants/sortants?

Le systeme de 4 équations a 5 inconnues ci-dessus est un exemple de ce qu’on appelle un systeme d’équa-
tions linéaires ou, plus simplement, un systeme linéaire. Ce type de systeme forme une part importante de
ce cours, et on commencera leur étude dans la section suivante.

Informel 1.1. La derniere question (“et si la ville était beaucoup plus grande?”) montre qu'il est

important d’aborder I'étude de ces systémes de facon rigoureuse, en acceptant qu’ils peuvent étre
de taille arbitrairement grande.
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1.2 Définition et exemples

1.2.1 Définition d'un systéme d’équations linéaires

Définition 1.2. Un systeme d’équations linéaires (SEL), ou simplement un systeme linéaire, en les
variables x;, xy, ..., X, est une famille d’équations du type suivant :

aaxy + aipxy + -+ apx, = b,

a1x1 + adgpxy + - + aypxXp, = by,
(%) .

am1X1 + amaX2 + -+ + amnpnXn = bn.

Un tel systeme est dit de taille m x n : il contient m équations, et n variables. Les nombres ay ; (1 <
k < m, 1< j< n)sont appelés les coefficients du systeme, les by (1 < k < m) forment le second
membre.

Remarque 1.3. Insistons sur le fait que les coefficients a; j, ainsi que le second membre, sont des nombres
fixés qui ne dépendent pas des x;; en général ils sont donnés par une situation pratique. o

On peut voir un systéme (*) comme une famille de m contraintes que les variables xy, ..., x, doivent satis-
faire, ou1 la k-eme contrainte est

a1x1 + agaxp + -+ Gipxn = bg.

On appelle cette contrainte une équation linéaire. On écrira parfois a;; aulieu de a; ; s'iln’y a pas de risque
de confusion.

1.2.2 Résolution d’'un systéme d’équations linéaires

Considérons un systeme de taille m x n donné, comme ().

Définition 1.4. Une famille de nombres (X1, X2, ..., X,) € R™ est une solution de (*) si elle satisfait
simultanément aux m contraintes spécifiées par (). Lensemble formé de toutes les solutions de ()
est noté S, et #(S(x)) dénote la quantité d’éléments de S.).
(S.1) S’il existe au moins une solution, i.e. S« # &, on dit que (*) est compatible. En plus,
(S§.1.1) si#(Si) =1, on dira que le systeme (*) est compatible déterminé (ou simplement dé-
terminé);
(S.1.2) si #(S(x)) > 1, on dira que le systeme (*) est compatible indéterminé (ou simplement
indéterminé).

(8.2) S’iln'existe aucune solution, i.e. S(x) = &, on dit que (*) est incompatible (ou singulier).

Lorsqu’un systeme est compatible, le résoudre signifiera trouver foutes ses solutions. Dans ce cas, on devra
aussi savoir décrire précisément S(.). Voyons deux exemples simples.

Exemple 1.5. Le systeme de taille 2 x 2

I,
0

X1 + X2
()
X1 + X2

est incompatible. En effet, quelle que soit la valeur de x; et x», la somme x; + x» ne peut pas étre a la fois
égalealeta0.Donc Sy =9d. 3
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Exemple 1.6. Considérons le systéme taille 1 x 2 suivant :
{ x1 + x» = 1.

On trouve facilement des solutions : (1,0), (2,-1), (3,—2), etc. Donc ce systéme est compatible, et semble
méme posséder une infinité de solutions. Pour décrire son ensemble de solutions précisément (pour n’en
oublier aucune!), il suffit de remarquer que I'on peut toujours choisir une des variables, et prendre 'autre
en fonction de facon a ce que la relation soit satisfaite. Par exemple, en choisissant x;, on garantit que la
contrainte est satisfaite en prenant

Xo=1-—x1.

Lorsqu’on peut ainsi choisir une variable, appelée variable libre, on a avantage a y penser comme a un
parametre, et a utiliser une autre lettre pour la décrire. Si on utilise la lettre ¢ pour ce parametre, on a

X1 =1,
Xo=1—-1.

Les variables x; et x, étant exprimées en fonction des variables libres, on les appelle variables liées (ou
variables de base). On peut finalement exprimer ’ensemble des solutions comme suit :

S={(t,1-1): teR}.

1.3 Sur le nombre de solutions d’un systeme linéaire

Un de nos objectifs dans ce qui suit sera de trouver des conditions suffisantes pour déterminer si un systeme
est compatible ou incompatible.

Mais avant cela, nous allons énoncer une propriété générale, satisfaite par n'importe quel systéme linéaire,
concernant le nombre de solutions qu’il peut posséder.

Théoreme 1.7. Si un systeme est compatible, alors soit il possede exactement une solution, soit il en
posséde une infinité.

Preuve: Considérons un systeme de taille m x n de la forme (%), que 'on suppose étre compatible. Si sa solution n’est
pas unique, c’est qu’il existe au moins deux familles distinctes, que I'on notera (X1, ..., X,) et (j1,..., ¥x), qui sont toutes
deux solutions de (*); cela signifie qu’elles satisfont toutes les contraintes : pour tout k = 1,2,...,m, on a d'une part
que

ag1Xy + 0+ agapXp = by

et d’autre part que
agajr + -+ aknyn = br.
Prenons alors un réel A quelconque, différent de 0 et de 1, et définissons la famille (zy,..., Z,), ol
Zj:=/13_6j+(1—/1))7j, j=12,...,n.
Montrons alors que (z1,..., Z,) est aussi solution, en montrant qu’elle satisfait chacune des m contraintes du systeme.
En effet,
Ag121++ g, nZn
=ap 1A +A -y +-+ar,Axy + A=V 7n)
=Mag %1+ + agpXn) + A= V(ak 171+ + @k nyn)

b =Dy
=Abr+ (1 - L)by
=by,
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ce qui signifie que la k-eme contrainte est satisfaite.

Puisque (X, ...,Xy) et (j1,...,¥,) sont distinctes, il existe au moins un k tel que X; # ji. Cela signifie que si A n’est
égalni a0 nial,le nombre z; = Ax; + (1 — 1) ji est différent a la fois de X et de yx. On peut donc, en choisissant A,
construire autant de nouvelles solutions. Ceci signifie que le systeme possede une infinité de solutions. O

Remarque 1.8. Un peu plus loin dans le cours, nous redonnerons la preuve de ce théoréme, mais en utilisant
le langage vectoriel, ce qui la rendra plus transparente. o

Informel 1.9. En d’autres termes, le nombre de solutions de n'importe quel systeme linéaire ne peut
étre que 0 (s'il est incompatible), 1 ou oco. Plus tard on se référera a ce résultat comme le Théoréme
(40, 1’ o00”.

Pour des petites valeurs de n, I'affirmation du Théoréme “0, 1,00” peut s'interpréter géométriquement.

1.3.1 Interprétation géométrique dans le cas n =2

Fixons n = 2, et considérons un systéme de taille m x 2 :

axy + aipxe = by,

a1x1 + axpxy = b,
(%)

am,1X1 + Am2X2 = bm .

Ici, une paire (x1, x2) peut s'interpréter comme les coordonnées d'un point dans le plan, relativement a un
repere orthonormé fixé. Aussi, on sait (voir cours de géométrie analytique) qu'une contrainte de la forme

ag1Xx1 + agaXx2 = by

signifie que le point de coordonnées (x, x») est sur une droite.

Donc une paire (x1, xp) sera solution de (), (x1, x2) € S(x), si et seulement si le point (x;, x2) appartient en
méme temps a chacune des m droites spécifiées dans (*). Or appartenir a m droites en méme temps est
une contrainte en général difficile a satisfaire, surtout si m est grand.

» S(x) esten général vide, surtout si on parle de plus de deux droites, ou dés que deux de ces droites sont
paralleles et distinctes :
X2

1)
2)

X1

\¥ 4) 4—\1 paralleles

Sur ce dessin, on voit qu’il n’existe aucun point (x1, x2) qui appartient aux quatre droites a la fois.

¢ S(+) contient seulement un élément si les droites s’intersectent en exactement un point :
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X2

1) @ ,03

\ .

» S(x) contient une infinité d’éléments si les droites sont confondues :

X2

M=...=@) =S

X1

On comprend que géométriquement, il est impossible de créer m droites dans le plan qui s’'intersectent,
par exemple, en exactement 4 points.

1.3.2 Interprétation géométrique dansle cas n =3

Fixons n = 3, et considérons un systéme de taille m x 3 :

aax1 + aipxy + aizxs = by,

ax1x1 + dppXy + az3xs = by,
(%)

am1X1 + GQma2X2 + amsxs = bpy.

Ici, un triplet (x1, X2, x3) peut s’interpréter comme les coordonnées d'un point dans I’espace, relativement a
un repeére orthonormeé fixé. Aussi, on sait (voir cours de géométrie analytique) qu'une contrainte de la forme

ag1 X1 + agpXxz + agszxz = bg

signifie que le point de coordonnées (x1, x», X3) est sur un plan.

Donc un triplet (x1, x», x3) sera solution de () si et seulement si le point (x;, X, x3) appartient en méme
temps a chacun des m plans spécifiés. Or ici aussi il est géométriquement clair que S(.) ne peut contenir
que 0, 1 ou une infinité de points.

e S(«) estvide dés que 2 de ces plans sont paralléles, distincts :
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paralléles

Ou alors ils peuvent aussi n’avoir aucun point en commun mais s’intersecter 2 a 2, sans que certains
soient paralleles :

* S(x) contient exactement un élément si les plans s’intersectent en seulement un point :
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S(x)

l‘,,’

* S(x) contient une infinité d’éléments si les plans sont confondus, ou s’intersectent selon une droite :

1.4 Transformer un systéme en un autre

Notre but pour la suite du chapitre est de présenter une méthode qui permet de savoir si un systeme est
compatible ou incompatilbe et qui, lorsqu’il est compatible, permet en plus de décrire précisément I'en-
semble de toutes ses solutions.

Cette méthode est utile non-seulement parce qu’elle méne a un algorithme (I'algorithme de Gauss) que
I'on peut facilement implémenter sur une machine a I’aide d'un programme de quelques lignes, mais aussi
parce qu’elle fournit un résultat théorique qui sera utilisé souvent dans la suite du cours.

Informel 1.10. Attention : Ce que nous présentons ci-dessous est une méthode de calcul. Elle sera
utilisée souvent dans la suite du cours, mais ne constitue pas, en soi, “I'essence de I'algébre linéaire” !
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1.4.1 Unidéal: les systémes triangulaires

Pour comprendre I'idée derriere la méthode générale qui va suivre, commencons par considérer un type de
systeme dont la structure suggere elle-méme une méthode de résolution.

Exemple 1.11. Considérons le systeme de taille 3 x 3 suivant :

X1 — X» + 2x3 = 4,
(%) Xo — 3x3 = =5,
5x3 = 10,
que I'on peut comprendre comme étant en fait
X1 — X2 + 2x3 = 4,
(*) Ox; + x» — 3x3 = =5,
Ox; + Ox, + 5x3 = 10.

La présence des zéros en bas a gauche donne a ce systeme une structure triangulaire, qui suggere une réso-
lution simple, “du bas vers le haut” :

1) Dans la troisieme équation, on calcule x3 = % =2.

2) Oninjecte x3 dans la deuxieme équation, pour trouver
Xp=—-5+3x3=-5+6=1.
3) Onminjecte x3 et x, dans la premiere équation, pour trouver
X1=4+x—-2x3=4+1-4=1.
Donc la solution est unique, donnée par (x1, x2, x3) = (1,1,2). o

Le systeme de ce dernier exemple était trés particulier, puisque les coefficients a1 = a3 = az» =0, lui
conférant une structure simple a traiter. Mais méme si le systeme était tres grand, toujours avec la méme
structure triangulaire,

X1 + 2xp — 4x3 — 8x4 + x5 + 9x¢ = -3,

Xo + 4x3 — bHx4 + x5 — Xxg = 6,

(%) 4 X3 + 6x4 + x5 — 6xg i -2,
—X4 + X5 + Xg = 3,

4xs + xg = O,

Txg = 11,

on traiterait le probleme de la méme facon, “du bas vers le haut”...

Voyons un autre exemple dans lequel on profite de la présence de coefficients nuls dans la partie inférieure
gauche, mais ol1 le nombre de variables est supérieur au nombre d’équations :
Exemple 1.12. Considérons
2x1 + x2 — x3 = 0,
Ox; + x2 + 2x3 3.

Ce systeme de taille 2 x 3 n’est pas “aussi triangulaire” que I'on voudrait. Pourtant, une opération naturelle
est de déplacer les termes contenant x3 du c6té droit, pour récrire ce systtme comme

2xX1 + X X3,
0x; + x2» = 3-2x3.
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Ecrit sous cette forme, on voit qu’on peut choisir la valeur de x3, ce qui fixe le coté droit, et qu’on se retrouve
ensuite avec un systeme d’équations linéaires triangulaire de taille 2 x 2 dont second membre dépend de xs.
Comme la valeur de x3 peut étre choisie, on dit que c’est une variable libre, elle joue le role de parametre;
on la notera plutét ¢ :
2xX1 + Xp = t,
{ X = 3-2t.

Procédant “du bas vers le haut”, on obtient x, = 3 —2¢, puis
x1=5(t-x)=3(t-B-20)=31-1).

On a donc, pour tout choix de ¢, une solution (x3, X2, x3) donnée par

x]:%(t—l),
Xo =3-2t,
X3=1.

On peut donc écrire 'ensemble de toutes les solutions de la facon suivante :
_ I3 .
s={(3¢-1,3-2¢,1): teR}.
S

Ainsi, la stratégie générale, pour résoudre un systeme quelconque, sera d’arriver a le transformer en un
systeme aussi triangulaire que possible. Pour que ce nouveau systéeme soit utile, il faudra étre stir que son
ensemble de solutions soit exactement le méme que le systéme de départ.

1.4.2 Opérations élémentaires

Considérons un systeme de taille m x n, noté (*). Dans la suite, on utilisera le symbole L; pour représenter
la i-eme ligne de (x) :
L;: ai1x1+a;2x2+ -+ anxp=>b;.

Définissons plusieurs facons d’agir sur les lignes d'un systeme :

Définition 1.13.

(OEL.I) Lopération consistant a échanger la i-éme et la j-éme lignes est appelée opération élémen-
taire sur les lignes (OEL) de type I, et sera notée

(OEL.IT) L'opération consistant a multiplier la i-eme ligne par un scalaire non-nul A € R* est appelée
opération élémentaire sur les lignes (OEL) de type II, et sera notée

(OEL.III) L'opération consistant a rajouter a la i-eme ligne un multiple (par un scalaire 1) de la j-eme
est appelée opération élémentaire sur les lignes (OEL) de type I1I, et sera notée

‘L,’<—Li+/1Lj.‘

Une opération élémentaire sur les lignes a pour effet de transformer un systéeme linéaire (*) en un autre
systeme linéaire (x)’, de méme dimension; ces deux systemes sont alors dits équivalents selon les lignes

].0 NumChap: chap-systemes-lineaires, Derniére compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)


botafogo.saitis.net

1.4. Transformer un systéme en un autre

(ou ligne-équivalents). Pour simplifier, les opérations élémentaires sur les lignes, seront souvent appelées
opérations élémentaires.

Exemple 1.14. Considérons le systeme

X1 + 3x + x3 + 4x4 = 3,
(*) 2x1 + b5x 4+ x3 — x4 = -1,
-X1 - 2.JC2 - 3JC3 - 9JC4 = 0.

e En appliquant a (*) I'opération de Type I donnée par L, < L, on obtient

2x1 + bBxo + x3 - x4 = -1,
() X1 + 3x2 + x3 + 4x4 = 3,
-X1 — 2x» — 3x3 — 9x4 = 0.

o En appliquant a («) I'opération de Type Il donnée par Ly — %Lg, on obtient

X1 + 3x2 + X3 + 4xy, = 3,

I 5 1 1 _ 1
(*) X1 + 5X2 + 5X3 — 33X = -3,

-X1 - ZXZ - 3X3 - 9JC4 = 0.

+ En appliquant a (*) I'opération de Type Il donnée par L3 — L3 + L;, on obtient

X1 + 3x + x3 + 4x4 = 3,
(*)'{ 2x1 + 5xp + x3 - x4 = -1,
Xo — 2x3 — 5x4 = 3.

<

Un propriété remarquable des opérations définies ci-dessus est qu’elles sont toutes inversibles, dans le sens
suivant : si ()’ s'obtient en appliquant une opération élémentaire (de Type L, Il ouIII) a (), alors il existe une
opération élémentaire réciproque qui permet, si on I'applique a (*)’, de revenir au systeme (x) de départ.

1) Laréciproquede L; — LjestLi—Lj (évident).

2) Laréciproque de L; — AL; (A € R*) est L; — %Li (en effet, on peut “défaire” la multiplication de la
ligne i par A en... divisant la ligne i par A).

3) Laréciproquede L; — L;+ALjest L; — L; — ALj (évident).

Comme conséquence de l'inversibilité :

Théoreéme 1.15. Soient deux systemes de mémes dimensions, (%) et (x). Si () est obtenu a partir de
(x) par une d'opération élémentaire, alors () et (*)' ont le méme ensemble de solutions :

Stx) = Seey -

L'usage du théoreme ci-dessus se fera comme suit :

Théoreme 1.16. Soient deux systemes de mémes dimensions, (x); et (x),. Si (x)2 peut étre obtenu a
partir de ()1 par une suite finie d'opérations élémentaires,

()1~ ooo v ()2,
alors (%) et (%), ont le méme ensemble de solutions :

Sty = S, -
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Preuve: Par le théoreme, on sait que lors de chaque étape, 'ensemble de solutions est préservé. Puisqu’il y un nombre
fini d’étapes, ceci implique S+), = S(x),. O

Ce dernier corollaire suggére une méthode de résolution d'un systéme de taille m x n quelconque : puisque
les opérations élémentaires ne changent pas 'ensemble des solutions, on pourra appliquer au systeme de
départ des opérations qui font peu a peu apparaitre des zéros dans la partie inférieure gauche. Une fois le
systeme “triangularisé”, on procédera “du bas vers le haut”, comme vu précédemment.

Plutdt que d’écrire explicitement un algorithme tres général, considérons un premier exemple, qui contient
déjal'idée de la méthode, et montre dans quel ordre les opérations élémentaires sont choisies :

Exemple 1.17. Considérons le systeme

3x; + 5x, + 4x3 = 1,
(%1 6x; + 12x + 6x3 = 0,
—2x1 - Z.X'Z - 7x3 = 5.

D’abord, simplifions la deuxieme ligne en la divisant par 6, ce qui revient a faire L, — éLz :

3x; + 5x, + 4x3 = 1,
(*)’1 X1 + 2x + x3 = 0,
—le - ZXZ - 7x3 = 5.

Regardons maintenant la premiere colonne, et les coefficients présents devant x;. Pour ce qui va suivre, on
a avantage a faire L; < Ly :

X1 + 2x, + x3 = 0,
(*)’1’ 3x7; + bxp + 4x3 = 1,
—-2x1 — 2xp — Tx3 = 5.

On va maintenant profiter du “x;” en haut a gauche, appelé pivot, pour faire apparaitre des zéros dans la
partie inférieure de la premiere colonne. Par exemple, pour faire disparaitre le “3x;” de la deuxiéme ligne,
on a besoin de lui soustraire 3 fois la premiére ligne. Donc en faisant L, — L, —3L;, on obtient

X1 + 2x + x3 = 0,
DS 01 - x2 4+ x3 = 1,
—le - ZXZ - 7x3 = 5.
Ensuite, en faisant Lz — L3 +2L,,
X1 + 2x» + x3 = 0,
)" 0x; - x2 + x3 = 1,
Ox; + 2x» — 5x3 = 5.

Ensuite, on passe a la deuxiéme colonne. C’est maintenant le “—x,”, dans Ly, qui joue le role de pivot et
dicte le choix de 'opération suivante, qui fait apparaitre encore un zéro au bas de la deuxiéme colonne :
L3 — L3+2Ly, qui donne

X1 + 2x + x3 = 0,
()2=(x)7" 001 - X2 + x5 = 1,
Ox; + Ox, — 3x3 = 7.

Remarquons que dans cette derniere étape, I'opération élémentaire n'a pas affecté les zéros de la premiere
colonne!

En transformant (*); en ()2, nous dirons plus loin que nous avons échelonné le systeme.

En procédant “du bas vers le haut” dans ()2, on obtient

S(»), ={(23—7»—13—0»—§)}»

et le corollaire permet de conclure que S, = S(x),. 3
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1.5 Matrices et algorithme de Gauss
1.5.1 Algorithme de Gauss-Jordan

On comprend que la méthode illustrée sur I'’exemple précédent, appelée algorithme de Gauss-Jordan (ou
simplement algorithme de Gauss), s’applique a des systémes de tailles quelconques. Il consiste a utiliser
des opérations élémentaires qui font progressivement apparaitre des zéros dans la partie inférieure gauche
de la matrice.

Méme si en général on n'utilise pas la méthode de Gauss-Jordan de facon exacte, car on emploie souvent
des raccourcis, on va expliquer la méthode de facon algorithmique pour aider a la comprendre mieux.

Méthode de Gauss-Jordan pour calculer la forme échelonnée réduite d'une matrice A

(GJ].1) Repérezlapremiere colonne de A a partir de la gauche avec un coefficient non nul. Avec une
(OEL.II) transformez ce coefficient en 1 et avec une (OEL.I) mettez le coefficient 1 dans la
premiere ligne.

(GJ.2) Avec des transformez tous les autres coefficients de la colonne dans I’étape précédente en 0,
sauf le coefficient 1 dans la premiere ligne.

(GJ.3) Repérez la premiere colonne de la matrice obtenue a la fin de I'étape précédente qui est a
droite de la colonne dans (GJ.1) avec un coefficient non nul. Avec une (OEL.II) transformez
ce coefficient en 1 et avec une (OEL.I) mettez le coefficient 1 dans la deuxiéme ligne.

(GJ.4) Avec des transformez tous les autres coefficients de la colonne dans I'étape précédente en 0,
saufle coefficient 1 dans la deuxieme ligne.

(GJ.5) Repérez la premiére colonne de la matrice obtenue a la fin de 'étape précédente qui est a
droite de la colonne dans (GJ.3) avec un coefficient non nul. Avec une (OEL.II) transformez
ce coefficient en 1 et avec une (OEL.I) mettez le coefficient 1 dans la troisieme ligne.

(GJ.6) Avec des transformez tous les autres coefficients de la colonne dans I'étape précédente en 0,
saufle coefficient 1 dans la troisieme ligne.

(GJ.7) ... (on continue jusqu’au moment ol il n'y a plus de colonnes a repérer)

Noter que, pour une matrice A de taille m x n I'algorithme décrit ci-dessus termine apres au moins 27
d’étapes, vu que dans chaque étape de la forme (GJ.2i) avec i entier on se déplace vers une colonne a droite.

Nous verrons plus d’exemples de l'utilisation de la méthode de Gauss-Jordan plus loin, mais arrétons-nous
un instant pour introduire une certaine simplification d’écriture.

1.5.2 Matrices associées a un systéme

Les opérations élémentaires que 1'on effectue sur un systéme général du type

aaixy + aipxa + -+ aipxp, = by,

a1x1 + dppXp + 0+ GypXn = b,
(%) .

ami1x1 + amax2 + - + amnpXn = bp

agissent sur les coefficients a; j, et sur les termes du second membre, les b;. Dans ces opérations, le nom
que 'on donne aux variables (jusqu’a présent : xy,..., x,) n'a pas d’'importance. Il est donc utile de simpli-
fier la manipulation des systémes en ne gardant que la structure numérique des coefficients et du second
membre.
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Définition 1.18. Soit () le systéme ci-dessus.

1) La matrice associée a (x) est le tableau de m x n nombres réels défini par

a, di12 - din
a1 adz2 - d2p
aAm,1 A4mz2 " AGmn

2) La matrice augmentée associée a () est le tableau de m x (n + 1) nombres défini par

a,) @mp - din | b
a1 a2 - d2n b
aAm,1 4m2 - Aamn b

avec une décoration supplémentaire : une ligne verticale qui sépare la derniére colonne du
reste de la matrice (cette ligne est la pour rappeler que la derniere colonne doit étre interprétée
comme le second membre dans (*)).

Exemple 1.19. La matrice augmentée du systéme

X1 + X2 + X4 = a,
X1 + X3 + 7X4 = ﬁ;
X2 — X3 + X Y
est donnée par
-1 1 1l a
1 1 7|
1 -1 1|y

1.5.3 Opérations élémentaires sur les matrices

Il est clair que les opérations élémentaires sur les lignes (de Type I, II, III) que I'on effectue sur un systéme
se traduisent naturellement en des opérations élémentaires sur les lignes de la matrice et de la matrice
augmentée associée.

De maniére générale, on peut effectuer des opérations élémentaires sur une matrice sans se référer au sys-

téme dont elle est issue. On peut donc définir deux matrices comme étant équivalentes selon les lignes (ou
ligne-équivalentes) sil'une peut s’obtenir a partir de 'autre par un nombre fini d’'opérations élémentaires.

1.5.4 Matrices échelonnées

Lalgorithme de Gauss méne, en général, a une matrice qui est ce que nous appelions “aussi triangulaire que
possible” ; définissons ce terme précisément.

].4 NumChap: chap-systemes-lineaires, Derniére compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)


botafogo.saitis.net

1.5. Matrices et algorithme de Gauss

Définition 1.20. Pour une matrice de taille m x n quelconque,

1) Le coefficient principal de la i-eme ligne est, s’il y en a un, le premier coefficient non-nul
trouvé, en partant de la gauche.

2) Une matrice est échelonnée si les deux conditions suivantes sont satisfaites :

(ECH.1) sielle posséde des lignes nulles (c’est-a-dire ne contenant que des coefficients nuls), alors
celles-ci sont toutes dans la partie inférieure de la matrice;

(ECH.2) si elle possede des lignes non-nulles, alors le coefficient principal de chacune de ces
lignes se trouve strictement a droite du coefficient principal de la ligne du dessus.

Exemple 1.21. La matrice

312 0|7
004 3 |-1
000 —3|0
000 00

est échelonnée. En effet, la seule ligne ne contenant que des zéros est tout en bas, et sur chacune des autres
lignes, le coefficient principal est strictement a droite du coefficient principal de la ligne du dessus : —%
(coefficient principal de la troisieéme ligne) est a droite de 4 (coefficient principal de la deuxieme ligne), qui

est lui-méme a droite de 3 (coefficient principal de la premiere ligne). o

Exemple 1.22. La matrice

1 2 3 4
00 1 2
00 -1 0

n'est pas échelonnée, car le coefficient principal de la troisieme ligne est juste sous le (et non strictement a
droite du) coefficient principal de la deuxieéme ligne. o

Théoreéme 1.23. Toute matrice peut étre transformée, a l'aide d’'un nombre fini de transformations
élémentaires, en une matrice échelonnée. (En d’autres termes : toute matrice est équivalente selon les
lignes a une matrice échelonnée.)

Preuve: La méthode utilisée dans les exemples traités plus haut se généralise sans difficulté a n'importe quelle ma-
trice. O

Exemple 1.24. Considérons la matrice augmentée du systéme vu plus haut :

3 5 41
6 12 6 |0
-2 =2 =7|5

En appliquant successivement les opérations élémentaires
Ly — %Lg, Ly~ Ly, Lp<—L,—-3L;,L3+—L3+2L;, L3z« L3+2Ly,

on obtient comme on a vu la matrice

1 2 1
-1 1|1/,
0o 0 -3|7
qui est échelonnée. 3
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Remarque 1.25. La matrice échelonnée obtenue dépend du choix des opérations élémentaires faites en
chemin! Par exemple, en partant de

1 11
1 1 3)°
alors en faisant L, — Ly — L; on obtient une premiére échelonnée
1 11
0 0 2)°
mais en faisant L; < L, suivie de L, — L, — L; on obtient
1 1 3
0 0 -2’
qui est une autre forme échelonnée. Donc une matrice peut posséder plusieurs formes échelonnées. 3

Concréetement, dans la transformation d'un systeme a I'aide d’opérations élémentaires, c’est une fois que la
matrice obtenue est échelonnée que I'on peut déja savoir si le systéme est compatible, si oui identifier les
variables libres, et exprimer I’ensemble des solutions. Voyons un exemple assez complet :

Exemple 1.26. Supposons que I'on parte du systeme

3x1 + X2 + 2Xx3 = 7,
(%) 6x; + 2x2 + 12x3 + Tx4 = 12,
6x; + 2x + 8xz3 + 4x4 = 13,
3x; + Xx» + 6xz3 + 4x4 = 6,
dont la matrice augmentée est
31 2 07
6 2 12 7|12
6 2 8 4|13
3 1 6 4|6

Faisons d’abord apparaitre des zéros dans la premiere colonne, en appliquant successivement Ly — Ly—2L;,
L3 <—L3—2L1, L4 <—L4—L1 .

312 0|7
0 0 8 7]-2
0 0 4 4|-1
0 0 4 4|-1

Comme les deux dernieres lignes sont égales, on peut faire Ly — Ly — L3 :

7
-2
-1

0

O O O W
oS o o~
S &~ 0N
(= N -]

Ensuite, L, — L, —2L3, suivie de Ly < L3, nous donne une version échelonnée :

312 0|7
0 0 4 4 |-1
000 -1|0
000 OO
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Comment poursuivre, pour obtenir S(.) ? Pour y voir plus clair, revenons au systeme correspondant a cette
derniére matrice augmentée :

3x; + x + 2x3 + Ox4 = 7,
(*), Ox; + Oxp + 4x3 + 4x4 = -1,
Ox; + Oxo + Oxz3 — x4 = 0,
Ox; + Ox + Oxz3 + Oxg4 = 0,
que I'on peut écrire plus simplement comme
3x1 + x2 + 2x3 = 7,
(%) 4x3 + 4xg = -1,
- X4 = 0.

On a supprimé la derniere ligne “0x; + 0x; + 0x3 + 0x; = 0”. En effet, cette contrainte n’en est pas une, puis-
qu’elle est satisfaite par n'importe quel quadruplet (xy, x2, X3, X4).

On observe maintenant que la variable x, = ¢ est libre, puisqu’on peut la passer du c6té droit pour obtenir
un systéme triangulaire en (x1, x3, x4), qui sont les variables de base :

3x; + 2x3 = 7-t,
(*)/ 4X3 + 4xy
- X4 = 0.

|
|
—

Maintenant, en procédant “de bas en haut”, on obtient

) 15-2¢
X4:0, x3:_Zy X1 = 6 ’
etdonc:
_ _ [(15-2¢ 1Q).
S(*)—S(*)f—{( 5 ’t’_Z’O)' IER}.
Le systeme est donc compatible, et possede une infinité de solutions. o

Exemple 1.27. Considérons le systéme

X1 + X2 — x3 = b,
(%)X 3x;1 + 4x = 4,
4x1 + 5xp — x3 = 7.
Apreés échelonnage, sa matrice devient
1 1 -1 5
1 3 |-11
0 0| -3
Le systeme correspondant est
X1 + X2 - X3 = 5,
(*)/ Ox; + x2 + 3x3 = -11,
Ox; + Ox, + Ox3 = -3,

qui est incompatible, puisque la derniére contrainte ne peut jamais étre satisfaite, quel que soit (x1, x2, x3).
Donc () est aussi incompatible. o
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1.5.5 Laforme échelonnée réduite de Gauss

Définition 1.28. Une matrice est échelonnée réduite si elle est échelonnée et si, de plus, les deux
conditions suivantes sont vérifiées :

(ECH.3) tous ses coefficients principaux sont égaux a 1,
(ECH.4) chaque coefficient principal est 'unique élément non-nul de sa colonne.

Les coefficients principaux d'une matrice échelonnée réduite sont appelés pivots.
Siun SEL (*) est représenté par une matrice augmentée A de taille m x (n+1), dont la forme échelon-
née réduite est A’, on dira qu'une variable x; avec 1 < i < n est libre (ou fondamentale) si la i-eme

colonne de A’ ne contient pas de pivot. Une variable x; avec 1 < i < n qui n’est pas libre est appelée
liée (ou de base).

Exemple 1.29. La matrice

01 0 3 8 01 0 2
0 01 590201
0 000 0O1 3 06
0 000 0O O0OOT1 5
0 000 0O O0OO0OTUO0DDO
est échelonnée réduite, ol les pivots sont indiqués en bleu. o

Voyons comment obtenir une échelonnée réduite d’'une matrice. Une fois encore, la méthode présentée
dans cet exemple particulier montre comment procéder en général :

Exemple 1.30. Considérons encore une fois la matrice du premier exemple de cette section :

3 5 4|1
6 12 6 |0
-2 =2 =715

Pour obtenir sa réduite, on commence par I’échelonner, comme vu plus haut :

1 2 110
0 -1 1|1
0 0 =37

On poursuit en rendant tous les coefficients principaux égauxa 1, al'aide de Ly — (—1)Ly et L3 — —%L3 :

1 2 1 0
01 -1| -1 ,
00 1 |-7/3

Remarquons que maintenant, lorsqu’on additionne un multiple d’'une ligne L; a une ligne L; située au-
dessus, la présence de zéros fait qu'on ne modifie pas les coefficients de L situés a droite du coefficient prin-
cipalde L;.

On procede donc “du bas vers le haut” pour faire apparaitre des zéros au-dessus des “1”. D’abord, on utilise
Ly — Ly + L3 pour faire partir le “—1” de la troisieme colonne, ce qui donne

1 21 0
0 1 0]-10/3
0 0 1] -7/3
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Ensuite, on peut faire disparaitre le “2” de la deuxieme colonne en faisant Ly < L; —2Lj,

1 0 1] 20/3
0 1 0}]-10/3 |,
0 0 1| =7/3

puis le “1” de la troisiéme colonne en faisant Ly — Ly — L3 :
1 0 0] 27/3
0 1 0}]-10/3 1,
0 0 1| -7/3

qui est la forme échelonnée réduite de la matrice de départ. On remarque que cette matrice correspond au
systeme

X1 = 27/3,
_X,'2 = - 10/3 )
X3 = -7/3,
pour lequel on a la solution “sous les yeux” : (x1, X2, X3) = (23—7, _Tm, %7). o

On I'’a mentionné plus haut, une matrice peut étre échelonnée d’'une infinité de facons différentes. Pour la
réduite, c’est différent :

Théoréme 1.31. Toute matrice A de taille m x n peut étre transformée, a l'aide d’'un nombre fini de
transformations élémentaires, en une matrice échelonnée réduite. De plus, cette échelonnée réduite est
unique et ne dépend pas des opérations élémentaires avec lesquelles elle a été obtenue; on l'appelle la
réduite de Gauss de A ou la forme échelonnée réduite (FER) de A.

Preuve: Lexistence suit de I'algorithme de Gauss-Jordanvu dans la Sous-section 1.5.1, qui termine aprés un nombre
fini d’étapes. Pour la preuve de I'unicité, on a besoin de développer un peu la notation. Voir Lemme 3.3. O

Dans la résolution d'un systeme, on n'a pas besoin d’aller jusqu’a la réduite pour obtenir la solution; n'im-
porte quelle échelonnée suffit. Mais puisque la réduite est unique, comme I'affirme le théoréme ci-dessus,
elle fournit des informations importantes sur la matrice de départ, que nous exploiterons dans les chapitres
suivants, en particulier dans I'étude des applications linéaires. D’'un point de vue pratique, elle nous per-
met toujours d’identifier les variables de base et les variables libres, et donc de résoudre completement le
systeme.

1.6 Résumé du chapitre sur les systémes d’équations linéaires

variables
X1 +--++ ApXp = b 4 EQUATION LINEAIRE
coefficients membre de droite
ax1 + aipxy + -+ aipxp, = by,
a1 X1 + a2 Xy + e+ a nXn = bg, R . .
(%) . . «— SYSTEME D’EQUATIONS LINEAIRES (SEL)
am1X1 + amaX2 + - + amnpnXn = bn.
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/a\i,j '\ COEFFICIENT DU SEL

ligne colonne . .
& COMPATIBLE DETERMINE :

ENSEMBLE DE SOLUTIONS DU SEL (*) : ’ une unique solution ‘

COMPATIBLE INDETERMINE :
’ nombre infini de solutions ‘

Sty ={(s1,..., $4) € R” qui satisfont aux éq. de (*)} | — 3 TYPES DE SEL:

PERATIONS ELEMENTAIRE R LES LIGNES (OEL) :
00 RATIONS ‘c c S SURLES LIGNES (OEL) INCOMPATIBLE :
(OEL.D (E E) ’aucune solution‘
(OEL.IT) (MULTIPLICATION, A # 0)

(OEL.ID) |L; < L; +AL; |(ADDITION D’UN MULTIPLE)

MATRICE ET MATRICE AUGMENTEE ASSOCIEES AU SEL (*) :

a,) @mp - Aip a1 @z - @ | b
azn azo -+ d2n azn az2 -+ dA2n b
A=| . ) . ) [Alb] =
am,1 Amz2 *° Amn am,1 Am2 **° Amn bm
MATRICE ASSOCIEE A (*) MATRICE AUGMENTEE ASSOCIEE A (%)

FORME ECHELONNEE REDUITE (FER) : — | METHODE DE GAUSS-JORDAN | (VOIR 1.5.1)

0 - 01 = 00 0 0
0 - 00 110 0 0
0 - 0 0 '6’:_}____ 0 0
0 -+ 0 0 00 11 0
0 - 0 0 T S
T T T T
Pivot
VARIABLES :
« COLONNE AVEC PIVOT DE FER DE A — VARIABLE LIEE DE (%)
« COLONNE SANS PIVOT DE FER DE A — VARIABLE LIBRE DE ()
SEL INCOMPATIBLE :
“5,1 “,1,2 all,n by
“5,1 “é,z alz,n b,
SEL () INCOMPATIBLE < FERDE [Ab]=| . . . . | . |ET[ D #0

SI (*) EST SEL COMPATIBLE :
SEL (+) COMPATIBLE DETERMINE < LA FER DE A N’A PAS DE VARIABLE LIBRE
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Chapitre 2

Vecteurs de R”

2.1 Définitions

Dans ce chapitre, nous laissons les systémes de c6té un instant, pour introduire le langage de base néces-
saire au développement de I’algebre linéaire dans les espaces R”, n > 1. Pour commencer, nous introduirons
la notion de vecteur, centrale en algébre linéaire, et particulierement utile pour décrire les systemes.

Objectifs de ce chapitre

Ala fin de ce chapitre vous devriez étre capable de

(0.1) exprimer un vecteur de R” comme combinaison linéaire d’autres vecteurs, si possible;

(0.2) déterminer siun vecteur est dans la partie engendrée par une famille de vecteurs en résolvant
le SEL associé;

(0.3) déterminer si une famille de vecteurs est libre ou liée en résolvant le SEL associé.

Nouveau vocabulaire dans ce chapitre

¢ combinaison linéaire o famille libre (ou linéairement indépen-
¢ vecteurs colinéaires dante)
o famille liée (ou linéairement dépendante) » partie engendrée

2.1.1 Vecteurs

On I'a déja mentionné plus haut : toute liste de nombres réels (x, x2,..., xX,) peut étre identifiée avec un
point de 'espace R”. Or les points de R” sont plus facilement manipulables lorsqu’on les interpréte comme
des objets appelés vecteurs.

On identifiera donc (x3,..., x;) avec le vecteur (dit aussi vecteur-colonne), noté
X1
X2
X =
Xn

Informel 2.1. En analyse, R” est considéré comme un ensemble de points. En algebre linéaire, R”
est considéré comme un ensemble de vecteurs.
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Il est clair que la liste (x1,...,X;) etle vecteur x contiennent la méme information, mais ici il faut interpréter
x comme le déplacement depuis I'origine jusqu’au point (x1, Xz, ..., X,,). Par exemple, dans le plan R?,

@y

X4 --------

o SR,
=
~
=

ou dans I'espace R :

(6]

Lavantage d’identifier des points avec des vecteurs est que le langage vectoriel permet d’introduire des
opérations qui rendent les vecteurs propices au calcul.

2.1.2 Addition et multiplication par des scalaires

On munit I’ensemble des vecteurs de R” de deux opérations :

1) (Multiplication par un scalaire) La multiplication d’un vecteur

X1
X2
X =
Xn
par un scalaire A € R est le vecteur Ax défini par
/1)61
AX2
AX:=
Axy,

Du point de vue géométrique, la multiplication par un scalaire A > 0 correspond a étirer (si A > 1) ou
comprimer (si0<A<1):
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2X

Lorsque A < 0, cette transformation est en plus accompagnée d'un changement de sens :

X
-x/2
2) (Addition vectorielle) Si deux vecteurs
X1 »n
X2 Y2
X=1 . et y=
Xn Yn
sont donnés, leur somme est définie par
X1+ )N
X2+ )2
X+y:=
Xn+ Yn

Remarque 2.2. En petites dimensions, n = 2 et n = 3, 'addition vectorielle peut s'interpréter géométrique-
ment comme la regle du parallélogramme :

y, X+y

On comprend ici que c’est I'interprétation d'un vecteur comme a un déplacement qui rend cette opération
d’addition naturelle. o

Le vecteur nul est celui dont toutes les composantes sont égales a zéro. On le notera

Par définition, on a 0x = 0. Pour tout vecteur x, on appelle opposé de x le vecteur —x := (—1)x. Les opérations
d’addition et de multiplication par un scalaire permettent de manipuler les vecteurs a ’aide de calculs. Ces
calculs obéissent aux regles standard de 'arithmétique :
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Proposition 2.3. Pour tous vecteursx, y, z de R”, et pour tous scalaires A, L € R,

(V.1) x+y=y+X (commutativité);

(V.2) x+ (y+2) = (x+Y) +z (associativité);

(V3) x+0=0+x=Xx;

(V4) x+ (—x) = (—x)+x=0;

(V.5) Ax+y) = Ax+ Ay (distributivité I);

(V.6) (A+ wx=Ax+ ux (distributivité I);

(V.7) Apw)x = A(ux) = w(Ax) (distributivité mixte);
(V.8) 1x=x.

Preuve: Ces propriétés ne font que refléter une propriété élémentaire semblable, valide dans le corps des nombres
!
réels. Ci-dessous, on indiquera par le symbole = une identité obtenue en utilisant une propriété de base dans les réels,

pour chacune des composantes :

(V.1)
X1+n Nn+x1
Xp+y2 | | V2t x2
X+y= = =y+X;
Xn+ Vn Yn+Xp
(V.2)
X1 yi+z x1+(y1+21) (x1+y1)+21 X1+ 0 21
X Yotz Xo+(y2tz) |, | (aty)+2 X2+ ¥2 2
X+ (y+z) = + . = = = . + =x+y) +z;
Xn Ynt2n Xn+ (Yn+2n) (Xn+Yyn) + 2y Xn+Yn Zn
(V.3)
x1+0 X1 0+ x;1
X2+ 0 X2 | 0+ xo
X+0= . =|.|= . =0+x;
X, +0 Xn 0+ xp
(V.4)
X1+ (=x1) 0 (=x1)+x;
Xo+(=x2) | , |O], | (=x2) +x2
X+ (-%x) = . = = . = (—X) +X;
Xp+ (=Xp) 0 (=xp) +xy
(V.5)
X1+ A(xy + y1) Ax1+ Ay
X2+ )2 A(JCZ + yg) | AXZ + /1_)/2
Ax+y)=A . = ) = ) = Ax+Ay;
Xn+¥n Axn+¥n) Axp+Ayn
(V.6)
A+ wx; Axy + pxy
A+wWx2 |, | Ax2+pxo
A+ wx= . = = AX+ pux;
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(V.7)
A x Aluxy) HAx1)
Awxz | | [ Alpx2) || #Ax2)
Awx = : = : = Aux) = : = u(Ax);
A xp Apxp) p(Axy)
(V.8)
1.X1 X1
1.xo ] X2
1Ix= . = =X
1l.x, Xn

O

Avec ces propriétés, on peut résoudre des équations vectorielles, dont I'inconnue est un vecteur x, de la
méme facon qu’on résout des équations élémentaires ou1 'inconnue est un réel x.

Exemple 2.4. Considérons deux vecteurs a,b € R” fixés, et étudions I'équation vectorielle
2a—3x=5x+7b.

Utilisons les propriétés démontrées ci-dessus pour isoler x, comme on le fait quand on résout une équation
en arithmétique élémentaire.

Rajoutons +3x des deux cOtés. Du coté gauche, détaillons l'utilisation des propriétés :

2a—-3x+3x=2a+(-3+3)x=2a+0x=2a+0="2a.

En procédant de méme du c6té droit, on obtient

2a=8x+7b.
En soustrayant 7b des deux cotés,
8x=2a-"7b,
puis en multipliant par %,
_1,_ 7
X= Za - gb
3
2.2 Colinéarité
La colinéarité est une généralisation du parallélisme.
Définition 2.5. Deux vecteurs x,y € R” sont colinéaires s'il existe un scalaire A € R tel que y = Ax ou
x = Ay.
Deux vecteurs sont colinéaires si ils sont supportés par la méme droite,
y
X
25
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et non-colinéaires (on dira bientot indépendants) s’ils pointent dans des directions différentes :

Exemple 2.6. Parmi les trois vecteurs de R? suivants,

3 -3 6
| * |12 Lo |!
“lolm Yo *T|ol
-1 1 -2
seuls y et z sont colinéaires, puisque z = —2y. 3

Remarque 2.7. Le vecteur nul, 0, est colinéaire a n'importe quel autre vecteur. En effet, quel que soity € R”,
on peut toujours écrire 0 = Ay, ou 1 = 0. 3

2.3 Combinaisons linéaires et parties engendrés

En algebre linéaire, une fagon standard et non-triviale d’obtenir de nouveaux vecteurs a partir d'une famille
donnée est de former des combinaisons linéaires.

Définition 2.8. Soient vy,vy,..., Vi des vecteurs de R”. Une somme du type
)\1V1 +---+7Lkvk,

olules A1, A,,..., i sont des scalaires fixés, est appelée combinaison linéaire des vecteurs vy, ..., V.
Les scalaires A sont les coefficients de la combinaison linéaire.

3
5

3 -1 -9
v+ Aovy = —2(5) +3( 2 ) = (_4) .

Choisissons maintenant un troisiéme vecteur : w = (

-1
),Vz = ( 5 ) En prenant A; = -2, 1, =3,

Exemple 2.9. Dans R?, considérons v; = (

_ 2), et posons la question : est-il possible d’écrire w
comme une combinaison linéaire de v; et v, ? Il s’agit donc de voir s’il existe des scalaires 11, A, tels que
Avi+Aovo =w.

Lorsqu’on exprime cette relation en composantes,
3Mi—-A2| (5
511 +2A, B -2/
Puisque deux vecteurs sont égaux si et seulement si leurs composantes sont égales deux-a-deux, on en

déduit que 1, et A, doivent étre solution du systeme

31] - AZ = 5)
5&1 + Zﬂ,g -2.
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La solution de ce systeme est unique, donnée par 1; = &, A, = _1—311 On en déduit que w est bien combinai-

11
son linéaire de vy et vy :

_ 8. _31
W= 11V1 11V2.

<

Plus généralement, fixons deux vecteurs v; et v, dans le plan, et considérons toutes les combinaisons li-
néaires de la forme
W211V1+12V2, /11,126[}%.

e )\ =1.000...
o ) =1.000...

On remarque que

« Si vy et vp ne sont pas colinéaires, alors toutes les combinaisons linéaires possibles de v, et v, rem-
plissent le plan, dans le sens suivant : n'importe quel vecteur w peut s’écrire comme combinaison
linéaire de v; et vs.

» Siv) et vy sont colinéaires, alors seulement certains vecteurs w du plan peuvent s’écrire comme com-
binaison linéaire de v; et v, (essentiellement ceux qui sont sur la droite portée par v; et v,).

Exemple 2.10. Dans R3, considérons
-3 4
vi=| 2], vw=|1], w=]|0
0 -1 3
Est-ce que w est combinaison linéaire de v; et v» 2 Pour le savoir, cherchons 11, A, tels que

/11V1 + /12V2 =W,

qui mene au systeme

—3/11 + ﬂz = 4,
- A = 3.
Ce systeme est incompatible, donc w ne peut pas s’écrire comme combinaison linéaire de v; et v,. o

Informel 2.11. Dans ce dernier exemple, on a résolu un probleme de combinaison linéaire en I'ex-
primant sous la forme d’un systeéme linéaire. Dans la section suivante nous ferons l'inverse, en mon-
trant qu'un systeme linéaire peut se traduire en un probleme de combinaison linéaire.
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2.3.1 Parties engendrées

Définition 2.12. Soient vy,...,v, des vecteurs de R"” donnés. La partie de R"” engendrée par la fa-
mille {vy,...,v,}, notée
Vect{vy,...,vp},

est définie comme I’ensemble des vecteurs de R” qui peuvent s’écrire comme combinaison linéaire
des vecteurs vy, ..., vy :
W= /11V1 +---+)vap.

Informel 2.13. La partie engendrée par une famille de vecteurs, c’est 'ensemble de toutes les com-
binaisons linéaires possibles de ces vecteurs.

Remarque 2.14. En anglais, Vect{v,... ,vp} se note Span {vy,... ,vp}. o

Pour les familles contenant un ou deux vecteurs :

o Lorsqu’on considéere une famille {v} contenant un seul vecteur non-nul v, Vect{v} est constitué de tous
les vecteurs colinéaires a v, c’est-a-dire de la forme w = Av. Il est donc naturel d’interpréter Vect{v}
comme la droite de R” engendrée par v, passant par I'origine :

Vect{v}

e Lorsqu’on consideére une famille {v;, vy} contenant deux vecteurs non-colinéaires, on interpréte Vect{vy, vo}
comme le plan de R” engendrée par v; et v,, passant par |’origine :

(3)

Vect{vy, vy}

\

A4t

V2 \
(2)

)]

” o«

Méme si cette terminologie (“droite”, “plan”) est empruntée a la géométrie du plan (n = 2) et de I'espace
(n =3), nous l'utiliserons aussi dans les dimensions supérieures (n > 3).

Exemple 2.15. Plus haut, nous avions défini

-3 4
V] = 2 , Vo= 1 , W= 0 y
0 -1 3
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et montré que w n'est pas combinaison linéaire de v; et vo. Nous pouvons maintenant interpréter ceci en
disant que w n’est pas dans le plan engendré par v; et vy :

(3)

Vect{vy, v} w

Vi

V2
)

M

2.3.2 Labase canonique de R"

Définissons, pour tout k = 1,..., n, le vecteur e, € R” comme étant le vecteur dont toutes les composantes
sont nulles, saufla k-éme, qui vaut 1.

1 0
1 0
0 0
e1=1.|, €e=|.|, —en=
0 0
0 0 1

X1 X1 0 0
b 0 X9 0
x=|.1=1.1+] .1+ +

Xn 0 0 Xn
1 0 0
0 1 0

:xl . +x2 . ++x;«l

0 0 1

=X1€; +Xxgo€2 +---+ Xp€y.

En d’autres termes,

R" = Vectley,...,e;}.

Plus tard, on appellera {ey,...,e;} la base canonique de R".
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2.4 Indépendance linéaire

La notion d’indépendance linéaire (et celle qui lui est associée, la dépendance linéaire) est une des plus
importantes de 'algebre linéaire.

Informel 2.16. En effet, il seraimportant de comprendre comment des vecteurs peuvent étre utilisés
pour “remplir 'espace”, a 'aide de combinaisons linéaires. Pour ce faire, il faudra pouvoir décrire
dans quelle mesure ces vecteurs pointent dans des dimensions différentes de R". Et pour avoir en
main une notion qui permette de travailler (et faire des calculs!), il faut introduire une définition
abstraite, qui s’utilise en toute dimension. Cette notion, c’estl'indépendance linéaire.

2.4.1 Motivation : une caractérisation de la non-colinéarité

En guise de motivation, considérons deux vecteurs dans le plan. Clairement, si ces vecteurs ne sont pas
colinéaires, c’est qu’ils pointent dans des directions différentes. Or on peut reformuler ce que signifie étre
non-colinéaire un peu différemment.

Fixons deux vecteurs du plan, v; et vy, et étudions toutes les combinaisons linéaires de la forme

w=A1vi+ vy, A, A2 ER.

o A1 = 1.000...
o A2 = 1.000...

Bien-sir, quels que soient v; et v, on aw =0 dées que A; = A, =0, puisque
Ovy+0ve =0.
Mais posons-nous la question de savoir s'il existe d’autres paires (11, 1,) telles que w = 0. Par un simple
calcul, ou en utilisant I'animation ci-dessus, on se convainc facilement des deux faits suivants :
1) Siv; et vy ne sont pas colinéaires, alors I'unique facon d’avoir w = 0 est de prendre 1; = 1, =0.

2) Siv) et vy sont colinéaires, alors il existe une infinité de choix possibles pour 1; et A, qui garantissent
w=0.
3) Laméme chose fonctionne en toute dimension.
On conclut de cette simple discussion que la non-colinéarité, pour deux vecteurs, peut s’exprimer de facon

plus abstraite, par cette condition a propos de leurs combinaisons linéaires nulles :

Lemme 2.17. Deux vecteurs non-nulsvy,ve € R" sont non-colinéaires si et seulement si l'unique com-
binaison linéaire nulle,
/11V1 + Ang = 0,

est celle pour laquelle A, = 1, = 0.
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L'avantage de cette caractérisation de la non-colinéarité de deux vecteurs, proposée dans le lemme précé-
dent, est qu’elle se généralise naturellement a des familles contenant plus que deux vecteurs (de R™). Voyons
comment, dans la section suivante.

2.4.2 Définition et propriétés

Définition 2.18. Soientvy,..., v, des vecteurs de R” donnés. La famille {vy,...,v,} est dite

(LD) liée (ou linéairement dépendante) s’il existe des coefficients A1, 15,...,1,, dont au moins un
n’est pas nul, tels que
AMvy+-+ Apvy, =0;

(LI) libre (ou linéairement indépendante) si elle n’est liée, i.e. si 'unique combinaison linéaire
nulle,

/11v1+---+ﬂtpvp=0

est celle pour laquelle A1 =1, =---=1, =0.

Remarque 2.19. Dés qu’un des vecteurs de la famille {vy,...,v,} est nul, cette famille est dépendante. En
effet, supposons que v = 0. On peut alors écrire 'identité suivante, toujours vraie,

Ovi+0vo+---+0vp_1+1 vg +0Vgyq+---+0v, =0,
~—~—
=0

qui implique bien que {vy,---,v,} est dépendante. 3

Exemple 2.20. Considérons la famille de vecteurs de R* contenant les trois vecteurs

1 0 3

V] = 0 Vo = —2 V3 = 2
2 |’ 1]’ 1

-3 5 0

Cette famille est-elle libre ou liée ? Pour répondre, considérons la relation linéaire
Avi +Aovo + A3vy = 0.

Lorsqu’on écrit explicitement cette relation en composantes, on obtient le systeme de taille 4 x 3 suivant :

M + 313 = 0,
- 21 + 2A3 = 0,

201 + Ay + /13 = 0,
—311 + 5/12 = 0.

La matrice augmentée de ce systéme devient, apres échelonnage,

1 0 3|0
01 -1|0
00 110
00 010

La solution du systéeme correspondant est 1; = A, = A3 = 0. On conclut que {vy,v»,v3} est une famille libre.
S
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Exemple 2.21. Montrons que la famille formée des vecteurs de la base canonique de R”, {e, ..., e;}, estlibre.
Pour ce faire, considérons la relation linéaire

A1e1+)tge2+---+)tnen =0.

Lorsqu’on I'exprime en composantes, cette derniére devient

Al =0 ’
A2 = 0,
A/ﬂ = 0 )
qui montre bien que la famille est libre. 3

Théoréme 2.22. Unefamille{vy,...,v,} est liée si et seulement si un de ses vecteurs peut s'écrire comme
combinaison linéaire des autres, plus précisément : s'il existe k € {1, ..., p} tel que vy peut s’écrire comme
combinaison linéaire desvj, j # k.

Preuve: Si la famille est liée, alors il existe des nombres A4,...,1,, non tous nuls, tels que
MV +e+ AV +-+ Apv, =0,

Si on supposons que le coefficient A # 0, on peut isoler v; dans cette derniere :

P (-A))
Vi = Z 1 ! Vj.

j=1 Mk

j#k

On a donc bien exprimé v comme combinaison linéaire des autres. Inversément, si un vy peut s’écrire comme com-
binaison linéaire des autres,

p
V=) ajvj,

j=1

j#k
et on peut récrire cette derniere comme

aVi+ o+ g1V + (= DV + Qg1 Vs +- -+ apvp =0,

qui montre bien que la famille est liée. O
A la lumiere de ce dernier théoreme, illustrons encore la différence libre/liée dans le cas simple de trois
vecteurs dans R3.
Exemple 2.23. Considérons une famille de trois vecteurs de R3, F = {vi,vo,V3}.

o Si & est liée, alors le théoreme précédent implique que I'un des vecteurs, disons v;, peut s’écrire
comme combinaison linéaire des deux autres. En d’autres termes, cela signifie que v; est dans le plan
engendré par vy, vs :

Vect{vy, v3}

\41

?
\ @)
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» Par contre, si & est libre, alors le théoreme implique qu’aucun des vecteurs ne peut s’écrire comme
combinaison linéaire des autres (aucun n'est dans le plan engendré par les deux autres), ce qui ex-
prime bien le fait que ces trois vecteurs pointent tous dans des dimensions différentes :

3)

Vect{v,,vs} Vi

\

V2

V3
()

2.5 Résumé du chapitre sur les vecteurs de R”

VECTEURS DE R" :

X1
X2 .
x=| . | e R" —— COORDONNEES (OU COMPOSANTES) DEx: x1,--, X;,
Xn
0 —X1
0 —X2 .
0=|.]|eR" — VECTEURNUL —-x=| . | —— VECTEUR OPPOSE
0 _xn

SOMME ET PRODUIT PAR SCALAIRES :

X1 N X1+n X1 Axy
X2 Y2 X2+ Y2 X2 Axz

+| = . ET Al 7=
Xn Yn Xn+ Vn Xn Axy,

27
y X+Yy v
z
X
-v/2
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PROPRIETES DE SOMME ET PRODUIT PAR SCALAIRES :

(V.1) x+y=y+x (commutativité); (V.5) Ax+y) = Ax+ Ay (distributivité I) ;

(V.2) x+(y+2) = (x+Y) +z (associativité) ; (V.6) (A+ wx = Ax+ px (distributivité II);

(V.3) x+0=0+x=X; (V7)) (Awx = A(ux) = pu(Ax) (distributivité mixte);
(V4) x+(x)=(—x)+x=0; (V.8) Ix=x.

COMBINAISON LINFAIRE (CL) de vy, ... ,Vp ER™:

vecteurs

Ve

MVL +-+ ApVp =b < COMBINAISON LINFAIRE

N

coefficients
(eR)

PARTIE ENGENDREE PAR v, ... ,Vp ER™:

Vect{vy,..., vy} = {A1vi++--+A,v, : A1+, A, € R} «— | PARTIE ENGENDREE = ENSEMBLE DE TOUTES LES CL!

VECTEURS COLINEAIRES :
v ET w COLINFAIRES = v=Aw ou w=Av
FAMILLE {v;,...,v,} LIEE (OU LINEAIREMENT DEPENDANTE) :
ON PEUT ECRIRE Mvi+-+2A,v,=0 AVEC AU MOINS UN Ai #0

FAMILLE {vy,...,v,} LIBRE (OU LINFAIREMENT INDEPENDANTE) :

)le1+---+/1pvp:0 = Al="'=ﬂ,p=0

BASE CANONIQUE {ey,...,e;} DER":

1 0 0
1 0
0 0
er=|.|, e=|.|, --.en=|.|—| CEST UNE FAMILLE LIBRE DE R"! |
0 0
0 0 1

34
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Chapitre 3

Formulation vectorielle des systemes
d’équations linéaires

3.1 Systémes d’équations linéaires : formulation vectorielle
3.1.1 Description générale

Dans ce chapitre, nous allons reformuler ce qui a été dit a propos des systemes en utilisant le langage vecto-
riel de I'algebre linéaire. Ceci aura plusieurs avantages, et menera en particulier a une compréhension plus
profonde des divers aspects liés a la recherche des solutions d'un systeme linéaire.

Objectifs de ce chapitre

Ala fin de ce chapitre vous devriez étre capable de
(0.1) exprimer un SEL sous forme vectorielle;

(0.2) calculer 'ensemble solution d’un SEL a partir d’'une solution particuliére et 'ensemble de
solutions du SEL homogene associé;

(0.3) déterminer si une application de R”* dans R” est linéaire;
(0.4) déterminer la matrice canonique d’'une application linéaire de R dans R”;

(0.5) connaitre le lien entre SEL et équations matricielles, et 'utiliser pour calculer des solutions
des équations matricielles.

Nouveau vocabulaire dans ce chapitre

o formulation vectorielle d'un SEL » ensemble image d'une application
SEL homogene/inhomogene
SEL homogeéne associé
solution triviale e matrice d'une application linéaire de R™
¢ solution particuliere dans R"

e application linéaire de R™ dans R”

3.1.2 Laformulation vectorielle

On peut voir un systeme d’équations linéaires de taille m x n général, de la forme

a xy + aipxy + -+ apxp, = b,

a1 X1 + dppXp + -+ aypXp = by,
(%)

Am1X1 + ampXz + -+ + ampXn = by,
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comme une égalité entre deux vecteurs de R :

a1 xi + aipx2 + -+ aAipXp bl
axi1Xy + azpXo + -+ dypXp bz

am1X1 + amaXx2 + + AmnXn b
Or on peut récrire cette derniére comme suit :
ai a2 ai,n b
az a2 az,n b,
X1 A a7 I e s i 77] . =l .|
Am,1 am,2 Am,n b,

dans laquelle on reconnait maintenant, dans le membre de gauche, une combinaison linéaire des colonnes
de la matrice associée au systeme, qui est donnée, rappelons-le, par

a, a2 ccc din
a1 g2 -+ A2n
aAdm1 4mz2 ° QAmn

Récrivons la méme chose de facon plus compacte, en commencant par définir le vecteur associé au second

membre,
by
b

bm
et récrivons la matrice du systeme comme une famille de colonnes,
A=[a; ap -+ a,],
ol la k-eme colonne est le vecteur de R donné par

ayk

az k
ap =

am,k

Donc la recherche de solutions (x1, X2, ..., X;) au systeme () est équivalente a demander si le membre de
droite b appartient a la partie de R engendrée par les colonnes de A, c’est-a-dire si on peut écrire b comme
une combinaison linéaire des colonnes de A :

Xia; + xpax+---+x,a, =b.
Dans cette formulation, les inconnues x, ..., x, jouent le role de coefficients de la combinaison linéaire.

Une derniére définition permettra de faire encore un pas dans la description du systéme ().
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Définition 3.1. Soit A une matrice de taille m x n, dont la k-eéme colonne est notée a; € R,
A=[a; a - a,l,

et soit x un vecteur de R”,
X1

Xn
Le produit de A par x est le vecteur Ax € R™ défini par la combinaison linéaire

Ax:=xja;+:--+ x,a,.

Le produit d'une matrice A de taille m x n par un vecteur x € R” crée donc un vecteur Ax € R, Cette trans-
formation est I'exemple standard de ce que 'on appellera plus tard une application linéaire, puisqu’elle
satisfait a la propriété suivante :

Lemme 3.2. Soit A une matrice de taille m x n. Alors pour tousx,y € R" et pour tout scalaire 1 € R,
A+ Ay) = Ax+ 1 Ay.

Cette propriété constitue la linéarité de A.

Preuve: Notons la matrice A = [a; ---ay], et les vecteurs

X1 N
X2 2
X= et y=
Xn Yn
Alors,
x1+/1y1
XZ+/1y2
Ax+Ay)=[a; a -+ a, . = +AyDay+-+ (xp+ Ayna,
Xn+Ayn

= (x1a1 + -+ + Xpa,) + (Ay1@1 + -+ Aypan) = (x1@1 + - + xXpa,) + A(y121 + -+ + ypan)
= Ax+ 1 Ay.
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Point clé : Equivalence entre SEL usuel et forme vectorielle d’'un SEL

Avec les notations introduites ci-dessus, on peut maintenant écrire le systeme

aa xy + aipxy + -+ ainx, = b,

a1x1 + axpXxy + -+ + aypxXp = by,
(%)

Am1X1 + AmaX2 + -+ AmapXn = bm,

de facon équivalente sous une forme purement vectorielle :
(*): Ax=Db,

ou A est la matrice du SEL (*) et b est le vecteur formé du second membre de (*).

Lexistence d’'une solution x du SEL (*) équivaut a dire qu’il existe au moins une facon d’écrire le
membre de droite b comme combinaison linéaire des colonnes de A.

On finit cette section avec la preuve de I'unicité de la forme échelonnée réduite.

Lemme 3.3.* SiA=[a;...a,] et B =[b; ... b,] sont deux matrices échelonnées réduites de taille m x n
et ligne-équivalentes, alors A = B.

Preuve: On va procéder par récurrence sur la quantité de colonnes .
Si n =1, le résultat est clair. En effet, dans ce cas A et B sont des vecteurs colonnes avec m lignes. Or, il existe deux
matrices échelonnées réduites de taille m x 1 :

0 1

0 0
0= et e =

0 0

Si A=0= B ou A=e; = B, on obtient ce que 'on veut. Il reste 8 montrer que le cas A = e; et B = 0 est absurde. On
note que les ensembles de solutions des matrices augmentées

0|0 10
00 0|0
et
00 0|0

sont différents, vu pour le premier c’est R et pour le deuxieme c’est {0}, ce qui nous dit que e; et 0 ne sont pas ligne-
équivalentes. Comme A et B sont ligne-équivalentes, le cas A = e; et B = 0 est absurde, comme on voulait démontrer.
On suppose désormais que n > 1. En ajoutant une décoration sur les matrices A et B, on écrit

A= [Elb] et B=[Eb],

ot b,b’ sont des vecteurs colonnes donnés par la derniére colonne de A et B, respectivement, et E, E’ sont les ma-
trices de taille m x (n — 1) formées des premieres n — 1 colonnes de A et B, respectivement. Comme A et B sont ligne-
équivalentes, alors les matrices E et E’ le sont aussi. En plus, comme A et B sont échelonnées réduites, alors E et E le
sont aussi. Par 'hypotheése de la récurrence, E = F/, i.e.

A=[Elb] et B=[Eb].

1l suffit de montrer que b =b’. On suppose que b # b’ et on montrera un absurde. On note S, et Sg, respectivement,
les ensembles de solutions des matrices augmentées

[A]O] et [BlO].
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Comme A et B sont ligne-équivalentes, S4 = Sp. On définit la matrice D = [(a; —by) ... (a; —by)]. Si (x1,...,X,) €Sa =
Sp, alors par définition (x1,..., X,) est aussi une solution de la matrice augmentée [D|0], i.e.

(b-b")x,=Dx=0,

ce qui veut dire x,, = 0, vu que b # b’. En conséquence, x,, n’est une variable libre ni pour [A|0] ni pour [B|0]. En
conséquence, b et b’ contiennent un pivot, qui doit étre dans la premiere ligne nulle de E et E’, respectivement.
Comme E = E’, cela nous dit que b = b’, ce qui contredit I'inégalité b # b’. En conséquence, b = b’, comme on voulait
démontrer. 0

3.2 Surle nombre de solutions d’un systeme d’équations linéaires (bis)

Comme premiere application de la formulation vectorielle d'un systéme d’équations linéaires de taille m x
n, revisitons le Théoréme “0, 1,00”, en donnant une preuve plus transparente que celle vue précédemment :

Théoreéme 3.4. Soit A une matrice de taille m x n, b € R™ un second membre, et soit S(x) l'ensemble
des vecteursx € R" solutions de
(x): Ax=b.

Si S(«) nest pas vide, alors soit il contient exactement un vecteur, soit il en contient une infinité.

Preuve: (La preuve est la méme que dans la premiére version, mais formulée dans un langage vectoriel.) Supposons
que S() n'est pas vide, et qu'il contient plus d’'un élément. On a donc deux vecteurs x,y € R” distincts, tels que

Ax=Db, Ay=b.
Considérons un scalaire A quelconque, et définissons
z:=y+Ax-y).

Si A est différent de 0 et 1, alors z est différent de x et de y . Vérifions que z est aussi solution de (*). En effet, par la
linéarité démontrée dans le lemme,

Az=A(y+Ax-y)) = Ay +A(Ax— Ay) =b.
~—~ ——
=b =b—b=0
On peut donc, en choisissant A, créer une infinité de nouvelles solutions.

La formulation vectorielle permet d’interpréter géométriquement la preuve donnée ci-dessus. En effet, on sait de la
géométrie analytique que le vecteur z = y + A (x —y) a son extrémité située sur la droite passanty, dirigée parx—y:

Linfinité de solutions vient du fait qu’il existe une infinité de vecteurs ayant tous leur extrémité sur cette droite. ~ O
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3.3 Systemes d’équations linéaires homogenes et inhomogenes

Dans I'étude des systemes de taille m x n du type
(%): Ax=b,
il sera important de distinguer ceux dont le second membre b est nul.

Définition 3.5. Soitb € R™.
e Sib =0, le systeme (x) est dit homogene :

Ax=0.

e Sib #0, le systeme () est dit inhomogene.

3.3.1 Solutions des systemes homogeénes

Commencons par une remarque importante : tout systeme homogene est compatible. En effet, il possede
toujours la solution triviale, donnée par le vecteur nul 0 € R”, puisque le produit d'une matrice par le vec-

teur nul donne toujours le vecteur nul :
A0=0.

On remarque que le “0” du membre de gauche est le vecteur nul de R”, alors que le “0” du membre de droite

est le vecteur nul de R™!

Remarque 3.6. Par définition, étant donné une matrice A de taille m x n, le systeme d’équations linéaires
homogene Ax = 0 admet une solution non triviale si et seulement si les colonnes de A forment une famille

liée de R™.

Exemple 3.7. Etudions le systéme de taille 3 x 3 homogene donné par

1 0 2\ (x 0
0 3 0 X2 |=10
4 0 5)\x3 0
Lopération L3 — L3 —4L; donne
1 0 2)\(x 0
0 3 0f]x]|=1]0],
0 0 -3/\x3 0
qui correspond au systeme triangulaire
X1 + 2x3 = 0 y
3x, = 0,
- 3X3 = 0,

dont 'unique solution est (x1, x2, x3) = (0,0,0). On conclut que dans ce cas, il n’y a pas d’autre solution que

la solution triviale.

Mais un systeme homogene peut posséder des solutions autres que la solution triviale. En fait, dés qu'’il

possede une solution autre que la triviale, on sait qu’il doit en posséder une infinité.
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Exemple 3.8. Le systeme de taille 3 x 3 homogene

1 1 0)\(x 0
2 8 =2|lx2]=1]0
1 0

2 5 - X3
est équivalent a
1 1 0)\(x 0
0 3 -1f|x]|=]0
0 0/ \x3 0
On voit que x3 est libre, et donc que le systéme possede une infinité de solutions, décrites par
X1 -1
S= Xo|l=1t| 1 teR
X3 3

On retrouve bien-str la solution triviale en prenant ¢ = 0, mais toute valeur ¢ # 0 donne une solution non-
triviale.

Remarquons encore que 'ensemble S ci-dessus n’est autre que la partie de R® engendrée par le vecteur
-1 . < ) s 2
non-nulv= ( ! ) : S = Vect{v}. On peut donc interpréter S comme I’ensemble de tous les vecteurs situés sur

la droite dirigée par v, passant par I'origine de R. 3

Informel 3.9. Remarquons que quand on travaille dans les réels, I'équation (avec a # 0)
ax=0

ne possede que “x = 0” comme solution. Ici, un systeme homogene
Ax=0

peut posséder une infinité de solutions non-nulles (méme si A contient des coefficients différents de
Z€ro).
Exemple 3.10. Considérons le systéme homogeéne de taille 2 x 4 suivant :
X1
1 1 1 1)[x]| (0
1 0 -1 0of|xs| lo)°
X4

Deux opérations élémentaires (L; — L; — Ly, suivie de L; — Ly) meénent a la forme réduite

X1
1 0 -1 0)[x| (o0
01 2 1f|lxs| \0)’
X4
qui correspond a
X - X = 0,
O ° _
X2 + 2x3 + x4 = 0,
dans lequel x3 = s et x4 = ¢ sont libres. On a donc
X1 S
—-2s—t
S= 2 s s, teR
X3
X4 t
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3.3.2 Systémes homogenes et indépendance linéaire

Par définition, le probléeme de savoir si une famille {vy,...,v,} S R” est libre ou liée revient a étudier les
familles de coefficients ay, ..., @), pour lesquelles la condition

ayvi+--+apvp, =0

peut étre satisfaite. D'un point de vue calculatoire, ce probléme peut étre reformulé comme suit.

Définissons la matrice de taille n x p,

et introduisons le vecteur

ap

Alors {vy,...,vy} estlibre si et seulement si le systeme homogene

Aa=0
ne possede que la solution triviale : a = 0.
Exemple 3.11. Soient
1 0 7
V] = 21, Vo = 11, V3 = -2
3 -4 3

La famille & = {v;,v,,v3} € R> est-elle libre ou liée ?

Le systeme Aa = 0 correspondant est

1 0 7\(aa 0

qui est équivalent a
1 0 7)\(a 0
0 1 —-16||la2|=]0],
0 0 41 )\a; 0

qui ne possede que la solution triviale. Donc & est libre. o

Cette facon de traiter I'indépendance linéaire permet d’énoncer un résultat général sur 'indépendance li-
néaire :

Théoréme 3.12. DansR", toute famille de plus de n vecteurs est liée.

Preuve: Soit & = {vy,... Vph e R", avec p > n. On peut ranger ces vecteurs dans une matrice de taille n x p, qui a plus
de colonnes que de lignes :

a a2 o dip

a1 dzz -t 2p
A=[vy...vpl= : : . : ,

an1 Qp2 -+ Qnp
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oua;j,i=1,...,n,sontles composantes du vecteur v;.

Maintenant, étudions la dépendance en considérant la relation linéaire
a1V +"'+C¥pr =0.

Celle-ci correspond au systéme Aa =0, qui a pour matrice augmentée

m,) @2 - anp |0
a1 dzp o azp |0
anpy QA2 -+ App | 0

Puisque p > n, sa forme réduite doit contenir au moins une colonne ne contenant pas de pivot, et donc le systeme
posséde au moins une variable libre. Ceci implique, comme le second membre est nul, qu’il existe une infinité de
solutions non-triviales, et donc que & est liée. O

3.3.3 Solutions des systemes d’équations linéaires inhomogeénes

Fixons maintenant un b € R™ non-nul, et considérons le systeme d’équations linéaires inhomogéne
(¥): Ax=Db.

Al'opposé des systemes homogenes (qui ont toujours au moins la solution triviale), il n’y a aucune garantie
concernant I'existence d'une solution. Mais pour que la discussion ci-dessous ne soit pas vide, supposons

que ce systéme est compatible : S(,) # @. Notre but ci-dessous sera décrire une propriété générale de 'en-
semble S.).

Le résultat suivant va nous montrer que les solutions de ce systéme sont intimement liées a celle du systéme
homogeéne associé, qui est celui avec la méme matrice A, mais dans lequel on remplace b par 0 :

(*)p: Ax=0.

Théoréme 3.13. Supposons déja connue une solution de (*), que l'on nommera particuliére, et que
l'on noterav,, . Alors toute autre solution de (*), v € S, peut s'écrire comme

V=V, +Vy,
oiL vy, est une certaine solution du probléme homogene (*), associé.

Preuve: Sive S, alors
Av=>b.

Mais puisque vy, € S(«), on a aussi
Av, =b.
En soustrayant ces deux derniéres expressions, on obtient
Av—-Av,=b-b=0.

Par linéarité, ceci implique que
A(v—vy)=0.

Ainsi, en définissant v, := v—vy, cette derniére dit bien que vy, est solution du probleme homogene associé : Avy, = 0.
Puisque v = v}, + vy, ceci démontre le résultat. O

Ce théoreme peut étre résumé comme suit : si on connait seulement une solution du systeme (x), et si
on sait compléetement résoudre le systeme homogene associé (), alors on connait foutes les solutions du
systeme (*). Plus concrétement, pour résoudre (*), on pourra procéder comme suit :
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1) Chercher une solution particuliere v, de (x).
2) Résoudre le systtme homogeéne associé (*)y, c’est-a-dire trouver 'ensemble S, .

3) Combiner les deux, pour produire

S(*) = {V=Vp +Vh|Vh € S(*)h}.

Interprétation géométrique :

Voyons comment cette structure peut s’'observer sur un exemple concret.

Exemple 3.14. Considérons le systéme de taille 3 x 3 suivant :

X1 + 3x + x3 = 1,
() 2x1 + x» — 3x3 = 7,
—-X1 + b5x + 7x3 = -9,
qui correspond a
1 1 1
A=|12 1 -3], b=| 7
-1 5 7 -9
Remarquons que le vecteur
2
vp:=10
-1
est solution du systeme. En effet,
1 3 1 2 1
Avp=(2 1 =3[0 |=|7]|=b.
-1 5 7)\-1 -9

On a donc une solution particuliere v,. On sait maintenant, par le théoréme, que I'on aura toutes les autres
solutions en résolvant le systeme homogene associé, c’est-a-dire

1 3 1 X1 0
(*)p: 2 1 =3]||lx]=10
-1 5 7 X3 0
En procédant comme d’habitude, on obtient
X1 2
S(*)hz Xo|=t|-1 teR
X3 1
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On sait donc, par le théoreme, que toutes les solutions du probléeme inhomogene sont données par

Sty =V =Vp + Vi | Vi € S, }

X1 2 2
=dx|=]o0|+t]-1 ‘tEIR
X3 -1 1

Bien-sfir, on observe cette structure aussi si on résout le systeme avec la technique habituelle. En partant
de la matrice augmentée,

1 3 1 1
2 1 =3| 7 [,
-1 5 7 |-9

x1=4+2t,
Xo=—-1-1¢,
X3=1

Vectoriellement, on peut écrire I’ensemble des solutions comme

X1 4 2
S(*)= Xo|l=1-1|+¢|-1 |l’€R
X3 0 1

On voit donc encore une fois la structure “solution particuliere + toutes les solutions du probléme homo-
gene associé”. 3

3.4 Applications linéaires entre R"” et R” : introduction

Plus haut, nous avons défini le membre de droite d'un systéme de taille m x n, a savoir “Ax”, comme le pro-
duit d'une matrice A de taille m x n par le vecteur x € R”. Ce produit étant défini comme une combinaison
linéaire des colonnes de A, Ax est un vecteur de R™.

La multiplication par une matrice de taille m x n est donc une opération qui transforme les vecteurs de R”
en des vecteurs de R™. C’est un cas particulier d'une application (ou fonction) de R” dans R™ :

R — R™
X — AX.

Si nécessaire, quelques notions générales sur les fonctions sont rappeléesici.

3.4.1 Applications: le point de vue général

Plus généralement, une application n’est pas forcément définie a I'aide d'une matrice. On utilisera souvent
la lettre “T” pour représenter une application générique :

T:R"—R™

x— T(X).
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o T gm

Le vecteur y = T'(x) est appelé image de x (par T), et x est une préimage dey.
Considérons un instant une équation du type suivant
(%) : Tx) =b,

ol le membre de droite b € R est fixé. Lexistence d’au moins une solution x € R”, pour cette équation,
revient a demander si b fait partie des éléments de I'’ensemble d’arrivée qui sont “atteints” par I'application,
c’est-a-dire pour lesquels il existe au moins une préimage. Ceci meéne a la définition suivante :

Définition 3.15. L'ensemble image de T : R"” — R’ est défini par

Img(7T):={yeR”: IxeR" t.q. T(X) =y}.

T

R" R™

TX)

On a donc, pour I'équation () ci-dessus :
e Sib¢Img(T), alors (*) ne posséde aucune solution.

e SibeImg(T), alors (*) posséde au moins une solution.

3.4.2 Définition de la linéarité

Définition 3.16. Une application

T:R"—R™

x— T(x)

est dite linéaire si elle satisfait si T(x+ Ax') = T(x) + AT (x) pour tous x,x’ € R" et 1 € R.

Remarque 3.17. Si T : R — R™ est une application linéaire, alors T(0) = 0. En effet, la définition d’applica-
tion linéaire nous dit que
T0)=T0+1.00=T(0)+1.7T(0) = T(0) + T(0).

SiI'on considére la somme du membre initial et du membre final de I'identité précédente avec —T(0), on
conclut que 0 = T(0). o
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Remarque 3.18. On laisse comme exercice la preuve du fait qu'une application T : R” — R’ est linéaire si et
seulement si elle satisfait aux deux propriétés suivantes :

1) Tx+x')=T(x) + T ) pour tous x,x’ € R";

2) T(Ax) = AT (x) pour tous 1 € Retx e R".
Voir sinon la Remarque 4.37. 3

Exemple 3.19. Considérons I'application T : R® — R? définie ainsi :

X1
X |l=x—TKX):= (

—Xx1+3x + 5X3)
X3

X3+ 7x1

Montrons, “a la main”, uniquement a I'aide de la définition de linéarité, que T est linéaire. Pour ce faire,
X1

prenons unx = | x, | et un scalaire A. On utilise la définition de T pour calculer
X3

)Lxl
TAX) =T | Ax»
Ax:g
_ ((—/lxl) +3(Axp) + 5(1)63))
B (Ax3) +7(Ax1)
(—xl +3x + 5/1)63)
X3+ 7x1

=ATx).
Ensuite, pour toute paire x,y,
X1+n
Tx+y)=T|x2+ 2
X3+ Y3

_ (_(xl +y1) +3(x2+ y2) +5(x3 + J/3))
(x3+¥3) +7(x1 + 1)

_ [—x1+3x2+5x3 N -y1+3y2+5y3
- X3+ 7x1 Ys+7n

=TX +T(y).
On a donc bien montré que T est linéaire. o
Nous avons déja vu que si T : R” — R™, et s’il existe une matrice de taille m x n telle que

Tx) = Ax vxeR",

alors T est linéaire . Mais a priori, une application peut étre linéaire sans forcément étre associée a une
matrice.

Exemple 3.20. Si on reprend 'application T de I'’exemple précédent, on peut remarquer que

X1
—X1+3x2+5x3 -1 3 5
T = = = Ax.
& ( X3 +7x1 ) ( 7 0 1) 2
[ — X3
=:A
Ainsi, T estlinéaire. o
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Pour montrer qu'une application n’est pas linéaire, il suffit de montrer qu'une des deux conditions qui dé-

finit la linéarité n’est pas satisfaite, en exhibant un contre-exemple. On pourra donc
¢ soit trouver un X, et un scalaire A tel que T (Ax,) # AT (X.),
¢ soit trouver deux vecteurs X,y tels que T(X, +y.) # T(X«) + T(y«).
Exemple 3.21. Considérons 'application T : R> — R® définie par
X1X2

(xl) =x—>TX:=] —Xx2
X2 X1

Lapparition de la multiplication “x; x,” indique que cette application n’est probablement pas linéaire. Comme

1
contre-exemple, prenons A =2, et X, = ( 3). Ona

12
T(Ax,) = T(Z(l)) = T(z) =|-6],
3 6
2
alors que
1 3 6
AT (Xs) :2T(3) =2|-3|=]|-6
1 2

On adonc T(Ax.) # AT (X,), ce qui implique que T n’est pas linéaire.

Point clé : Equivalence entre SEL et applications linéaires

Résoudre un SEL
a xy + aipxy + -+ anx, = b,
a1 X1 + dppXpy + -+ aypXnp = by,
(*)
Am1X1 + ampXz + -+ + ampXn = by,

est équivalent a trouver toutes les préimages de b € R par application linéaire T : R"” — R" don-
née par T(x) = Ax pour x € R”, o1 A est la matrice du SEL (x) et b est le vecteur formé du second
membre du (*).

3.5 Matrice d’une application linéaire entre R” et R

3.5.1 Résultat principal

Dans cette section, nous allons appliquer quelques-unes des notions relatives aux applications linéaires

T:R"—R™.

Nous avions vu que toute application T : R” — R’ de la forme T (x) = Ax est linéaire, et nous savons depuis

la derniere section du dernier chapitre que la réciproque est vraie :
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Théoréme 3.22. Si T :R" — R™ est linéaire, alors il existe une unique matrice A de taille (m x n) telle
que
T (x) = Ax, vxeR"”.

De plus, la matrice A est celle dont les colonnes sont les images par T des vecteurs de la base canonique
(voir Sous-section 2.3.2)
A=[T(e1):--T(epn)].

Exemple 3.23. Considérons I'application linéaire T : R® — R? déja considérée précédemment :

X1
X |l=x—TKX):= (

—Xx1+3x + 5X3)
X3

X3+ 7x1

En calculant les images des vecteurs de base,

1
~1+3-0+5-0) (-1
Ten=T101={" (.74 )_(7)’
0
O\ (0+3.145.0) (3
T =T1L1=1" g 7.0 ):(o)’
0
0\ (0+3.045-1) (5
ren =0 =" ):(1)’

ce qui donne la matrice associéea T :

Exemple 3.24. Considérons I'application T:R3 — R :

X1
Xo|=x—TX):=x2—3x7.
X3

(On montre facilement que cette application est linéaire.) En calculant les images des vecteurs de base,

1
Te)=T|0|=0-3-1=-3,

0

0
Te)=T|1]=1-3-0=1,

0

0
T(e;)=T|0|=0-3-0=0,

1

ce qui donne la matrice de taille 1 x 3 associée a T :

A=[T(e))T(ex) T(e3)]=(-3 1 0).
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En effet,
X1
T(x):Ax:(—3 1 0) Xo | =-3x1+Xx2.
X3
S

Remarque 3.25. Les applications linéaires T : R — R définies jusqu’ici ont toujours été définies en compo-
santes, c'est-a-dire en définissant les composantes de T(x) € R al’aide des composantes de x € R, comme
dans les deux exemples précédents.

Il faut garder a I'esprit que pour I'instant, ces composantes sont toujours des composantes associées a la
base canonique.

En général, comme on verra plus tard, une application n’a pas besoin d’étre définie a I'aide de composantes,
et on pourra effectivement lui associer une matrice a partir de choisir une base, une notion que 'on va
introduire dans les prochains chapitres. 3

3.5.2 Pour la suite...

Nous aurons encore beaucoup a dire sur les applications linéaires, qui sont les vraies “fonctions” étudiées
en algebre linéaire (un peu comme les fonctions continues sont les fonctions les plus étudiées en analyse).

Mais avant d’en dire plus, nous allons faire un pause, dans le chapitre suivant, et reprendre tout ce que nous
avons fait jusqu’ici, en adoptant un point de vue beaucoup plus général, celui des espaces vectoriels abstraits.
Nous introduirons plus de choses dans ce cadre, en particulier a propos des applications linéaires d'un
espace vectoriel dans un autre. Plus tard, nous appliquerons alors ces notions lorsque nous reviendrons
plus en profondeur sur les applications linéaires du type x — T'(x) = Ax.

3.6 Résumé du chapitre sur la formulation vectorielle des systémes d’équa-
tions linéaires

PRODUIT MATRICE ET VECTEUR:

a a2 - ain X1 ann a2 ain
a1 azp - aan X2 az az» az,n
. . . =X . + X2 . +:o+ Xn .
aAm,1 Am,2 " Am,n Xn am,1 am,2 Am,n
—_— —

A X

MATRICE DEFINIE PAR COLONNES :

a1 a2 ai,n anl a2 - Qin

_| a2 _| az22 _| 22,n | a2q az22 -+ d2n
a=| 7 La=| 7" [-ap=] T = [ajax--apli=| 7 ] )

am,1 am,2 aAm,n am,1 AGm,2 " Am,n
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FORMULATION VECTORIELLE DU SEL:

apx1 + apxp + -+ aypXy = by, ailr a2 o Ay | X1 by
ax1X1 + GApaXo + -+ + dopXy = bo, a1 azp -+ dag || X2 by
(%) . . < . . . . .=
Am,1X1 + Am2Xo + -+ + AmpXn = bm, aAm,1 Amz2 " Amn)\Xn by,
\ _ A~ N\~
A X b
FAIT FONDAMENTAL :
[ Ax=b COMPATIBLE o b EST CL DES COLONNES DE A4 |
SEL HOMOGENE :
Ax=0 —— AUMOINS UNE SOLUTION: x =0 (SOLUTION TRIVIALE)

CONSEQUENCE FONDAMENTALE :

[ Ax =0 ADMET SOLUTION NON TRIVIALE < COLONNES DE A FORMENT FAMILLE LIEE ]

SEL INHOMOGENE ET SEL HOMOGENE ASSOCIE :

(x): Ax=b AVEC b#0 —— SELHOMOGENE ASSOCIE (*);,: AX=0

SOLUTION GENERALE DU SEL INHOMOGENE VIA SEL HOMOGENE ASSOCIE :

SOLUTION GENERALE DE (%) EST v=v, +vj

" 5
SIv, e R™ SOLUTION PARTICULIERE DE (%) (= AVEC v, SOLUTION DE (+)),

THEOREME :

{V1,...,vp} SR" AVEC p >n EST LIEE | (VOIR THM. 3.12)

APPLICATION LINFAIRE (AL) :

T:R" -R™ APPLICATION LINFAIRE Tx+AX)=TX) +ATKX), vx,xX eR’ A1ecR

MATRICE (CANONIQUE) D’'UNEAL T :R" — R™:

[T]:=[T(e1)---T(ey)] —— | T®=I[Tlx, VYxeR"
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Chapitre 4

Définitions abstraites I : espaces vectoriels,
sous-espaces vectoriels et applications
linéaires entre espaces vectoriels

4.1 Motivation

On a pu apprécier, dans les dernieres sections, a quel point I'introduction de la notion abstraite de vecteur
s’est avérée utile, non seulement dans la description des systemes linéaires, mais aussi dans ’avantage qu'ils
représentent d'un point de vue calculatoire : on peut les manipuler un peu comme de simples nombres ,
sans se soucier du fait qu’ils représentent, a priori, des objets de grandes dimensions.

Les vecteurs nous ont également permis de développer le début de la théorie des applications linéaires
T:R" —R™, qui nous occuperont pour la plupart de ce que nous allons faire jusqu’a la fin de ce cours.

Mais avant de poursuivre cette étude, nous allons généraliser tout ce que nous avons fait jusqu'’ici, pour
l'utiliser dans d’autres situations.

En effet, il est profitable, dans beaucoup de situations qui vont bien au-dela de ce que nous avons vu jusqu’a
maintenant, d’avoir une structure vectorielle abstraite qui permette de manipuler des objets a I'aide d'une
addition vectorielle et d'une multiplication par un scalaire, telle que les propriétés classiques de I'arith-
métique (commutativité, distributivité, etc) soient satisfaites. Cette structure, qui généralise la notion de
vecteur dans R”, est ce qu’on appelle un espace vectoriel, et constitue le sujet de ce chapitre.

Les espaces vectoriels offrent un cadre de travail sur lequel nous redéfinirons naturellement tout ce que
nous avons fait dans le cas de R”. Nous introduirons également de nouvelles notions, qui seront apres uti-
lisées dans le cas particulier des espaces R”.

Informel 4.1. Attention : le contenu de ce chapitre est abstrait! La difficulté principale, pour le no-
vice, est d’accepter le fait que I'on va parler de “vecteurs” sans dire exactement ce qu’ils sont; il faudra
s’habituer a travailler avec ces objets en utilisant uniquement les propriétés qui les définissent, et qui
sont décrites dans la définition de la section suivante.
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4.2. Définition et exemples

Objectifs de ce chapitre

(0.1)
(0.2)
(0.3)

(0.4)
(0.5)
(0.6)
(0.7)

Ala fin de ce chapitre vous devriez étre capable de

connaitre et manipuler des espaces vectoriels (abstraits), ainsi que les propriétés basiques;
connaitre et manipuler des sous-espaces vectoriels;

déterminer si une famille de vecteurs est libre (aussi appelée linéaire indépendante) ou liée
(aussi appelée linéaire dépendante);

déterminer le sous-espace vectoriel engendré par une famille de vecteurs;

connaitre la définition d’application linéaire, ainsi que quelques propriétés basiques.
calculer le noyau et image d'une application linéaire;

déterminer si une application linéaire est injective, sujective, ou bijective.

Nouveau vocabulaire dans ce chapitre

espace vectoriel dante)

sous-espace vectoriel  application linéaire

sous-espace vectoriel engendré » noyau d'une application linéaire
famille génératrice o image d'une application linéaire
vecteurs colinéaires  projection sur une droite du plan
famille liée (ou linéairement dépendante) o réflexion a travers une droite du plan
famille libre (ou linéairement indépen- e rotation autour de I'origine du plan

4.2 Définition et exemples

Commencons par introduire la généralisation abstraite de la notion de vecteur rencontrée dans les chapitres
précédents :

Définition 4.2. Un espace vectoriel est un ensemble non-vide, noté souvent V, dont les éléments
sont appelés vecteurs, notés souvent u, v, w,... , muni d'une addition et d'une multiplication par
un scalaire, satisfaisant aux propriétés suivantes :

(EV.1)
(EV.2)
(EV.3)

(EV.4)

(EV.5)
(EV.6)
(EV.7)
(EV.8)

u+v=v+upour tous u, v € V (commutativité) ;
u+(v+w)=(u+v)+ wpourtous u, v, w € V (associativité) ;

il existe un élément 0y € V, appelé vecteur nul et souvent écrit simplement 0, tel que pour tout
veV,
v+0y =0y +v=u;

pour tout v € V, il existe un vecteur — v, appelé vecteur opposé de v, tel que
v+(=v)=(-v)+v=0y;

AMu+v) =Au+ Av pour tous L € R, u, v e V (distributivité I) ;
A+wv=Av+pvpourtous A, ueR, veV (distributivité II) ;
Apv) = A v = u(Av) pour tous A, u € R, v € V (associativité mixte);

lv=vpourtoutveV.
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Remarque 4.3. Ce que 'on vient de définir est généralement appelé espace vectoriel réel, car les scalaires
utilisés pour multiplier les vecteurs sont des nombres réels. Par la commutativité (EV.1) on voit que les
axiomes (EV.3) et (EV.4) peuvent se simplifier : il suffit de les remplacer par les conditions v +0y = v et
v+ (—v)) =0y pour tout v € V, respectivement. o

Donc un espace vectoriel est simplement un ensemble d’objets abstraits appelés vecteurs, dans lequel un
“+” permet d’additionner ces vecteurs, et dans lequel on peut multiplier les vecteurs par des scalaires.

Informel 4.4. Cela peut prendre du temps de s’habituer a ce niveau d’abstraction, et d'imaginer
que ce genre de structure existe ailleurs que dans le cadre des “fleches de R"”. C’est surtout a la
fin du cours qu'on se rendra compte de 'utilité de cette généralisation, lorsqu’on pourra résoudre
des problemes concrets en appliquant des méthodes algébriques/géométriques (par exemple : la
méthode des moindres carrés) dans un espace vectoriel abstrait.

Voyons quelques-uns des principaux exemples d’espaces vectoriels.

4.2.1 EspacesR"

Le premier exemple d’espace vectoriel que nous avons rencontré est bien-sir celui ott V' est formé de tous
les vecteurs de R". Dans ce cas I’addition et la multiplication par un scalaire avaient été définis de facon
naturelle, a savoir composante par composante (voir Proposition 2.3). C’est souvent le méme procédé qui
est utilisé dans des cas plus généraux.

4.2.2 Espaces de fonctions
Dans ce premier exemple, nous allons voir comment des ensembles de fonctions peuvent aussi étre vus
comme des espaces vectoriels.

Soit I < R un intervalle (borné ou non, I peut méme étre la droite toute entiére), et soit V I’ensemble de
toutes les fonctions définies sur I, a valeurs réelles :

V = {fonctions f: I — R}.

Remarque 4.5. Une fonction f € V est définie une fois que I'on a défini la valeur du réel f(t) pour chaque
t € I. Ainsi, deux fonctions f, g € V sont égales, ce qu'on écrit f = g, si et seulement si elles prennent la
méme valeur en tout point, c’est-a-dire si

f(n=g(r), Vtel.

<o

« Définissons une addition sur V. Pour ce faire, nous devons associer a toute paire f, g € V une nouvelle
fonction f + g € V. On doit donc définir le réel (f + g)(¢) pour tout ¢ € I, ce que I'on fait naturellement
en posant

f+8:=f+g, Veel.

o Définissons la multiplication par un scalaire:si f € Vet 1 eR, alors Af € V estlafonction Af: I — R
définie comme suit :

AN :=Af(0), Viel.
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Nous devons maintenant vérifier que V est bien un espace vectoriel. Pour cela, nous aurons besoin de la
fonction nulle 0: I — R, comme étant la fonction qui vaut zéro en tout point,

0(t):=0, Vtel,
et 'opposé d'une fonction f € V, notée — f € V, est la fonction

N :=-f@), Vrel.

Théoréme 4.6. Muni de l'addition et de la multiplication par un scalaire (définies ci-dessus), V est un
espace vectoriel.

Preuve: On vérifie une a une chacune des propriétés qui définissent un espace vectoriel. (On remarquera qu’'a chaque
fois, c’est une propriété des réels qui fait le travail !)

(EV.1) Soient f,ge V. Sion fixe t € I, on peut écrire
(f+@)=fO+g)=g+f()=(g+N).

Comme cette identité est vraie pour tout ¢ € I, cela implique bienque f+g=g+ f.

(EV.2) Soient f,g,he V.Sion fixe t € I, alors

(f+@g+m)(0)=fD)+(g+n)(1)
=f(0)+ (g +h()
=(f(O+g0)+h®
=(f+QW+h)=((f+8) +h)®).

Comme cette identité est vraie pour tout ¢ € I, cela implique bien que f+(g+h) = (f+ g) + h.

(EV.3) Par la définition de la fonction nulle, on a bien-stir que f +0 = f pour toute f € V, puisque
(f+0)()=f®+0)=f(1), Vtel.
(EV.4) Avecl'opposé — f défini plus haut, pour tout € I,
(f+EN)D=fO+ N0 =) - F()=0=0(0),

ce qui implique que f + (—f) =0.
(EV.5) Soient f,ge V, etsoit A eR. Pourtoutt€l,ona

(Af+8) ) =A((f+8)(1)
=A(f(r)+g)
= Af(1)+Ag(t)
=AND+Ag0)
=Af+18)(®),

ce qui implique A(f+g) =Af +1g.
(EV.6) Soient A, eR, et f€V.0Ona,pourtoutzel,
(A+wf)O=A+wf@
=Af(O)+pfr)

=AN®+ W@H®
=Af+uN)),

ce qui implique bien que A+ ) f =Af + uf.
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(EV.7) Soient A,u€eR, feV.On a, pourtout €I,

(AwN)® = A (D)
= Muf(@)
=AW f
= (uA) f(1)
=p(Af(1)
= u((AN) (1)
= (AN,
ce qui implique bien que A(uf) = (Aw) f = w(Af).
(EV.8) Soit f€V.On a, pourtouttel,
aAnNm=1-fO)=f®,
ce qui implique bien 1f = f.

Informel 4.7. La preuve est étonnamment longue, mais ne présente aucune subtilité! (La seule dif-
ficulté, peut-étre, est de comprendre pourquoi il est nécessaire de faire tout ca!)

4.2.3 Espaces de polyndomes

Les fonctions polynomiales (que I'on appelle aussi polynémes) sont des fonctions trés particuliéres mais
fournissent un cas important d’espace vectoriel, jouant un réle important dans de nombreuses applica-
tions. On rappelle qu'une fonction polynomiale (a coefficients réels) est une application p : R — R pour
laquelle il existe ay, ..., a, € R tels que

p(t)=ag+ait+ayt>+---+apt", teR. 4.1)

On appelle ay, ..., a, € R les coefficients de p. Comme d’habitude, pour le polynéme p précédent on peut
définir aussi les coefficients a,;, = 0 pour tout entier m > n. Par exemple, la fonction nulle 0 est ainsi une
fonction polynomiale avec tous les coefficients zéro.

On rappelle le résultat fondamental suivant.

Théoreme 4.8. Soient p et q deux polynome a coefficients réels :
p(t)=ap+ait+ayt* +---+aytP etq(t)=bo+byt+byt*+--+bgyt1.

Alors, p(t) = q(t) pour tout t € I (oui I est un intervalle ouvert) si et seulement si a; = b; pour tout i.

Preuve: Voir par exemple ici. O

Sile polyndme p satisfait (4.1) et a, # 0 pour un entier non négatif n, on dit que p a degré n. On définit que
le degré du polyndéme nul est —oo, et donc inférieur a tout entier n > 0.

On définit P 'ensemble de tous les polynémes a coefficients réels. Pour n > 0 entier, on définit P, 'en-
semble de tous les polyndmes a coefficients réels de degré au plus égal a n. On additionne et multiplie
(par des scalaires) des polynémes de degré au plus égal a n comme on I'a fait pour les fonctions.

Théoréme 4.9. Munis de l'addition et de la multiplication par un scalaire, P et P, sont des espaces
vectoriels.

Preuve: (voir exercices) O
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4.2.4 Espace des matrices

On rappelle qu'une matrice de taille m x n a coefficients réels est un tableau rectangulaire formé de m
lignes et n colonnes de la forme
A 0 Ain

A= : . :

Am,l U Am,n

avec A; j e Rpourtous 1 < i< metl< j<n. Leséléments a; ; sont appelés les coefficients de la matrice
A. On note M« ,(R) ’ensemble formé de toutes les matrices de taille m x n a coefficients réels. Pour réduire
I'écriture, si une matrice A € M« (R) a des coefficients A; j (i =1,...,m, j = 1,...,n), on écrira souvent tout
simplement

A=(Aii=1,...m ou méme A= (A )
j=1,..,n

si le rang des indices i et j est clair. Pour simplifier, on omettra souvent la virgule dans les indices des
coefficients, i.e. on écrira souvent A;; au lieu de A; ;.

Une matrice de taille 7 x n est dite carrée de taille 7. On écrira souvent M, (R) au lieu de M,,» ,,(R) I’ensemble
formé de toutes les matrices carrées de taille n a coefficients réels.

On rappelle les définitions d’addition et de multiplication par un scalaire, introduites précédemment :

e Si ABe men(R)r

Aip 0 A Bii -+ Bin
A=| i o i | B=| o,
Am1 - Amn Bmi -+ Bmn
on définit A+ B € M, ,(R) comme la matrice dont les coefficients sont les nombres A; j + B;,j :
Ain+Bin o At Bin
A+B:= : . :
Ami+Bm1 - Amn+tBmn

e Pour un scalaire 1 € R, on définit AA € M,;,x,(R) comme la matrice dont les coefficients sont les
nombres 14; ; :

AAyy o AA,

AA = : :

Am1 - AAmn

Théoréme 4.10. Muni de l'addition et de la multiplication par un scalaire (définies ci-dessus),
M.« (R) est un espace vectoriel.

Preuve: En exercice! L'élément nul “0” est la matrice de taille m x n dont tous les éléments sont égaux a zéro, et
I'opposé d’'une matrice A estla matrice dont tous les éléments sont les opposés de ceux de A. O

4.2.5 Autres exemples

La structure d’espace vectoriel apparait dans de nombreuses situations.

Exemple 4.11. Soit V ’ensemble des suites de réels, dans lequel une suite est notée simplementx = (x,) >o.
En définissant une multiplication par un scalaire 1 € R,

Ax:= (Axp)n>0,

et ’addition
X+y:=(Xp+ Yn)nzo,

on peut vérifier (en exercice) que V a une structure d’espace vectoriel. 3
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4.3 Colinéarité et indépendance linéaire

Une fois que I'on est dans un espace vectoriel V bien défini, on peut importer n'importe quelle notion vec-
torielle, rencontrée dans R”, dans V. Ceci permettra de profiter de ces notions pour résoudre des problemes
dans un cadre abstrait, ayant parfois des conséquences pratiques surprenantes.

Arrétons-nous sur quelques-unes de ces notions, qui seront empruntées directement de ce que nous avons
fait dans R”.

4.3.1 Colinéarité

Définition 4.12. Soit V un espace vectoriel. Deux vecteurs u, v € V sont colinéaires sil’'un d’eux peut
s’écrire comme un multiple de I'autre.

Exemple 4.13. Les matrices A, B € My, 3(R) définies par

I

0 -3 1 0 6 -1

sont colinéaires, puisque B = —2 A. Par contre,
, (11 2 0o 7 2
A_(l -3 3)’ B=lo -2 21
ne sont pas colinéaires, parce qu’il n’existe aucun A € R tel que A= AB ou tel que B = 1 A. o
Exemple 4.14. Soient f, g:R — R les fonctions

f(®) :=sin(r) g(1) :=cos(t) teR.

Montrons que f et g ne sont pas colinéaires. On le démontre par 'absurde : supposons qu'il existe A € R tel
que g = Af, c’est-a-dire tel que
cos(t) = Asin(?), VteR.

En écrivant cette relation pour le choix particulier £ = 7, on obtient

Vi_ V2
2 27
qui implique A = 1. Mais, pour le choix = 7, on obtient
0=2-1,

qui implique A = 0. On conclut qu’il ne peut pas exister de scalaire A qui fonctionne pour tous les ¢ € R. On
conclut que f et g ne sont pas colinéaires. o

4.3.2 Combinaisons linéaires et indépendance linéaire

Si vy,..., v, est une famille de vecteurs d’'un espace vectoriel V, et si A4,...,1, sont des scalaires, on peut
p p
considérer la combinaison linéaire

/111)1+"'+ﬂpl/p.

On peut alors généraliser la notion d'indépendance linéaire :
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Définition 4.15. Soient v4,..., v, des vecteurs d’'un espace vectoriel V. La famille {v, ..., v,} est dite

(LD) liée (ou linéairement dépendante) s'il existe des coefficients 11, A3,...,1), dont au moins un
n’est pas nul, tels que
/111/1 +"'+/1p1)p=0V;

(LI) libre (oulinéairement indépendante) si elle n’est pas liée, i.e si 'unique combinaison linéaire
nulle,
A1vg +"‘+Apl/p =0y

est celle pour laquelle A1 =1, =---=1, =0.

Exemple 4.16. Considérons les matrices

1 O 0 1 1 -1
A‘(O —1)’ B‘(l 0)’ C‘(o 1)’

et montrons que la famille {A, B, C} est libre. Pour ce faire, considérons la relation linéaire

/11A+/123+/13C:0,

1 -1\ (0 0
+’13(0 1)_(0 o)’

(/11+/13 12—13)_(0 0)
Az —Al-l‘lg “lo o)

Deux matrices sont égales si et seulement si tous leurs coefficients sont égaux, donc cette derniere égalité
entre matrices 2 x 2 est équivalente a

qui signifie en fait

1 0 0 1
’11(0 —1)”2(1 0

c’est-a-dire

/11 + /13 = 0,

Ao — A3 = 0,

(%) A _ o,
- + /13 = 0

Ce systéme ne possédant que la solution triviale, 1; = A, = A3 = 0, on en conclut que {A, B, C} est libre
ou, en d’autres termes, qu'aucune de ces matrices ne peut s’écrire comme combinaison linéaire des deux
autres. 3

Exemple 4.17. Dans I'espace V de toutes les fonctions de R dans R, considérons pour tout k =0,1,...,p, le
polyndéme fi.(t) := tk, c’est-a-dire que

fO(t)Z:l, fl(t) =1, fz(l’):: tz,--’,fp(t) =P
Lemme 4.18. La famille{fo, f1,..., fp} SPp est libre.

Preuve: Soient A9, A4,..., Ap des scalaires. On a

Aoﬁ)+/11f1+"'+/1pfp=0

si et seulement si
Ao+Mt+Apt?+--+AptP =0,  VieR.

On va maintenant utiliser le Théoreme 4.8. Ce résultat implique, en prenant I =R, que Ag =A; =---= 1, =0, et donc
que la famille {fy, f1,..., fp} estlibre. o
3
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Exemple 4.19. Dans I'espace V de toutes les fonctions de R dans R, considérons la famille {f, g, i}, ol1 pour
tout t e R,
f(t):=7, g®):=cos2t),  h(t):=cos(1).

Pour savoir {f, g, h} est libre ou liée, on considere la relation linéaire
/11f+/12g+/13h:0,

qui signifie
7A1 + Aacos(2t) + Agcos’(£) =0  VieR.

Or si on se souvient de la relation trigonométrique

1+ cosCa)

2
cos“(a) =
(@) >

’

on peut écrire
1 1 1 1
— 20— 24— - -
h(t) = cos (t)—2+zcos(2t) 14f(t)+2g(t).

Donc h = ﬁf + %g, ce qui montre que la famille {f, g, h} est liée. o
4.4 Sous-espaces vectoriels

Définition 4.20. Un sous-ensemble non vide W < V est un sous-espace vectoriel de V si
(SEV.1) Oy € W;
(SEV.2) siw,w' e Wet AeR, alors w+Aw' e W.

On dit aussi qu'un sous-espace vectoriel est un sous-ensemble de V' qui est stable par addition et par mul-
tiplication par des scalaires. Schématiquement :

14

"stable"

Remarque 4.21. V, vu comme sous-ensemble de lui-méme, peut étre considéré comme un sous-espace
vectoriel. ©

Proposition 4.22. Soit W un sous-espace vectoriel de V. Alors, W est un espace vectoriel avec la somme
et le produit par scalaires de V.
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Preuve: On voit d’abord que la somme de V appliquée a deux éléments w et w' de W est dans W, car (SEV.2) nous
dit que w+ w' = w+ 1.w' € W. De la méme facon, le produit par scalaires de V appliqué 2 A € R et w € W est dans
W, vu que (SEV.2) nous dit que w =0y + 1.w € W. En outre, les axiomes (EV.1)-(EV.2) et (EV.5)-(EV.8) sont vérifiés pour
les éléments de V, donc a fortiori pour les éléments de W. La condition (SEV.1) et I'axiome (EV.3) pour V implique
aussi que Oy est le vecteur nul de W, i.e. 'axiome (EV.3) pour W est vérifié. Finalement, étant donné w € W, alors
Oy + (—1)w = —w e W. Laxiome (EV.4) pour V implique alors le méme axiome (EV.4) pour W. O

Exemple 4.23. Soit V I'espace vectoriel des fonctions réelles sur 'intervalle I = [a, b]. Considérons

W:={feV|f(a) = f(b)}.

Donc les éléments de W sont les fonctions sur [a, b] dont le graphe a un point initial 2 méme hauteur que
le point final :

Montrons que W est un sous-espace vectoriel de V.
1) D’abord, la fonction nulle 0 est évidemment dans W, puisque 0(a) = 0(b) = 0.

2) Ensuite, si f€ Wet AeR, alors
AN@) =Af(a)=Afb) = (Af)D),

etdoncAfeW.

3) Finalement, si f,g € W, alors
(f+8@=fla)+g@=fb)+gb)=(f+8b),

etdonc f+geW.

Sur le méme espace vectoriel V (des fonctions réelles définies sur [a, b]), les sous-ensembles suivants sont
aussi des sous-espaces vectoriels :

 Les fonctions paires (si [a, b] est symétrique).
» Les fonctions impaires (si [a, b] est symétrique).
» Les fonctions continues sur [a, b].
» Les fonctions continues sur [a, b], dérivables sur ]a, b|.
o

Exemple 4.24. Si V est 'espace de toutes les fonctions réelles définies sur R, et si P, est 'ensemble de tous
les polyndmes de degré au plus égal a n, alors P;, est un sous-espace vectoriel de V. (Voir exercices.) o

Exemple 4.25. Dans V = R?, considérons le sous-ensemble W des vecteurs situés sur la droite dirigée par

2
v= (1), passant par l'origine :
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V =R2

@y W

o)

Intuitivement, il est clair que cet ensemble W est “stable” : si on multiplie un vecteur de W par un scalaire,
on obtient un vecteur qui est aussi dans W, et si on additionne deux vecteurs de W, alors on obtient un
vecteur qui est aussi dans W : “on ne sort pas de W” en additionnant ou en multipliant par des scalaires.

Plus rigoureusement, montrons que W est un sous-espace vectoriel de V = R2.
Preuve: Par définition, W = Vect{v} : w e W si et seulement s’il existe un scalaire A tel que w = Av.
(SEV.1) Le vecteur nul 0 est évidemment dans W puisque 0 = Ov.

(SEV.2) Siw,w' € W, alors il existe 1,1’ € R tels que w = Av et w = A'v, et soit u € R. Alors clairement w+ uyw’ € W
puisque
w+puw = Av+pd'v= (A +pud)v,

ce qui entraine w+ uw’' € W.

Exemple 4.26. Dans V = R3, considérons le plan W = Vect{v,v,} dirigé par les vecteurs

2 -5
V] = 0 y Vo = 3
-1 7

Par définition, tout vecteur w € W est de la forme

W=A1v] + vy, A1, A €ER.

@ A1:0270
[ A2 =0.450...

V2

rA :A’:t
L

On affirme que W est un sous-espace vectoriel de R3.
Preuve: Clairement, W est formé de tous les vecteurs qui sont combinaisons linéaires de vi,v,, donc w € W si et
seulement s'il existe des scalaires 11, A, tels que

w=A1v] +Aovy.
En d’autres termes : W = Vect{vy, v,}.

(SEV.1) Clairement, 0 € W (prendre 1; = A, =0).
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(SEV.2) Siw,w'e W, delaformew=A1v; +A2vo, W = A} vy + A5V, et p € R, alors

w+pw = (A1vy + Aav2) + p(A) vy + A5v))
= (A1vy + A2v2) + (LA V1 + A v,)
= (A1 + pADVL + (A2 + pAs) vz,

etdoncw+uw' e W.

Les deux derniers exemples sont des cas particuliers d'un procédé trés général permettant de construire des
sous-espaces vectoriels.

Définition 4.27. Soit V un espace vectoriel, et soient vy,..., v, des vecteurs de V. On définit la partie

engendrée (ou 'ensemble engendré) par vy, ..., vy, noté Vect{v,,..., vp}, comme I'ensemble formé
de toutes les combinaisons linéaires possibles des vecteurs vy, ..., Up.
On dit que {vy,...,vp} € V est une famille génératrice de V (ou que {v,...,v,} S V engendre V) si

Vect{vy,...,vp} = V.

Lemme 4.28. Pour toute famille {vy,...,vp} €V d'un espace vectoriel V, la partie engendrée W =
Vect{vy,..., vp} est un sous-espace vectoriel de V.

Preuve: Fonctionne exactement comme les deux preuves dans les exemples ci-dessus.
(SEV.1) Lacombinaison linéaire dont tous les coefficients sont nuls, donne I'’élément nul :
Oy =0v1+---+0v, e W.
(SEV.2) Etantdonné we W et w' € W, on a que

w=MAvi++Apvp,
! _ 9l . !/
w=Mvi+-+A,0p.

Alors, pour 1 € R,
w+}Lw':(itlvl+-~-+/L,,vp)+/1(/1'1v1+--~+/1;,vp): (/11+)L/1’1)v1+---+(/1p+)t/1’p)v,,eW.
O

En raison du résultat précédent, la partie engendrée par une famille {vy,..., v,} est aussi appelée le sous-
espace vectoriel engendré par {vy,..., vp}.

Exemple 4.29. Si V est 'espace de toutes les fonctions de R dans R, et si fy, fi, f2 € V sont définies par
fi(t) = tk pour tout ¢ € R, alors

W =Vect{fo, f1, fo} =P

est le sous-espace vectoriel de V contenant toutes les combinaisons linéaires

p=Xfo+Mh+A2fo,
c’est-a-dire tous les polyndmes p de degré plus petit ou égala 2 :
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p(t) = Ao + Ait + Aot?

)\;] ®
Al ®
)\2 @]

o
Exemple 4.30. Si V est'espace de toutes les fonctions de R dans R, et si fi, f> € V sont définies par
i) =sin(?),  fo(1) = cos(1), teR,
alors W = Vect{fi, f>} estle sous-espace vectoriel de V contenant toutes les combinaisons linéaires :
f(t) = Ay sin(t) + Az cos(t)
)\1 o ‘
)\2 o
o

4.5 Applications linéaires

Dans cette section, nous généralisons la notion d’application linéaire, au cas d’'une application d’'un espace
vectoriel V (de départ) dans un espace vectoriel V' (d’arrivée) :

V /TxA V,

Etant des espaces vectoriels, V et V' possédent chacun un zéro; on les notera 0y € V et 0y € V' pour les
distinguer. Par contre, 'addition dans ces espaces sera toujours notée “+” pour ne pas trop alourdir les
notations .
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4.5.1 Généralités sur les applications

Rappelons rapidement, dans ce cadre général, quelques notions élémentaires de la théorie des applications
(ou fonctions) T : V — V'. Si nécessaire, on pourra aller voir ici, pour d’autres exemples a propos de ces
notions. Pour tout V, on notera idy : V — V 'application identité de V qui associe vatout ve V.

On rappelle que, étant donné deux applications T: V — V' et S: V' — V", la composition So T est I'appli-
cation définie par

SoT:V—-V"
v— (SoT)(v):=S(T(v).

De facon graphique, on a

SoT

Informel 4.31. Attention, méme si on litle symbole “So T” de gauche a droite, en disant “S composée
avec T”, c’est pourtant T que I'on applique en premier, suivie de S!

Rappelons que pour v € V, I'élément v’ = T(v) € V' est appelé image de v, et v est une préimage de v'. En
outre,

Définition 4.32. L'ensemble image d’une application T : V — V' est défini par I'ensemble des élé-
ments de I’ensemble d’arrivée qui possédent au moins une préimage :

Img(7T):={v' e V'|TveVtelque T(v) =v'}.
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Définition 4.33. Une application 7:V — V' est

(SUR) surjective si tout élément de I'ensemble d’arrivée V' posséde au moins une préimage, c’est-a-
dire si Img(T) = V';

(IN]) injective si des éléments distincts ont des images distinctes, c’est-a-dire si v; # v, implique
T(v) # T(v2);
(BIJ) bijective si elle est a la fois injective et surjective;

(INV) inversible s'il existe une application S: V' — V telque So T =idy et To S =idy.

Remarquons que::

o Lorsque T:V — V' est surjective, alors pour tout b € V', I'équation
T(w)=b

posséde au moins une solution ve V.

« Une application n’est pas injective s'il existe au moins une paire de vecteurs distincts v; # v, tels que
T(v)=Tw):

V /—\ V,

[

Lorsque T: V — V' est injective, alors pour tout b € V', sil’équation

T(v)=b
possede une solution v € V, cette solution est unique. En effet, s’il y avait deux solutions, vy, v, € V,
alors T'(v1) = T(v2) = b, qui par 'injectivité implique v; = v,.

e On remarque que les conditions So T =idy et T o S = idy dans la définition d’application inversible
s’expriment de facon équivalente comme

S(Tw)=v, VrveV,
T(SwWh)=v', VeV,

respectivement. L'application S est dans ce cas unique, elle s’appelle 'application réciproque (ou
inverse) de T, et elle est notée T7!,

14 V!
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On voit que I'inversibilité et bijectivité d'une application sont en fait deux conditions équivalentes :

Lemme 4.34. Soit T:V — V' une application. Alors les conditions suivantes sont équivalentes :
(BI]) T est bijective,
(INV) T estinversible.

Preuve: On suppose d’abord que T est bijective. Etant donné v’ € V/, comme T est surjective, v’ posséde au moins
une préimage : il existe un v, € V tel que

Tw) =0

Mais comme T est aussi injective, il ne peut pas exister, a part v,, d’autre vecteur dont I'image soit égale a v'. Par ce
procédé, on associe a tout v’ € V' un unique v, € V tel que T(v.) = v'. On note S: V' — V 'application qui a chaque
v’ associe son unique préimage v.. Par construction, on a

T(swH)=v, VeV,

S(Tw) =v, YvevV,
ce qui nous dit que T est inversible.
Réciproquement, si T est inversible, soit S: V' — V I'application inverse. Etant donné v’ € V' quelconque, I'identité
T oS =idy nous dit que T(S(v)) = v/, ce qui implique que v’ € Img(T). En conséquence, T est surjective. En outre,
soient vy, v € V tels que T'(v) = T(v2). Lidentité So T =idy nous dit que

v1=S(T(w1) =S(T(w)) = va,

ce qui implique que T est injective. En conséquence, T est bijective. O

4.5.2 Définition d’application linéaire

Généralisons maintenant la notion d’application linéaire, que nous avions précédemment définie seule-
ment dansle cas T:R" — R :

Définition 4.35. Soient V et V' des espaces vectoriels. Une application T : V — V' est dite linéaire si
T+ Ave) =T () + AT (v2)

pour tous vy, v, € V et tout scalaire A € R.

Remarque 4.36. De méme que dans la Remarque 3.17, la linéarité implique que le vecteur nul est toujours
envoyé sur le vecteur nul :

TOy)=0y.

En effet, en écrivant 0y = Oy + 1.0y et en utilisant la linéarité,
TOy)=TOy+1.0y)=TOy)+1.TOy)=1+1)TOy).

Sil’on somme a chaque membre —T'(0y) on trouve bien que T(0y) = 0. o

Remarque 4.37. On remarque qu'une application T : V — V' est linéaire si et seulement si les deux condi-
tions suivantes sont satisfaites :

1) T(v1+v2)=T(v1)+ T(v2) pourtous vy, 2 €V,

2) T(Av)=AT(v) pour tout v € V et tout scalaire A € R.
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En effet, on voit bien que les deux conditions précédentes impliquent que T'(v, + Av,) = T(v1) + AT (v2)
pour tous vy, V2 € V et tout scalaire A € R, i.e. T est une application linéaire. Réciproquement, si T est une
application linéaire, alors

T(l)l +U) = T(U1 +1.1p) = T(l}l) + l.T(Ug) = T(l}l) + T(l}g)
pour tous vy, V2 € V, ce qui donne 1). En outre,
TA)=TOy+A.v)=TOy)+A.TW) =0y +AT(v) = AT (V)

pour tous ve Vet A € R, ce qui donne 2).
On peut aussi mettre les deux conditions précédentes en une seule : une application T : V — V’ est linéaire
si et seulement si pour tous vy, v € V, et pour tous scalaires a, §, € R,

T(avy+ Bv2) =aT(v))+ BT (vy).
3
Nous avons déja vu plusieurs exemples d’applications linéaires dans le cas T : R” — R". Rappelons le plus

important :

Exemple 4.38. Si A est une matrice réelle m x n, alors I'application

T:R" - R™
x— T(X):= AX

est linéaire. 3
Exemple 4.39. Soit V I'espace des fonctions f: [a, b] — R, soit V' = R?, et soit T : V — V' définie ainsi : pour
tout feV,

T(f):= (f(a)) )

f(b)

Alors T estlinéaire. En effet, si f,ge V, a, R, alors

(f+/18)(6l)) _ (f(d) +/1g(a))
(f+1g)(b) f(b)+Ag(b)

_ f(a)) gla)
‘(f(b) M e

T(f+Ag) =

): T(f)+AT(g).

<

Exemple 4.40. Soit V = C([a, b]) 'espace des fonctions (a valeurs réelles) continues sur [a, b}, et soit V' = R?.
Soit ¢ € ]a, b[ un point fixé et soit T: V — V' définie ainsi : pour tout f € V,

fcf(l‘)dt
T(f);: ab .
f fdte

Alors T est linéaire et surjective. (voir exercices) o

Lemme 4.41. SoientT:V — V' etS: V' — V" des applications linéaires.
(COM) La composition So T : T — V" est une application linéaire.

(INV) SiT est bijective, alors sa réciproque T~' : V! — V est aussi linéaire.
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Preuve: Pour démontrer que la composition So T: T — V" est une application linéaire, on note que
(So (w1 +Avp) = S(T(v1 + Av2)) = S(T (1) + AT (v2)) = S(T (1)) + AS(T (v2)) = (So T)(v1) + A(So T)(v2),

pour tous vq,v2 € V et A € R, ou I'on a utilisé dans la deuxiéme égalité que T est une application linéaire et dans la
troisieme égalité que S est une application linéaire.
On va montrer que si T est bijective alors T~!: V' — V est aussi linéaire. Or, pour vi,v,eV et LeR,ona

T(T WD +AT I TWY)) = T(T WD)+ AT(T7 (v))) = vy + Avh = T(T7 (v + Av})),

ol1 'on a utilisé que T est une application linéaire dans la premiere égalité, et que T et T~! sont des applications
réciproques dans la deuxieme et derniere égalités. On rappelle que l'injectivité de T veut dire que T'(v;) = T'(v2) pour
v1, V2 € Vimplique v; = v». En conséquence, 'identité démontrée et I'injectivité de T impliquent que

T W)+ AT HW)) = T (] + Avh),

comme on voulait prouver. O

4.5.3 Noyau d’une application linéaire

Lorsqu’une application T: V — V' est linéaire, plusieurs choses peuvent étre dites a son sujet.

Comme Oy est toujours envoyé sur Oy, il se pourrait aussi que d’autres éléments de V soient aussi envoyés
sur Oy :

Définition 4.42. Le noyau d'une application T : V — V' est 'ensemble de toutes les préimages de
va o

Ker(T):={veV|T®) =0y}.

On a vu plus haut que le noyau contient toujours le zéro de V. On peut en dire un peu plus :

Lemme 4.43. Une application linéaire T : V — V' est injective si et seulement si son noyau ne contient
que le zéro : Ker(T) = {Oy}.

Preuve: Supposons d’abord que T est injective. Considérons un v € Ker(T), c’est-a-dire tel que T'(v) = 0. Comme on
sait que T (0y) = 0y, on adonc T(v) = T(0y), et 'injectivité implique que v = 0y. Donc Ker(T) = {0y}.

Supposons maintenant que Ker(7T) = {0y}. Considérons vy, v» € V tels que T'(v;) = T(v,). Par linéarité, ceci implique
T(v1 — v2) =0y, et donc v; — v, € Ker(T), et donc vy — v2 = 0y, ce qui implique vy = v». Donc T est injective. O

Exemple 4.44. Soit T : V — R? I'application linéaire définie plus haut; pour f: [a, b] — R,

(7).
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Le noyau de cette application est formé de toutes les fonctions f pour lesquelles

T(f)=0=(g),

c’est-a-dire
Ker(T)={f:la,bl = R: f(a)= f(b) =0}.

Ce noyau contient en particulier la fonction identiquement nulle bien-stir, mais aussi une infinité de fonc-
tions non-nulles :

Ker(T)

Donc T n’est pas injective. <

Finalement, notons que le noyau et I'image sont des sous-ensembles stables de V et V', respectivement :

Lemme 4.45. Si T:V — V' est une application linéaire, alors
(i) Ker(T) est un sous-espace vectoriel de V ;

(ii) ITmg(T) est un sous-espace vectoriel de V'.

Preuve: On avu que T(0y) =0y (voir Remarque 4.36), ce qui signifie que 0y € Ker(7T) et 0y € Img(T).
Pour montrer que Ker(7) est un sous-espace vectoriel de V, étant donné vy, v, € Ker(T) et A € R, alors la linéarité de T
implique
T(v1+Av2) = T(v1) +AT(v2) =0y,
—— =

=0y =0y

etdonc v; + Av, € Ker(T).
Pour montrer que Img(7T) est un sous-espace vectoriel de V', étant donné wy, w, € Img(T) et A € R, il suffit de montrer
que w; + AW, € Img(T). Or, la définition d'image nous dit qu'il existe vy, v € V tels que wy = T(vy) et wo = T(v2). La
linéarité de T implique

w1 +Aws =T () + AT (v2) = T(vy + Avp) € Img(T),

comme on voulait démontrer. O
4.5.4 Applications linéaires de R” dans R injectives, surjectives et bijectives
Dans cette derniére sous-section, on va présenter des criteres d’injectivité et de surjectivité des application

linéaires de R" dans R, basés sur la forme échelonnée réduite de la matrice canonique associée a I’appli-
cation linéaire.

Lorsque T :R" — R™ est linéaire, on sait qu’il existe une unique matrice A de taille m x n telle que

T(x) = Ax.
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Comme T est entierement déterminée par sa matrice A, on écrira souvent Ker(A) au lieu de Ker(7T) et Img(A)
au lieu de Img(7T).

Rappelons qu'une application T : R” — R est injective si des éléments de R” distincts ont des images
distinctes :
x,X eR",x#x = Tx) # TX),

ou alors, ce qui est équivalent, si
Tx)=Tx) = x=X.

Pour les applications qui sont linéaires, T (x) = Ax, on sait que I'injectivité peut se caractériser a ’aide du
noyau
Ker(A) = {xeR" : Ax=0},

d’aprés le Lemme 4.43. En plus, en raison du fait qu'une application linéaire est entierement déterminée
par sa matrice, on dit qu'une matrice A de taille m x n est injective si 'application linéaire T : R” — R
donnée par T (x) = Ax est injective.

Comme Ker(A) n'est autre que 'ensemble des solutions du systeme homogene Ax = 0, et comme on sait
qu’il y a toujours la solution triviale, le noyau n’est jamais vide : 0 € Ker(A).

Nous avons vu qu'une application linéaire est injective si et seulement si son noyau ne contient que le vec-
teur nul :
Ker(A) = {0}.

Et comme on sait que I'unicité de la solution du probleme homogene caractérise I'indépendance des co-
lonnes de A, I'injectivité peut se formuler en termes de 'indépendance des colonnes de la matrice de T. De
facon plus générale on a le résultat suivant :

Théoréme 4.46. Soit T : R” — R™ une application linéaire. Les conditions suivantes sont équiva-
lentes :

(i) T estinjective;
(i) Ker(T) ={0};
(iii) le systeme linéaire [T1x = 0 admet uniquement la solution trivialex=0;
(iv) les colonnes de la matrice canonique de [T] forment une famille libre de R™ ;
(v) la forme échelonnée réduite de la matrice canonique de [T est n'a pas de variables libres;

(vi) la forme échelonnée réduite de la matrice canonique de [T] possede un pivot par colonne.

Preuve: On a montré dans le Lemme 4.43 que les conditions (i) et (ii) sont équivalentes.

On va montrer que les conditions (ii) et (iii) sont équivalentes. D’apres le Théoréme 3.22 on a que T'(x) = [T]x pour
tout x € R", ce qui implique que I'ensemble de solutions du systeme linéaire T(x) = [T]x = 0 est précisément Ker(T).
En conséquence, Ker(T) = {0} si et seulement si le systeme linéaire T(x) = [T]x = 0 admet uniquement la solution
triviale x = 0.

On prouve maintenant que les conditions (iii) et (iv) sont équivalentes. On notera [T] = [c; ...c,], avec ¢; la i-éme
colonne de [T1]. Alors, par définition, [T]x = x;¢; + -+ + X, €5, ce qui nous dit que le systeme linéaire [T]x = 0 admet
uniquement la solution triviale x = 0 si et seulement si la famille {cy, ..., c,]} est libre.

On montre maintenant que les conditions (iii) et (v) sont équivalentes. Pour le faire on va montrer que la condition (v)
implique (iii), et que la négation de (v) implique la négation de (iii). Soit A la forme échelonnée réduite de [T]. D’apres
le Théoréme 1.16, les systemes linéaires [T]x = 0 et Ax = 0 ontles mémes ensembles de solutions S. Alors, si An’admet
pas de variables libres, alors S = {0}, ce qui nous dit que [T]x = 0 admet uniquement la solution triviale x = 0. Pour
l'autre implication, on note que si A admet au moins une variable libre, alors S est infini, ce qui nous dit que [T]x =0
admet des solutions autres que la solution triviale x = 0.

Finalement, on note que les conditions (v) et (vi) sont équivalentes, vu qu'une variable libre du systeme linéaire [A]x =
0 est précisément celle qui correspond a une colonne sans pivot de la forme échelonnée réduite. O
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Exemple 4.47. Soit T : R® — R3 'application linéaire décrite par la matrice

11 0
A=|(2 8 -2{.
2 5 -1
On veut déterminer sil’application linéaire est injective ou non. Pour le faire, on calcule la forme échelonnée
réduite de A via

L1 0) rmen (11 0) (11 0} (110
Ly — L3 —2L — —
A=[2 8 =2 =" lo 6 2|7 =10 0 0| *="[o 3 -1
2 5 -1 0 3 -1 0 3 -1 00 0
R LLLIO%
z‘—z 11‘—12 1

01—5 01—§

00 0 0

Comme la troisieme colonne de la forme échelonnée réduite A’ de A n’a pas de pivot, 'application linéaire
T n’est pas injective. La forme échelonnée réduite nous permet aussi de déterminer le noyau de T, vu que
le noyau correspond a I'’ensemble des solutions de Ax = 0, qui coincide avec '’ensemble des solutions de
Ax=0:

X1 —X3/3 -1/3 -1/3
Ker(T) = Xo | |x1=—x3/3,x0=x3/3 } = x3/3 ||x3eR =< x3| 1/3 ’X3€R = Vect 1/3
X3 X3 1 1

Comme ce noyau contient des vecteurs non-nuls (tout choix de x3 # 0 donne une solution non-triviale),
T n’est pas injective. Ceci signifie aussi que les colonnes de A sont linéairement dépendantes. En effet, en
prenant par exemple la solution correspondant a x3 = 3, on peut écrire

1 1 0 0
-D|2|+1|8]+3(-2|=]0
2 5 -1 0

<

Rappelons la définition de I’ensemble image d'une application : c’est I’ensemble des points de I'’ensemble
d’arrivée qui possedent au moins une préimage,

Img(T) :={yeR” : IxeR" t.q. TX) =y}.
Rappelons aussi que T : R” — R™ est surjective si Img(7) = R™. En raison du fait qu'une application li-

néaire est entierement déterminée par sa matrice, on dit qu'une matrice A de taille m x n est surjective si
I'application linéaire T : R” — R™ donnée par T (x) = Ax est surjective.

Soit Ala matrice de 'application linéaire T. Ecrivons maintenant la matrice canonique A = [T] d’'une appli-
cation linéaire T : R" — R al’aide de ses colonnes :

A=lar---an].

Puisque Ax est une combinaison linéaire des colonnes de A, Img(A) représente tous les vecteurs de R que
I'on peut obtenir a I'aide de combinaisons linéaires des colonnes de A :

Img(A) =Vect{ay,...,a,}.

On peut donc se souvenir de I’ensemble image de T'(x) = Ax comme le sous-ensemble Col(A) de R engen-
dré par les colonnesde A:
Img(T) = Img(A) = Col(A).
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On a donc une formulation équivalente de la surjectivité :

Théoreme 4.48. Soit T : R” — R™ une application linéaire. Les conditions suivantes sont équiva-
lentes :

(i) T estsurjective;
(ii) Tmg(T) =R™
(iii) pour toutb € R™, le systeme linéaire [T1x = b est compatible;
(iv) les colonnes de la matrice canonique de [T] forment une famille génératrice de R™ ;
(v) la forme échelonnée réduite de la matrice canonique de [T] est wa pas de lignes nulles;

(vi) la forme échelonnée réduite de la matrice canonique de [T] possede un pivot par ligne.

Preuve: Léquivalence des conditions (i) et (ii) est par définition.

On va montrer que les conditions (ii) et (iii) sont équivalentes. D’apres le Théoreme 3.22 on a que T'(x) = [T]x pour
tout x € R”, ce qui implique que, étant donné b € R™, 'ensemble de solutions du systeme linéaire T'(x) = [T]x = b est
précisément I'ensemble d’antécédents de b € R”. En conséquence, b € R” admet une préimage par 7 si et seulement
sile systeme linéaire [T]x = b est compatible, ce qui montre I’équivalence des conditions (ii) et (iii).

On prouve maintenant que les conditions (iii) et (iv) sont équivalentes. On notera [T] = [c; ...cy], avec ¢; la i-eme
colonne de [T]. Comme, par définition, [T]x = xj¢; + - + X€;, étant donné b € R™, le systeme linéaire [T]x = b est
compatible si et seulement si b € Vect{c;,...,c,}. En conséquence, le systéme linéaire [T]x = b est compatible pour
tout b € R™ si et seulement si Vect{cy,...,c,} = R™, i.e. la famille {c,, ..., c,} des colonnes de [T] est génératrice.

On montre maintenant que les conditions (iii) et (v) sont équivalentes. Pour le faire on va montrer que la condition
(v) implique (iii), et que la négation de (v) implique la négation de (iii). Soit A la forme échelonnée réduite de [T7].
D’apres le Théoreme 1.16, en effectuant des opérations élémentaires sur les lignes on voit que le systéme linéaire
[T]x = b est compatible pour tout b € R™ si et seulement si Ax = b’ est compatible pour tout b’ € R™. Alors, si A n’a
pas de lignes nulles, alors le systéme linéaire Ax = b’ est compatible pour tout b’ € R™, ce qui nous dit que le systéme
linéaire [T]x = b est compatible pour tout b € R”. Pour 'autre implication, on note que si A admet une ligne nulle, ce
qui nous dit en particulier que la derniére ligne de A est nulle, alors le systéme linéaire Ax = b’ n’est pas compatible
si la derniere coordonnée de b’ € R™ est non nulle. En conséquence, il existe un b € R tel que [T]x = 0 n’est pas
compatible, comme on voulait démontrer.

Finalement, on note que les conditions (v) et (vi) sont équivalentes, vu qu'il existe une ligne nulle dans la forme éche-
lonnée réduite si et seulement si une ligne de la forme échelonnée réduite n’a pas de pivot. O

Exemple 4.49. Montrons que I'application T : R® — R3 associée a la matrice

2 0 -1
A=|1 -1 O
3 2 1

est surjective et injective. Pour ce faire, on va calculer la forme échelonnée réduite de A. On voit bien que

2 0 -1 1 -1 0\ b-n-um 1 0
A=|1 -1 o |k o | BEm 2 )Lj‘—L3 2L, s 1

3 .2 1 3 2 1 5 1 3
Ly—L3 -1 0 121:1;1_*—2%2 1 0 Lye— 7L3 1 0 3 IL; : IL; glLi 1 0 0
=*lo 1 3 - 0 1 —710 1 3 = 010
0 2 -l 00 -7 00 1 00 1

Comme chaque ligne de la forme échelonnée réduite de A posséde un pivot, 'application linéaire T asso-
ciée a A est surjective : Img(T) = R3. Elle aussi injective, vu que la chaque colonne de la forme échelonnée
réduite de A possede un pivot. 3
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Exemple 4.50. Lapplication T : R?> — R* associée a une matrice

>

Il
QU o T
=™ R

ne peut pas étre surjective, puisque ce n’est pas possible qu'une matrice de taille 4 x 2 ait un pivot par ligne.
De facon équivalente, deux vecteurs de R? ne suffisent jamais pour engendrer R?. o

Théoreme 4.51. Soit T :R" — R™ une application linéaire.
(IN]) SiT estinjective, alors n < m.

(SUR) SiT est sujective, alors n > m.
(BI]) SiT est bijective, alors n = m.

Preuve: Pour montrer le premier énoncé, on note que si 7 est une application linéaire injective, le Théoréeme 4.46
nous dit que [T] possede un pivot par colonne, ce qui implique que la quantité de colonnes est inférieure ou égal a la
quantité de lignes de [T], i.e. n < m.

Pour montrer le deuxieme énoncé, on note que si T est une application linéaire surjective, le Théoréeme 4.48 nous dit
que [T] possede un pivot par ligne, ce qui implique que la quantité de lignes est inférieure ou égal a la quantité de
colonnes de [T], i.e. n > m.

Pour montrer le derniére résultat, on utilise qu'un application linéaire bijective est injective et surjective, ce qui im-
plique n < m et n > m par les items précédents, i.e. n = m. O

Théoreme 4.52. Soit T : R" — R™ une application linéaire. Les conditions suivantes sont équiva-
lentes :

(i) T est bijective;
(ii) n=m et T estinjective;
(iii) n=m et T est surjective;

(iv) pour toutb € R™, le systeme linéaire [T1x = b est compatible déterminé.

Preuve: On montre d’abord que (i) implique les items (ii) et (iii). Le dernier item du Théoréme 4.51 nous dit que si T
est bijective, alors n = m. En outre, la définition d’application bijective nous dit que T est injective et surjective, ce qui
montre que (ii) et (iii) sont des conséquences de la condition (i).

On montre maintenant que la condition (ii) implique (i). Comme T est injective, la forme échelonnée réduite de [T]
admet un pivot par colonne. En outre, comme n = m, la forme échelonnée réduite de [T] est carrée, et la condition
sur les pivots dans chaque colonne nous dit alors que la forme échelonnée réduite admet aussi un pivot par ligne,
ce qui implique que T est sujective, d’apres le Théoréme 4.48, et en conséquence T est bijective, comme on voulait
démontrer.

On va prouver maintenant que la condition (iii) implique (v). Comme T est surjective, la forme échelonnée réduite de
[T] admet un pivot par ligne. En outre, comme n = m, la forme échelonnée réduite de [T] est carrée, et la condition
sur les pivots dans chaque ligne nous dit alors que la forme échelonnée réduite admet aussi un pivot par colonne,
ce qui implique que T est injective, d’apres le Théoréeme 4.46, et en conséquence T est bijective, comme on voulait
démontrer.

Finalement, on montre que les conditions (i) et (iv) sont équivalentes. On va montrer d’abord que la condition (i)
implique la condition (iv). Si T est bijective, alors elle est surjective, et d’apres le Théoreme 4.48, pour tout b € R™, le
systéme linéaire [T]x = b est compatible. En plus, comme T est bijective, alors elle est injective, et d’apres le Théoreme
4.46, le systeme linéaire [T]x = 0 admet uniquement la solution triviale x = 0. Le Théoréme 3.13 nous dit maintenant
que le systeme linéaire [T]x = b admet une unique solution, comme on voulait démontrer. Pour finir, on va prouver
que la condition (iv) implique la condition (i). D’aprés le Théoréme 4.48, 'application T est surjective, tandis que la
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condition (iv) appliquée a b = 0 et le Théoréme 4.46 nous disent que T est injective. En conséquence, T est bijective,
comme on voulait démontrer. O

4.6 Transformations géométriques*

Dans cette section, on laisse de coté la théorie générale pour considérer quelques exemples importants
d’applications linéaires T : R?> — R?, tous de nature géométrique.

Sur ces exemples, on illustrera certaines des notions vues dans les sections précédentes (ensemble image,
application linéaire injective, surjective, etc.), en leur donnant un sens géométrique. On considérera aussi
le matrices canoniques associées a ces applications.

4.6.1 Projection sur un axe de R?

Fixons une droite d C R? dans le plan, passant par I'origine, et considérons la transformation consistant a
projeter un vecteur x € R? orthogonalement sur d :

6 =0.300...

Cette opération définit une application

projd:IRi2 — R?

X +— proj,(x).

Quelques remarques a propos de cette application :

Par définition de la projection, tout vecteur v appartenant a d (ou plutét : colinéaire a un vecteur directeur
quelconque de d) ne change pas lorsqu’il est projeté :

proj,;(v) =v.
Ceci implique en particulier que d < Img(proj,). Mais par définition, Img(proj,;) < d, et donc
Img(proj,) =d.

Puisque d est un sous-ensemble stricte de R? , ceci implique que proj,; n'est pas surjective.

Ensuite, proj,; n'est pas injective, puisqu’il existe une infinité de vecteurs différents dont la projection sur d
estla méme :
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Insistons sur le fait que les propriétés décrites ci-dessus ont toutes été obtenues sans calculs.

Maintenant, la nature géométrique de la projection permet de montrer sans peine qu’elle est linéaire. En
effet, si ’on multiplie x par un scalaire A, sa projection est multipliée par le méme A :

2

Ax
\

\

X N d
\
\ \
\\\ proj; (Ax) = Aproj ; (x)
proj; (x)

En d’autres termes :
proj,(Ax) = Aproj,;(x).

Ensuite, si on additionne deux vecteurs et qu’ensuite on projette leur somme, on obtient le méme résultat
que si on les avait d’abord projetés séparément pour ensuite les additionner :

(2)

proj;(y)

proj, (x) 1)

Plus précisément :

proj,;(x+y) = proj,(x) + proj,(y).
Maintenant, puisque proj,; est linéaire, elle peut étre représentée a’aide d'une matrice. Celle-ci est donnée
par

A= [proj,] = [proj,(e1) proj,(ez)].
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o)
e
\
\
\\ d
\
\
\
\
\
\ \ proj,(eg)
proj ; (e2)y \
0 \e )

Si on suppose que d fait un angle 8 avec e; (dans le sens anti-horaire), on trouve

. cos(0)
proj,(e1) = cos(6) (sin(@)) ,

. . cos ()
proj,(e2) = sin(0) (sin(@)) ,

et donc la matrice canonique de proj, est

[proj ]_( cos?(0) cos(@)sin(@))
PIOJal =1 050) sin(6) sinZ(0)

Comme les colonnes sont toutes deux colinéaires au vecteur directeur de d, elles n’engendrent pas R?, ce
qui reflete le fait que proj,; n’est ni injective, ni surjective.

4.6.2 Réflexion a travers un axe de R2

Reprenons encore une droite d C R? passant par l'origine, et considérons cette fois la transformation consis-
tant a réfléchir un vecteur x € R? g travers d. La réflexion de x a travers d sera notée refl ;(x) :

¢ =0.300... @

refl;(x)

Cette opération définit une application

refl; : R? — R?

x— refl;(x).
Quelques remarques :
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« Par construction, tout vecteur v appartenant a d (ou plutot : colinéaire a un vecteur directeur quel-
conque de d) est invariant sous l'action de la réflexion :

refl;(v) =v.
¢ Clairement, le réfléchi du réfléchi de x est x lui-méme :
refl; (refl;(x)) = x,
ce qui implique que refl; est bijective et qu’elle est égale a sa réciproque :
refl; ! =refl,;.
En conséquence, refl; est bijective. Etant surjective, Img(refl;) = R2.

Comme pour la projection, on montre sans peine que refl ; est une application linéaire. Calculons sa matrice
canonique :
[refly] = [refl (e;) refl;(e2)].

Si encore une fois on suppose que d fait un angle 0 avec la direction ey, alors on remarque que la réflexion
de e a travers d le transforme en un vecteur unitaire faisant un angle de 20 avec 'horizontale :

@

\ refl;(e1) d
20 \
0 \ e )
On adonc
cos(20)
fl = .
reflater) (sin(ZH))

Ensuite, la réflexion de e; a travers d le transforme en un vecteur unitaire faisant un angle de 6 — (% -0) =
20 — g avec I'horizontale :

2

refl ;(e2)
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4.6. Transformations géométriques™

On adonc

refl;(ey) = (008(29 B 5)) = ( $in(26) ) .

sin(20 — g) —cos(26)

Ainsi, la matrice canonique de refl ; est donnée par

sin(260) —cos(260)

(refl, ] = (005(20) sin(20) ) .

4.6.3 Rotation d’angle 0 autour de l'origine dans R?

Considérons une rotation d’angle 6 autour de I'origine (dans le sens trigonométrique) :

6 —1.000... ote(x)

Cette opération définit une application

rotyg : R? — R?

X — rotyp(x).

Quelques remarques :

¢ Si 6 =0 ouun multiple de 27, la rotation correspond a I'identité.

¢ Puisque
rot_g(rotp(x)) =x,

la rotation d’angle 0 est bijective, et sa réciproque est la rotation d’angle —0 :
-1 _
rotg ~=rot_g.
En conséquence, roty est bijective. Etant surjective, Img(roty) = R?.

Une rotation (autour de I'origine) est clairement une transformation linéaire, et puisque

cos(6) —sin(6)
[rotg(el)] = (sin(@)) ) [r0t9 (ez)]%can = ( cos(0) ) '

sa matrice canonique est donnée par

[roty] = (cos(@) —sin(H)) '

sin(@) cos(f)
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4.7 Résumé du chapitre sur les espaces vectoriels, les sous-espaces vectoriels
et les applications linéaires

ESPACE VECTORIEL (EV) VAVEC u+ve VET Ave V TELS QUE:

(EV.1) u+ v =v+ u (commutativité) (EV.5) A(u+v) =Au+ Av (distributivité 1)
(EV.2) u+ (v+ w) = (u+ )+ w (associativité) (EV.6) (A+p)v = Av+ uv (distributivité II)
(EV.3) 0y eV:v+0y=v (EV.7) A(uv) = (Ap)v = u(Av) (associativité mixte)
(EV4) YveV,d—veV:v+(-v)=0y (EV.8) 1v=v
EXEMPLES DEEV:
Ain A o Aip
A A e A
R”, My ®) =4 | 721 722 70 an gt Poi={ag+ait+---+a,t"}, ...
Amy Am2 0 Amn
PROPRIETES D'UNEV:
¢ Oy unique e Ov=0y e (-lv=-v
e —vunique e A0y =0y

COMBINAISON LINEAIRE (CL) de v, ..., vpeEV:

vecteurs
MU+ + ApUp = v 4 COMBINAISON LINEAIRE
coefficients
(eR)
VECTEURS COLINEAIRES :
v ET w COLINEAIRES = v=Aw ou w=Av

FAMILLE {v,..., vp} < V LIEE (OU LINEAIREMENT DEPENDANTE) :

ON PEUT ECRIRE Muy+-+ Ay, =0y AVEC AU MOINS UN ;i #0

FAMILLE {vy,...,v,} € V LIBRE (OU LINFAIREMENT INDEPENDANTE) :

All/1+'~'+/1pl}p:0[/ = /11:"'2/1p:0

PARTIE ENGENDREE PAR v, ..., vpeV:

Vect{vy,..., vp} = {A vy ++Apvp: Ay, -+, A, € R} — | PARTIE ENGENDREE = ENSEMBLE DE TOUTES LES CL!
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4.7. Résumé du chapitre sur les espaces vectoriels, les sous-espaces vectoriels et les applications linéaires

FAMILLE {v,..., vy} € V GENERATRICEDE V :

Vect{vl,...,vp}=V

SOUS-ESPACE VECTORIEL (SEV) W < VD'UNEVV:

(SEV1) Oy e W; (SEV2) w+Aw'e W, Yw,w' e W

[ W< VSEV o W < V EVAVEC SOMME ET PRODUITS DE V |

FAIT REMARQUABLE:
Vect{vy,---,vp} € VESTSEVDEV
APPLICATION LINFAIRE (AL) :
T:V — V' APPLICATION LINFAIRE = T(w+Au)=Tw)+AT(u), Vv,ueV,AeR

NOYAU ET IMAGED’UNEALT:V — V':
Ker(T):={veV|T®) =0y} Img(T):={T():veV}

FAIT REMARQUABLE:

[ Ker(T) SEVDE V ET Img(T) SEVDE V' ] (VOIR LEMME 4.45)

INJECTIVITE DE T : R — R™ :

| T:R"~R”INJECTIVE  ©  FERDE[T] POSSEDE 1 PIVOT PAR COLONNE |

[ & COLONNES DE [T] FAMILLE LIBRE ]

[ o [T]x =0 DETERMINE

[= n<m |

SURJECTIVITE DE T :R" — R™ :

T:R" — R"™ SURJECTIVE =2 FER DE [T] POSSEDE 1 PIVOT PAR LIGNE l

B COLONNES DE [T] FAMILLE GENERATRICE |

e  [T]x=b COMPATIBLE VbeR" |

[ = n>m |

BIJECTIVITE DE T :R" — R™ :

T:R" — R™ BIJECTIVE = n=m ET T INJECTIVE = n=m ET T SURJECTIVE

o [T]x =b COMPATIBLE DETERMINE Vb € R™
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Chapitre 5

Les opérations matricielles

5.1 Introduction

Dans ce chapitre on va étudier des opérations des matrices et leurs propriétés, qui nous permettent d’étu-
dier des opérations sur les applications linéaires et leur propriétés.

Objectifs de ce chapitre

Ala fin de ce chapitre vous devriez étre capable de

(0.1) calculer des opérations matricielles (e.g. produits matriciels, transpositions), ainsi que leurs
propriétés;

(0.2) déterminer si une matrice est inversible et calculer I'inverse si elle existe;

(0.3) connaitre les matrices élémentaires et le lien avec le calcul de matrices inverses.

Nouveau vocabulaire dans ce chapitre

o produit matriciel » matrice inversible
e matrice transposée e matrice élémentaire
e matrice identité e matrice anti/symétrique

5.2 Produit matriciel

Le produit de deux matrices est motivé par la composition d’applications linéaires.

Or lorsqu’on veut composer deux applications, il faut que les ensembles qui apparaissent dans leurs défini-
tions soient compatibles.

¢ Soit donc
T:R"—R™
une application linéaire, dont la matrice de taille m x n est notée A. Si x € R”, la k-éme composante
(1< k< m)de T(x) est donnée par
n
(TX), = AX) =) Agjxj.
j=1
+ Soit ensuite

S:R™ - RP
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5.2. Produit matriciel

une autre application linéaire, dont la matrice de taille p x m est notée B. Six € R, la k-éme compo-
sante (1 < k < p) de S(x) est donnée par

(S®), = (BX)k =D By jxj.
j=1

Puisque I'ensemble d’arrivée de T est 'ensemble de départ de S, on peut les composer :

SoT
- A R s R
On rappelle que la composition est définie par
SoT:R" —RP

x— (SoT(x) :=S(TX)).

Comme on a vu dans le Lemme 4.41, la composée So T est linéaire; elle peut donc étre représentée par une
matrice. Quelle est cette matrice?

Calculons la k-eme composante de (So T)(x) :
(So Tk = (S(T)) = (BAx),

m
= ZBk,j(AX)j

i
m n
=) B Ajrxe
s B

On voit qu’apres avoir interverti les sommes sur j et /, on a pu définir des coefficients Cy ¢, qui sont les
coefficients d'une matrice de taille p x n, notée C, qui permet d’écrire
n
(SoT)Xk =Y. Crrxs = (CX)g.
0=1

On a donc trouvé la matrice associée a So T, et on sait calculer ses coefficients en fonction de ceux de A et
B.
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5.2. Produit matriciel

Définition 5.1. Soient B = (B; ;) une matrice de taille p x m, et A = (A; ;) une matrice de taille m x n.
Le produit matriciel de B par A est la matrice de taille p x n, notée C = B.A ou C = BA, dont les
coefficients sont définis par

m
Cre:=) By jAje.
j=1

De facon équivalente, sil’on représente A par ses colonnes via A = [a; ---a,], ot ay,...,a, € R™, alors

C=BA=[Ba;---Bay].
—

cRP eRP

Lexpression ci-dessus pour le coefficient c;; montre que ce dernier se calcule en parcourant la k-éme ligne
de Aetla /-eme colonne de B.

Point clé : 1a composition d’applications linéaires correspond au produit de matrices

La définition précédente du produit matriciel nous dit que, pour des applications linéaires T : R” —
R™etS:R"™ —RP,

[SoT]=I[SI[T]. (5.1

Exemple 5.2. Calculons un produit BA = C, pour des matrices 4 x 4 :

1 2 -2 0\[(o 2 -1 5 2 0 11 -3
3 2 -2 1f|3 1 5 =3 |2 11 10 9
-11 0 1f{2 2 -1 1|73 6 7 -6
5 2 -1 6Jl0 7 1 2 4 52 12 30

B A C

Comme exemple, on a indiqué le calcul de

4

Coz=) B jAjgs
j=1

=By 1A1,3+B22Ar3+ By3A33+B4As3

=3-(-1)+2:-5+(-2)-(-1)+1-1=10.

Informel 5.3. On peut multiplier deux matrices de tailles différentes, BA, mais ces tailles doivent
étre compatibles. Plus précisément, le nombre de colonnes de B doit étre égal au nombre de lignes
de A:

B.A=C
pXm nmxn an
égaux!
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5.3. Transposition

Exemple 5.4. Le produit d'une matrice de taille 3 x 2 par une matrice de taille 2 x 4 est bien défini :

a b a+5b 2a+6b 3a+7b 4a+8b

1 2 3 4
d (5 6 7 8)_ c+5d 2c+6d 3c+7d 4c+8d

fl. , \e+5f 2e+6f 3e+7f 4e+8f
N—— 2x4 A - -
3x2 3x4

Par contre, dans I’ordre inverse, le produit

1234 ccl Z n’est pas défini!
56 7 8 P :
— \e f
2x4 ——
3x2

Quelques remarques :

e Un vecteur x € R” peut s’interpréter comme une matrice de taille z x 1. Donc la multiplication d’'une
matrice de taille m x n par x € R", peut s’interpréter comme le produit matriciel d’'une matrie de taille
m x n par une matrice de taille n x 1, qui donne une Ax qui est una matrice de taille 7 x 1, c’est-a-dire
un vecteur de R".

 Pour le produit d'une matrice de taille 1 x n par une matrice de taille n x 1, on obtient une matrice de
taille 1 x 1, qui n’est autre qu'un réel :

N
Y2
(x1 x2 ... x)|". |[=xam++x0yn.

—_— . -

1xn eR

 Par contre, le produit d'une matrice de taille m x 1 par une matrice de taille 1 x n donne évidemment
une matrice de taille m x n. Par exemple,

a ax ay az at
bl(x y z t)=|bx by bz bt
c cx ¢y cz ct

o Considérons le produit de la matrice A de taille m x n par la matrice B de taille n x p. Si'on exprime
B al’aide de ses p colonnes, qui sont des vecteurs de R”

B=1[by---byl,
alors le produit AB peut s’écrire a I’aide de ses p colonnes :
AB = [Ab;--- Aby],

ol chaque colonne Aby € R™

5.3 Transposition

5.3.1 Définition générale
Lopération de transposition, pour une matrice, est une opération qui consiste a transformer ses colonnes
en lignes. Elle ne sera utilisée que plus tard dans le cours, mais nous la définissons déja ici, et présentons

ses propriétés.
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5.3. Transposition

Définition 5.5. Soit A une matrice de taille m x n. La transposée de A, notée A”, est la matrice de
taille n x m dont les éléments sont définis par

(AD =4, i=L..,m, j=1,...,n.

Un matrice carrée A de taille n est dite symétrique si A” = A, et antisymétrique si AT = - A.

Exemple 5.6. Si A est une matrice de taille 2 x 3, donnée par

alors AT est une matrice de taille 3 x 2, donnée par

a 0
AT=|p u
Y €

<

Exemple 5.7. Pour une matrice carrée, la transposition revient a refléter ses coefficients a travers la diago-
nale :

a b ¢ d a e i m
Al L 8 Bl o b/ Jon
i j ok 1 c g k o
m n o p da h Il p

o
Proposition 5.8. Pour toute paire de matrices A et B de la méme taille et pour tout scalaire A € R,
D (AHT=4;
2) (A+AB)T = AT+ ABT.
Preuve: Suivent de la définition. O

5.3.2 Transposition de vecteurs

Pour des raisons de commodité, on utilisera souvent le fait suivant : si un vecteur de R” est vu comme une
matrice de taille n x 1 (i.e. un vecteur colonne), on peut également lui appliquer I'opération de transposi-
tion, et le transformer en une matrice de taille 1 x n (i.e., un vecteur ligne) :

X1
X2

X = . e XT:[xlxz...xn]‘

Xn

86
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5.4. Propriétés du produit et de la transposition de matrices

5.4 Propriétés du produit et de la transposition de matrices

Proposition 5.9. Le produit matriciel satisfait aux propriétés suivantes. (Ci-dessous, on suppose que
les tailles des matrices sont toujours compatibles.)

1) A(BC) = (AB)C (! associativité);
2) A(B+C) = AB + AC (distributivité);
3) (A+B)C = AC + BC (distributivité);
4) A(AB) = MAB) = (AA)B;

5) (AB)T =BT AT,

Preuve: Les premiéres propriétés seront vérifiées en exercices. Pour la derniére, considérons A de dimensions m x n,
et B de dimensions 7 x p, et calculons I'coefficient de (AB) T,

((AB)), ;= (AB)j;

™M=

Aj kBi,i
k

Il
—

™M=

(AN ;BT k

T
1)

™M=

BNk (AD,j
k=1

=(BTAD);;.
O

L'associativité signifie que 'on n’a pas besoin d'utiliser de parentheses lorsqu’on multiplie plusieurs ma-
trices : les produits peuvent s’effectuer dans n'importe quel ordre. Donc au lieu de A(BC) ou (AB)C, on
peut simplement écrire ABC.

Ce qu’'on n’a pas le droit de faire, par contre, c’est de changer 'ordre des matrices dans un produit : le
produit matriciel n’est pas commutatif. De fait, en général, méme pour des matrices A, B de dimensions
compatibles,

AB # BA.

En effet, commencons par remarquer que si A est m x n, alors AB et BA sont toutes deux bien définies
seulement si B est n x m. Mais alors AB est m x m et BA est n x n, donc AB et BA sont de tailles différentes
des que m # n. Donc pour que les deux matrices AB et BA soient toutes les deux définies et égales, il faut
déja que A et B soient carrées, de la méme taille n x n.

Or méme si A et B sont carrées et de mémes dimensions, en général AB # BA.

1 0 0 -1
Exemple5.10.AvecA—(0 _1),3—(1 0),ona

etdonc AB # BA. o

Définition 5.11. Si A, B sont telles que AB = BA, on dit qu’elles commutent.
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5.5. Inversion de matrices : définition et propriétés de base

Mentionnons encore une différence importante qui distingue le calcul matriciel du calcul réel. On sait que
dans les réels, un produit nul
ab=0

implique qu’au moins un des nombres a, b est nul. Par contre, on peut avoir un produit matriciel nul,

sans qu’aucune des matrices A, B ne soit identiquement nulle (voir exercices).

Définition 5.12. On rappelle que la matrice identité I, est la matrice de taille n x n définie par

1 0 --- 0
0 1 0
15 =
00 - 1

Noter que I, = [idr~], i.e. la matrice identité I,, est la matrice canonique de I’application identité de
R

Laction de I,, sur un vecteur n’a aucun effet :
I,x=x, vxeR".

De plus, la matrice identité est 'élément neutre pour la multiplication des matrices, puisqu’on a, pour toute
matrice A de taille m x n,

5.5 Inversion de matrices : définition et propriétés de base
5.5.1 Motivation

Un des axiomes qui définit le corps des nombres réels est qu’il existe pour tout réel a # 0 un inverse, a savoir
un nombre noté a~! tel que

-1

aa ' =al

a=1,
ou le nombre “1” est I'’élément neutre pour la multiplication dans les réels (c’est-a-direque x-1=1-x=x
pour tout x € R). C’est a l'aide de la notion d’inverse que 'on résout une équation du genre

ax=D>b,

1

ou a # 0. En effet, en multipliant des deux c6tés de I'équation par a™ -, on trouve

laxza_lb,

a
=1
etdonc x=a"'b.
Pour les matrices, on aimerait idéalement pouvoir résoudre un systéeme linéaire
Ax=Db

de la méme facon. En effet, si on sait qu’il existe une matrice A~! telle que A~' A =1I,,, alors en multipliant a
gauche des deux cotés de I'équation vectorielle ci-dessus,

A Ax=A"lp,
——

=I,

88 NumChap: chap-produit-matriciel, Derniére compilation: 2025-01-13 12:27:17Z. (Version Web: botafogo.saitis.net)


botafogo.saitis.net

5.5. Inversion de matrices : définition et propriétés de base

qui donnex = A" 'b.

Cette approche peut sembler élégante, mais elle présuppose qu'il existe une matrice A~ telle que A™' A =
I,,. Or une telle matrice n’existe pas toujours, comme nous verrons. En effet, pouvoir isoler x, dans 'équa-
tion “Ax = b”, en multipliant juste par une matrice bien choisie, méne a une solution unique x = A™'b, et
implique en particulier que la solution du systéeme Ax = b est unique, ce qui n’arrive que dans certains cas
(Théoréeme “0,1,00”).

Dans ce chapitre, on se propose donc de chercher des conditions sur A qui garantissent I'existence de A~} ;
c’est le probleme de ['inversibilité. Nous verrons aussi plusieurs facons d’obtenir une expression explicite
pour AL,

5.5.2 Définition et propriétés

Voyons le probleme d’'un point de vue un peu plus général.

Soit T : R"™ — R une application linéaire et soit A = [T] sa matrice canonique. Pouvoir isoler x dans T(x) =
Ax = b signifie, en termes d’application linéaire, que I'on cherche a récupérer la préimage de b. Pour que
cette préimage soit bien définie et unique pour tout b € R, il faut que T soit bijective.

Or nous avons vu dans le Théoreme 4.52 qu'une application linéaire T : R” — R™ ne peut étre bijective
que si n = m. En plus, on a aussi vu dans le Lemme 4.41 que dans ce cas la réciproque T~! : R” — R” est
également linéaire. On peut donc lui associer une unique matrice B = [T~!] :

T~1(y) = By.
Alors, les relations To T~ = idg» et T~! o T = idg» avec (5.1) et [idg»] = I,, nous disent que

AB=[TIT Y1 =[ToT™ " = lidgn] =1,

5.2
BA=[T HI[TI= [T oT] = [idge] =1, . 52

La matrice B sera appelée matrice inverse de A.

D’apres la discussion précédente, on ne peut parler d’'inverse que pour des matrices carrées, c’est a dire
ayant autant de lignes que de colonnes.

Définition 5.13. Soit A une matrice carrée de taille n.

» S’il existe une matrice carrée B de taille 7 telle que
AB=BA=1,,

on dit que A est inversible. La matrice précédente B est alors unique et appelée inverse de A;
on lanote A~! (aulieu de B).

» Si An'est pas inversible, elle est dite singuliére.

Remarque 5.14. Puisque deux matrices A et B ne commutent a priori pas, la condition “AB = BA =1,"
représente en fait deux conditions, a savoir AB =1, et BA=1,,. o

On remarque que la bijectivité d'une application linéaire est équivalente a I'inversibilité de sa matrice ca-
nonique.

Lemme 5.15. Uneapplication linéaire T : R" — R" est bijective si et seulement si sa matrice canonique
[T] est inversible.
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Preuve: En effet, (5.2) nous dit que si T est bijective, alors A := [T] est une matrice inversible. Réciproquement, si
A := [T] est une matrice inversible, et soit B la matrice inverse, alors I'application linéaire S : R” — R" donnée par
S(x) = Bx pour x € R" satisfait que

lidgn] =1, = AB=[T][S] = [T o S],
lidgn] =1, =BA=[SI[T]=[SoTl,

ce qui implique T o S =idg» et So T =idgn, et en conséquence T est inversible, i.e. bijective. O

1 2
Exemple 5.16. La matrice A= ( 3 4) est inversible. En effet, en définissant

-2 1
B"(s/z —1/2)’
on remarque que

1 2\(-2 1 1 0
AB_(s 4)(3/2 —1/2)_(0 1)_12’

et que
-2 1 1 2 1 0
BA= (3/2 —1/2) (3 4) N (0 1) =l
Donc A est inversible, et son inverse est A™! = B. S

Dans cet exemple, on a juste vérifié que A était inversible en vérifiant que le produit de A avec B donnait
bien la matrice identité. Mais en général, on aimerait des criferes qui nous permettent d’étudier une matrice
donnée A, de savoir si elle est inversible ou pas, et si oui de calculer son inverse.

Informel 5.17. Par exemple, la matrice

=

Il
NS N G \CR \C T \C )
[NCI NCI G \C R SRR (U]
NSRS SR \CI \C]
DN = DN
[NCI \CREE I R \CR \Cl (U]
[NSREL I NS AR \CT \CI \C]
— NN NN

est-elle inversible? Si oui, quel est son inverse ?

. 00 . . . . .
Exemple 5.18. La matrice A = ( 1 1) est singuliere. En effet, quelle que soit B une matrice de taille 2 x 2, le

coefficient (AB); ) est toujours égal a 0, et donc AB ne peut pas étre égale a I,. Cet exemple montre qu'’il ne
suffit pas de ne pas étre identiquement nulle pour ne pas étre inversible. 3

Listons encore quelques propriétés de base de la matrice inverse.
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Proposition 5.19. Soit A une matrice de taille n x n inversible. Alors
1) linverse A~! est unique;
2) AL estaussi inversible, et (A"1)"1 = A;
3) pour tout scalaire A # 0, LA est aussi inversible, et (AA)™' = 1 A™};
4) AT est aussi inversible, et (AT) ™1 = (A™HT.

De plus, si M est une autre matrice de taille n x n inversible, alors AM est inversible, et
(AM)'=mtaTt,

Preuve:
1) Supposons qu'il existe deux matrices C, B telles que AC = CA=1,, AB=BA=1,.Alors

B=BIl,=B(AC)=(BAC=I,C=C.

2) En considérant A comme la “matrice de départ”, I'inversibilité signifie que AA™! = A™'A = I,,. Or ces deux
conditions peuvent aussi se lire en considérant A~! comme la “matrice de départ”, et elles nous disent bien que
A~1 est inversible et que son inverse est égal a A.

3) Par simple vérification, en utilisant les propriétés de la multiplication d'une matrice par un scalaire,
an(ta)=(a4)aah=1,.

De méme, (A1) (A4) =1,

4) Par simple vérification,
AT =’ =1;=1,.

Deméme, (A"HTAT =1,,.
Finalement, si M est aussi inversible, alors

AM)Y(M'A™ Y= AMM YA = A471 =1,
=1,

MAHYAM) = M Y AATYM=MM T =1,

=I,

et donc AM est inversible et son inverse est M~ 1AL, O

5.5.3 Une application : inversion et résolution de systemes de taille n x n

Considérons un systeme de taille n x n,
Ax=b,

dans lequel la matrice A est inversible. On peut alors résoudre cette équation en multipliant les deux cotés
de I'inégalité ci-dessus par A1,
A'Ax=A"'b,
qui donne directement la solution
x=A"'b.

Si cette méthode peut paraitre élégante, elle a le désavantage (en plus de ne pouvoir étre appliquée que
lorsque A est inversible) d’étre plus cotiteuse en termes de calcul, puisqu’elle requiert le calcul de I'inverse
de la matrice A.
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5.6 Inversion de matrices carrées de taille 2 x 2

Avant de nous attaquer au probleme général d’'une matrice de taille n x n, attardons-nous sur le cas d'une
matrice de taille 2 x 2. Méme si ce cas est le plus simple, il va nous permettre de présenter quelques notions
qui seront réutilisées dans d’autres chapitres.

Considérons une matrice de taille 2 x 2 quelconque :
a b
A= .
¢ d

Linversibilité de A va dépendre des valeurs des coefficients a, b, c, d bien-siir, et 'avantage du cas 2 x 2 est
qu’il y a une condition facilement exprimable en fonction de ces coefficients.

a b . . . . 2. e ' -1 -
Théoréeme 5.20. A = (c ) est inversible si et seulement si son déterminant, c'est-a-dire le nombre

d
réel défini par
det(A) := ad - bc,

est différent de zéro. De plus, lorsque det(A) # 0, l'inverse de A est donné par
= 1 ( d —b)
det(A) \-¢ a)’

Preuve: Supposons pour commencer que det(A) # 0. Dans ce cas, la matrice A~! de 'énoncé est bien définie, et on
vérifie par un calcul direct que AA™! = A~ A =1I,. Comme l'inverse est unique, A~! est bien I'inverse de A.

Pour montrer la réciproque, on remarque que
det(BB') = det(B) det(B")

pour toutes matrices B et B’ de taille 2 x 2. En effet, si

oofs f)ar-lt 2)

alors

BB = aad'+By af' +B6'
ya' +6y"  yp +66')’

ce qui nous dit que

det(BB") = (aa’ + By (yB' +66") — (@B’ + B6) (ya' +5Y")
= aayB +aad'68' + By'yB + p¥66" — apya —af'6y' - p6'ya' - p&'SY"
= (ad - By)(a's’ - f'y") = det(B) det(B').

Or, si A est inversible, alors A™! A =1, ce qui implique que
det(A™ 1) det(A) = det(A1A) = det(Iy) = 1

et, en conséquence, det(A) # 0, comme on voulait démontrer. O

Exemple 5.21. A titre d’illustration, considérons la matrice de taille 2 x 2 déja mentionnée au début du cha-
pitre :
1 2
A= ( : 4) .
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Son déterminant vaut det(A) =1-4—-2-3 = -2 # 0, et donc A est inversible, et son inverse est donné par la

formule du théoréme :
o L[4 2 (2 1
-2\-3 1 3/2 -1/2)°

Cette expression permet maintenant de résoudre n'importe quelle équation vectorielle impliquant A. En
effet, le systeme

comme nous avions déja vérifié.

(%) X1 + 2xp = b],
3x1 + 4xp bg

5 6=

En multipliant des deux cotés par A~!, on obtient x= A~ 'b, qui donne
X1| _ -2 1 b _ —2b1 + by
X2 “\3/2 1/2 bg h %b1+%b2 )

Exemple 5.22. Considérons quelques transformations linéaires dans le plan.

se formule comme Ax=Db,

+ Nous avions remarqué que la projection orthogonale sur une droite d (passant par I'origine) est une
transformation qui n’est ni injective ni surjective, donc pas bijective. On voit maintenant que ceci se
refléte dans sa matrice canonique, puisque

. cos2(0) cos(0)sin(0)) _
det([proj]) = det (cos(@) sin(6) sin?(0) ) =0

o Laréflexion d’axe d était inversible, ce que nous voyons maintenant au niveau de sa matrice, puisque

=-1#0.

det ([refly]) =det(C°S(29) sin(26) )

sin(20) —cos(20)
De plus, on sait que refl; ! = refl;, ce que 1'on vérifie au niveau de la matrice :

(refl ]—1_i —cos(20) -—sin(20)
el "= 77| Zsineo)  cos26)
(005(26) sin(26) )
sin(20) —cos(26)

= [refl,].

« Finalement, nous avions remarqué que la rotation d’angle a est inversible, ce qui au niveau de la
matrice se traduit par
cos(a) —sin(a)

det([rote]) = det (sin(a) cos(a)

)=1750.

En utilisant la formule ci-dessus, on peut vérifier que son inverse correspond, comme on sait, a une
rotation de —a. En effet, a ’'aide des propriétés de parité des fonctions trigonométriques,

1 1(
[rote] " = 7

_ (cos(—a) —sin(—a))

cos(a) sin(a))
—sin(a) cos(a)

sin(—-a) cos(—a)

= [rot_g,].
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<

Plus tard, nous verrons comment la notion de déterminant peut se généraliser a des matrices carrées de
tailles arbitraires, et comment celui-ci renseigne sur I'inversibilité d'une matrice. Pour I'instant, restons-en
al’étude de I'inversibilité, sans déterminant, en nous tournant vers le cas n x n.

5.7 Inversion de matrices carrées de taille n x n : matrices élémentaires et al-
gorithme de Gauss-Jordan

5.7.1 Introduction
D’un point de vue trés concret, le probleme de I'inversibilité d'une matrice A de taille n x n peut se formuler
de la facon suivante.

Puisqu’on cherche donc une matrice B de taille n x n telle que
AB=BA=1,,

si on écrit 'inconnue B en nommant ses colonnes,
B=[by---by],

alors le produit devient AB = [Ab; - -- Ab,], et comme la matrice identité peut aussi s’écrire I, = [e; ---e,], la
contrainte AB =1,, s’écrit
[Aby---Ab,] =[e;---e,].

Les colonnes de B doivent donc étre solutions des 7 systémes suivants :

(#*)1 :Abj=ey,
(¥)2 :Aby=e,

(*)p : Aby =ey.

Si on met en route I'algorithme de Gauss pour résoudre chacun de ces systémes, on se rend compte que
les opérations élémentaires faites pour résoudre le premier systeme Ab; = e; pourront étre réutilisées dans
tous les systémes suivants . On conclut que I'on peut en fait étudier la résolution de ces n systémes en
parallele, en se concentrant uniquement sur les coefficients de la matrice A.

Si on trouve des vecteurs by, ..., b, solutions, respectivement, de (x)1,..., (*),, alors on aura déja une ma-
trice B = [b; - --b,,] satisfaisant AB =1,,.

Puisqu’on aimerait maintenir I'interprétation matricielle du résultat final, nous allons garder la trace des
opérations élémentaires effectuées successivement, afin d’obtenir notre premier critére d'inversibilité.

5.7.2 Matrices élémentaires

Nous avons précédemment introduit des opérations élémentaires de Type [, II et III, qui agissaient sur un
systéme de taille m x n ou, de fagon équivalente, sur sa matrice augmentée. Il se trouve que chaque opéra-
tion élémentaire, prise individuellement, peut se formuler a I’'aide d’'un produit matriciel.

Rappelons que I, est la matrice identité de taille n x n.

Définition 5.23. Une matrice de taille n x n est dite élémentaire si elle s’obtient en effectuant une
(et une seule) opération élémentaire sur I,.
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1 00
Exemple 5.24. e |0 0 1| estélémentaire, puisqu’on I'obtient a partir de I3 par 'opération de Type I
010

Ly — Ls.
1 0 0
e |0 -2 0] estélémentaire, puisqu’'on I'obtient a partir de I3 par 'opération de Type II Ly, — —2L,.
0 0 1
1 3 4
e |0 1 O] n’estpasélémentaire. (On peutl'obtenir a partir de I3, mais avec pas moins de deux opé-
0 0 1

rations élémentaires.)

Maintenant, pour effectuer une transformation & sur une matrice A de taille n x p, on pourra simplement
considérer la matrice élémentaire E (n x n) obtenue en effectuant & sur I, puis I'utiliser pour multiplier A
agauche par E : le résultat EA est alors la matrice A sur laquelle on a effectué &.

Exemple 5.25. Considérons une matrice de taille 3 x 4

b ¢ d
f g h
i k1

a
A=|e
i

Supposons que 'on veuille effectuer sur A 'opération élémentaire & donnée par “L; — L,”. Pour ce faire,
on commence par appliquer & a I3, qui donne

010
E=|1 0 O
0 01
Puis, on multiplie A par E, a gauche :
01 0O\fa b c d e f g h
EA=|1 0 O||le f g h|=|la b c dl,
0 0 1)\i j k I i j k1
qui est bien ce qu’on voulait. ©

Nous avions vu qu'une transformation élémentaire effectuée sur un systéme ne change pas son ensemble
de solutions, puisqu’on pouvait toujours revenir au systeme de départ en appliquant une transformation
réciproque. Une traduction de cette affirmation, dans le langage matriciel, est la suivante :

Lemme 5.26. Toute matrice élémentaire est inversible.

Pour le vérifier, écrivons explicitement les matrices élémentaires n x n, ainsi que leurs inverses.

 TypeI: La matrice élémentaire associée a I'opération L; — L;, avec i < j, est
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o
o
(=]
o
o
o
o
o

< i-eme ligne

Ti-j=

o
o
o
ok
o
(=]
o
o

< j-emeligne

00..000..000..10
00..000..000..01

o

i-eme j-éme
colonne colonne

On remarque que Tlu_,j Tlu_,j =1,, etdonc
-1
Tlu_,j = Tlu_,j.

o Type Il : La matrice élémentaire associée a I'opération L; — AL;, ou A # 0, est

(=)
(=)

D;(A) =

o
o
o
>~
o
o

< i-eme ligne -

0 0

00 ..00 1
i-eme
colonne

On remarque que D; (1) D; A H =1, et donc

D;M'=D;A7Y.

 TypeIll : La matrice élémentaire associée a I'opération L; — L; + AL; est
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o o
(=]
o o
o o
o o

00 1 010 0 0 |« i-émeligne
00 ...0 1 ...000...00
Li,j(A) = R S U )
00 00O0..1 0 00
00 000O0. 1 0 0 |« j-eémeligne
00 00O0..0 1 00
00..000..00O0..10
00..000..000..01
i-eme j-éme
colonne colonne
sii<j,et
1 000 000 00
1 000 000 00
00 1 0..000 00
00 10..000 0 0 |« j-emeligne
00 ...0 1 ...000...00
Lij(A) = T P )
00 00O0..1 0 00
00 010 1 0 0 |« i-émeligne
00 000..001 00
00..000..000..10
00..000..000..01
j-éme i-eme
colonne colonne
sii>j.

On remarque que L; j(A)L; j(=A) =1, et donc
LijA) ™ =L j(-M).
Lorsqu’on résout un systeme, on choisit une suife d’opérations élémentaires, dans le but d’arriver a une
forme échelonnée réduite du systeme. Notons ces opérations &1,&@,...,&® Lapplication de ces opéra-

tions (d’abord &0, puis & @ etc.) correspondent a des multiplications successives de A a gauche par les
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matrices élémentaires qui leur correspondent :

Opération ew . E(DA,
Opération &1 : E@EWD 4,

Opération &m . E® ... F@ED 4

Comme on sait, une matrice posséde une unique forme échelonnée réduite, et donc il est toujours possible
de bien choisir les matrices élémentaires E\/, de facon a ce que la matrice finale,

A’ — E(k) . E(Z)E(I)A,

soit la forme échelonnée réduite de A. Une conséquence de cet argument est le résultat suivant, qui donne
aussi une autre preuve de ’équivalence entre les items (i) et (v) du Théoréme 4.52, ot 'on utilise qu'une
application linéaire est bijective si et seulement si sa matrice canonique est inversible (voir Lemme 5.15).

Théoreme 5.27. Soit A une matrice de taille n x n. Alors A est inversible si et seulement si on peut ré-
duire A a l'identité1, a l'aide d'un produit de matrices élémentaires, c'est-a-dire s'il existe des matrices
élémentaires EV, ..., EW telles que la forma échelonnée réduite

A=EW...FV A
soit la matrice identité : A=1,,.

Preuve: Supposons que A est inversible. Alors T'(x) := Ax est bijective, et par conséquent pour tout b € R”, le systeme
Ax = b posseéde une unique solution. Ceci implique que sa forme échelonnée réduite ne présente aucune variable libre
(chaque pivot est situé immédiatement a droite du pivot de la ligne supérieure). Comme A est n x n, ceci implique
que la forme échelonnée réduite de A est I,.

Supposons ensuite qu'il existe des matrices élémentaires ED, ..., E telles que
EREED . VA=,
Rappelons que chaque EV) est inversible. En multipliant la relation ci-dessus a gauche par (E®)~1,

(ER)-1p0 plk=D g0 4 = (g0y-1] — (pR)-1,
—_—

=1,
En multipliant successivement, a gauche, par (D)7, ... (E®)~1, on arrive a
A= (E(l))_l . (E(k))—l .

Comme chacune des matrices (E)~1 est inversible, A est un produit de matrices inversibles, et donc elle aussi est
inversible. Son inverse est donné par

A—l — ((E(l))—l (E(k))—l)_l
=(EOH™) (@)

Comme conséquence de ce qui a été fait dans la preuve :

Corollaire 5.28. Une matrice A de taille n x n est inversible si et seulement si elle peut s'écrire comme
un produit de matrices élémentaires.
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5.7.3 Lalgorithme

L'argument développé dans la preuve du précédent théoréme fournit un algorithme pour déterminer si une
matrice est inversible et, dans le cas ot1 elle est inversible, de calculer son inverse.

Reprenons |'expression
[Aby---Ab,] =[e;---e,].

Pour résoudre n'importe lequel de ces systemes, Ab; = e;, on applique successivement des opérations €élé-
mentaires en multipliant a gauche par les matrices correspondantes E\, ..., EX, jusqu’a obtenir, du coté
gauche, la forme échelonnée réduite de A:
Ab ji=¢€j,
EW ab; = EWe;,
@ rM Al —= @O Mg .
EPEW ab; = EP EWe;,

(k) 2 g — k) @) (D)
EW... W pp; = g ... F gDe; .
-

Si A =1,, le théoreme ci-dessus dit que A est inversible; de plus la j-&éme colonne de son inverse est donnée
par

b] — E(k) . 'E(l)ej ,
qui n’est autre que la j-eme colonne de la matrice E® ... E1),
On peut résumer ce procédé dans I'algorithme suivant, appelé algorithme de Gauss-Jordan (pour I'étude
de I'inversibilité d'une matrice).

Algorithme de Gauss-Jordan pour déterminer 'inversibilité d’'une matrice

(GJ.1) Commencer par considérer la matrice de taille n x 2n
[Al1LL].

(GJ.2) En effectuant des opérations élémentaires sur les lignes, calculer la forme échelonné réduite
de la matrice [A|I,,] de taille n x 27 :

[Al1,] — - — [AlC].

(GJ.3) A partir de la forme échelonnée réduite [A|C] :
(GJ.3.0) si A=1,, alors A est inversible, et A1 = C;
(GJ.3.ii) si A# I,;, alors A est singuliére.

1
Exemple 5.29. Considérons A = (

2 . . S slee s s 1o ) - :
9 4), et étudions son inversibilité a 'aide de 1'algorithme ci-dessus. On

pose donc
1 2|1 0
[AHZ]_(z 410 1)'

Comme il suffit d'une seule transformation pour réduire A, & M = (L, — Ly—2Ly),0ona
1 O
-2 1
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Comme A # I, A est singuliére. (On voit aussi que det(A) = 0, qui montre également que A n'est pas inver-

sible.)

Exemple 5.30. Etudions I'inversibilité de A =

[AlLs] =

3
0 1 2
1 0 3].0npose
4 -3 8
0 1 2|1 00
1 0 3/0 10
4 -3 8/0 0 1

Appliquons successivement des opérations élémentaires afin de réduire A du cété gauche; on applique
chaque opération sur toute la matrice, y compris sur le coté droit.

Commencons par Lg — L3 —4L,, suiviede L3 — L3 +3L; :

01 2|1 0 O
1 3/0 1 O
0 0 2|3 -4 1
Ensuite, L; < Lo,
1 3 1 0
01 2|1 O )
0 2 -4 1
pUiSL2<—L2—L3,
1 0 3|0 1 0
01 0|-2 4 -1,
0 0 2|3 -4 1
L3(_%L3)
1 0 3]0 1 0
01 0] -2 4 -1 ,
0 0 1(3/2 -2 1/2
etenfin Ly — L; —3L3:
1 0 0[-9/2 7 =32
010 -2 4 -1
00 1|32 -2 1/2
On a donc obtenu
1 0 0]-9/2 7 =3/2
[AIC]=[0 1 0| -2 4 -1
0 0 1] 3/2 -2 1/2

Comme A =13, A est inversible, et son inverse est ce qu’on voit du c6té droit :

(Exercice : Pourquoi pas vérifier, a la main, que AATT=ATA=13)

100

-9/2 7 =3/2
-2 4 -1
3/2 -2 1/2
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5.8 Résumé du chapitre sur les opérations matricielles

PRODUIT MATRICIEL :
e[R” ERP
=
B. --ay] := | Bay ---Ban]
pxm mxn pxn
égaux!
FAIT FONDAMENTAL :
T:R"—R™ ET S:R™ — RP AL > [SoT]=[S][T] |
PROPRIETES DU PRODUIT :
e A(BC) = (AB)C (associativité) e (A+ B)C = AC + BC (distributivité)
e A(B+C) = AB+ AC (distributivité) e A(AB)=A(AB) = (ALA)B
TRANSPOSITION :
T
A1l A oo Ain A1l Az v Amp
A1 Apo - A | . _| A2 Az2 0 Amg
Am,l Am,Z Am,n Al,n A2,n Am,n
ASYMETRIQUE = A= AT AANTISYMETRIQUE = A=-A"
PROPRIETES DE TRANSPOSITION :
e (AT =4 e (A+AB)T = AT+ ABT e (AB)T =BT AT
MATRICE IDENTITE :
1 0 -~ 0
0 1 cee ()
=, . .. —
00 1

PROPRIETES DE MATRICE IDENTITE :

o I,,A= A= Al,, VA€EMpxn®

101
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MATRICE INVERSIBLE :

AINVERSIBLE =3B TELLE QUE AB=BA=1, — BUNIQUE: A™':=B

SI A, BINVERSIBLES :

e A"V INVERSIBLEET (A")"1=4A e AT INVERSIBLEET (AT)"! =A™ )T
« AAINVERSIBLEET (AA)™' = 1A, VA #0 « ABINVERSIBLEET (AB)"' =B 'A™!
INVERSE DE MATRICE 2 x 2 :
-1
a b a b 1 d -b
(C d) INVERSIBLE <> ad—bc ?f 0 ha—— (C d) = m (—C . )

MATRICES ELEMENTAIRES :

(OEL) Lj L (i<j):

00 100 000 00

00..000...010...00 |« i-emeligne

00...001...000...00 0
TiH':: .. e e .o = T .=T;_;

1 P i—] =)

00 000 100 00

00..010...000...00 |« j-emeligne

00 000 001 00

ot

00..000..000..1
00..000...000...01

[

i-eme j-éme
colonne colonne

(OELII) L; —AL; (A #0):

DiM:=] 00 ..010..00 |<i-emeligne = D))" =D

00..000..01

i-eme
colonne
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(OEL.IID) L; — L;+AL;j

10...000...000...00
01...000...000...00
00..100...000..00
00...010...0120...00 «i—émeligne
00...001...000...00
Lij:={ o o ) i<j

00 000...100...00
00..000...010...00 |« j-emeligne
00 000...001...00
00..000..000..10
00...000...000...01

i-eme j-eme

colonne colonne
10...000 000...00
01...000 000...00
00..100..000...00|
00..010...000...00 |« j-emeligne
00...001...000...00

LijA) = oo o ) i>]

00...000...100...00
00...010...010...00 |« i-emeligne
00...000...001...00
00..000..000..10
00 .O(T)O...O(TJO..OI

j-eme i-éme

colonne colonne
= LijM =L j(-A)

INVERSE DE MATRICE 1 x 1 :

A=1, = AINVERSIBLEET A~'=C

[A|In] _,_,EE

A#1, =  ANON INVERSIBLE
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Chapitre 6

Déterminant

6.1 Introduction

La théorie du déterminant, que nous allons aborder dans ce chapitre, est un sujet central en algebre linéaire.
Nous ne le présenterons pas dans sa forme la plus générale, et ne démontrerons pas tous les résultats. Notre
but sera de présenter les propriétés de base du déterminant, et de voir leurs conséquences.

Objectifs de ce chapitre

Ala fin de ce chapitre vous devriez étre capable de

(O.1) calculer le déterminant d'une matrice carrée, en particulier, au moyen des opérations élé-
mentaires;

(0.2) connaitre et utiliser des propriétés du déterminant, en particulier le lien avec I'inversibilité;

(0.3) calculer 'aire d’un parallélogramme et le volume d’un parallélépipede au moyen du déter-
minant.

Nouveau vocabulaire dans ce chapitre

o déterminant » sous-matrice principale

 application bilinéaire/multilinéaire » matrice triangulaire supérieure/inférieure
o application alternée e matrice diagonale

 application antisymétrique e matrices semblables

o application normalisée ¢ matrice complémentaire

6.2 Déterminant des matrices de taille 2 x 2 revisité

6.2.1 Propriétés algébriques du déterminant des matrices de taille 2 x 2

Nous avons déja rencontré le déterminant lorsque nous avons étudié l'inversibilité pour les matrices 2 x 2.
En effet, nous avons vu qu'une matrice
_[a b
a=( 4

est inversible si et seulement si son déterminant, qui est le nombre défini par

det(A) := ad - bc,
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est non-nul.

Pouvoir savoir si une matrice de taille 2 x 2 est inversible ou pas, simplement en calculant un nombre et en
vérifiant s'il est nul ou pas, représente certainement un résultat intéressant du point de vue théorique, mais
I'étendre au cas n x n ne sera pas sans difficulté.

En effet, dans le cas n x n, nous avons vu quelques caractérisations équivalentes de l'inversibilité, mais
toutes étaient de nature plus calculatoire, et toutes impliquaient plus ou moins I’'étude d'un systéme li-
néaire.

Pour motiver ce que nous allons faire dans le cas de matrices de taille n x n, nous allons revenir sur le cas
de matrices de taille 2 x 2, et regarder de plus pres cette fonction A — det(A), pour nous rendre compte de
certaines caractéristiques, et sans du tout nous préoccuper de I'inversibilité.

Pour le reste de cette section et le début de la section suivante, nous utiliserons plutét la notation “det,”
au lieu de siplement det pour remarquer le fait que I'on travaille avec des matrices de taille 2 x 2.

En plus, plutét que de voir une matrice de taille 2 x 2 comme un tableau de 4 nombres rangés dans une
grille, voyons la comme la donnée de deux colonnes :

b
A=(‘C’ d)=[a1a21,

(o)

Ainsi, le déterminant peut étre vu comme une fonction sur les paires de vecteurs de R2, définie ainsi :

o e

dety : R? x R - R
(a,b)—¢(a,b):=a1by—axb, .

et considérerons I'application

Les propriétés suivantes découlent entierement de sa définition :

Proposition 6.1. Lapplication det, définie ci-dessus jouit des propriétés suivantes :
(ANT) det, est antisymétrique : det,(a,b) = —det»(b,a) pour tousa,b € R?;
(ALT) det; est alternée : dety(a,a) = 0 pour touta e R?;
(BIL) det, est bilinéaire :
(BIL.1) pour toutb e R2 fixé, lapplication a— det,(a,b) est linéaire, i.e.

dets(a+ Aa’,b) = dets(a,b) + Adet, (@', b)

pour tout L€ R eta,a’ e R?;
(BIL.2) pour toutae R? fixé, l'application b — det,(a,b) est linéaire, i.e.

det,(a,b+ Ab’) = det,(a,b) + Adets(a,b’)

pour tout L€ R etb,b’ e R?;
(NOR) det, est normalisée : det,(e;,er) = 1.

Preuve: Toutes les propriétés sont vérifiées directement par le calcul :
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(ANT) detz(a,b) = a1 by —ax by = —(axby — a1 bp) = —dety(b,a);

(ALT) dety(a,a) = ajaz —aza; =0;
(BIL.1) dety(a+Aa’,b) = (a) +Ad})b, — (az + Aay) by = (a1 b2 — az by) + Ala) by — a,by) = dety(a,b) + Adety (a',b);
(BIL.2) dety(a,b+Ab’) = ay(bs + Ab)) — ax(by + Ab)) = (a1 bo — az by) + AMa1 b, — ax b)) = detz(a,b) + Adetz(a,b’);
(NOR) dety(e1,e2)=1-1-0-0=1.

O

Remarque 6.2. On note que, si ¢ : R? x R> — R est une application bilinéaire, alors (ANT) et (ALT) pour ¢
sont équivalentes. En effet, si (ANT) est vraie, alors ¢(a,a) = —¢(a,a), et donc ¢(a,a) = 0. Réciproquement,
si (ALT) est vraie, alors ¢ (a+b,a+b) = 0, mais la bilinéarité implique

@(a+b,a+b)=¢(a,a) +¢(ab)+¢@b,a) +q¢b,b),
—— ——r

=0 =0
ce qui nous dit que ¢(b,a) = —¢(a,b). o

Il se trouve que les propriétés (BIL), (ALT) et (NOR) énoncées dans la proposition caractérisent entierement
la fonction det; :

Lemme 6.3. Soitp:R*>xR? — R une application qui satisfait aux trois propriétés (BIL), (ALT) et (NOR).
Alors, p(a,b) = dety(a,b) = a; b, — ax by pour tousa,b e R2.

Preuve: On écrit d’abord
a=ae; +ae; et b=Db;e; + bre,.

Alors,

¢p(a,b) =@(ae; + arey,b)
=a1p(e1,b) +axp(ey,b)
=ajp(e;, bie; + baer) + axp(ez, bre; + boey)
=aibip(er,e)) + aibp(er,ex) + azbrp(ez,e)) + axbap(ez, er)
——
20 =0
=aibp(er,er) + arbip(es, er)
=a1bp(e;,ex) —azbip(e;,ey)
=(a1by — axb1) (e, ez)
=1
= a1 by — a; by = detz(a,b),

ol l'on a utilisé (BIL.1) dans la deuxieme égalité, (BIL.2) dans la quatrieme égalité, (ALT) dans la cinquieme égalité,
(ANT) dans la sixieme égalité (mais I'on remarque que (ANT) est une conséquence de (BIL) et de (ALT)), et (NOR) dans
I'avant-derniere égalité.

O

Nous verrons dans la section suivante que ces caractéristiques définissent de fagcon unique le déterminant
en dimensions supérieures : nous introduirons une fonction sur les familles de n vecteurs de R”, en im-
posant quelques propriétés semblables a celles énoncées ci-dessus, et énoncerons un résultat qui garantit
qu'il existe une seule fonction ayant ces propriétés; c’est ce que nous appellerons le déterminant.

6.2.2 Linterprétation géométrique du déterminant des matrices de taille 2 x 2
Dans le plan, considérons deux vecteurs v,w, et considérons le parallélogramme qu’ils définissent :
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Laire de ce parallélogramme, notée Aire(v,w), est reliée au déterminant de la matrice de taille 2 x 2 dont les
colonnes sontvetw:

Théoréme 6.4. Laire du parallélogramme est donnée par

Aire(v,w) = |det2([vw])| =|vywy — vowy|.

Preuve: On montre d’abord que si A = [vw] une matrice carrée de taille 2 et soit A’ = [v' w'] une matrice obtenue de
A en effectuant des opérations élémentaires sur les colonnes de type I et III (i.e. transposer des colonnes, et ajouter a
une colonne le multiple d'une autre colonne, resp.), alors

Aire(v,w) = Aire(v,,w').

En effet, comme une opération élémentaire sur les colonnes de type I sur une matrice carrée A de taille 2 équivaut a
échanger des colonnes, on voit que le parallélogramme définis par les colonnes de A coincide avec le parallélogramme
définis par les colonnes de la matrice A’ obtenue en échangeant les colonnes, et donc les aires coincident aussi.

Pour une opération élémentaire sur les colonnes de type III sur une matrice carrée A, il suffit de montrer que l'aire du
parallélogramme formé par les vecteurs v et w est la méme que 'aire du parallélogramme formé par les vecteurs v et
w+ Av, ol1 A € R est un scalaire. Pour le faire, on rappelle que 'aire d'un parallélogramme est égale au produit de la
base par la hauteur. Les parallélogrammes indiqués ci-dessous ont la méme base v et une hauteur identique #, donc
la méme aire.

0

On démontre la résultat du théoréme d’abord pour le cas o1 la matrice A n'est pas inversible, i.e. det(A) = 0. Dans ce
cas, les colonnes de A sont obligatoirement colinéaires, et 'aire du parallélogramme formé par ces vecteurs est alors
nulle. L'assertion est donc vraie dans ce cas.

On suppose désormais que la matrice A est inversible, i.e. det(A) # 0. On écrit

a b
A= ( ) .
c d
Sia=0etb=0,alors ad—bc = 0. La contraposée nous dit alors que, comme det(A) = ad —bc # 0, alors a # 0 ou b # 0.
On s’'intéresse d’abord au cas a # 0, le cas b # 0 se traite de la méme maniére en effectuant une permutation de la
premiere et la deuxieme colonnes, une opération élémentaire qui ne modifie pas la valeur absolue du déterminant ni
l'aire du parallélogramme associé, d’apres I'item précédent. Or, en n’effectuant que des opérations élémentaires sur
les colonnes de type III, on trouve
A= (a b) Cz«—C_z—ﬁC] (a 0 J C1‘—C1ﬁcz (a 0 )

ad—bc ad—bc
c d c T 0 =T
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ou C; — C; + AC; désigne I'opération élémentaire qui additionne a la i-éme colonne le produit de A € R par la j-eme
colonne. D’apres I'item précédent, on a que

w5 32

Comme le dernier parallélogramme est un rectangle, on a que

0 d-b
Aire((g),(ad_hc))zlal.‘a p C|=|ad—bc|:|det2(A)|.
a

En utilisant ces égalités on trouve que

i[9, (2) = et

comme on voulait démontrer. O

6.3 Déterminant des matrices de taille 7 x n

6.3.1 Ladéfinition récursive du déterminant

Pour chaque entier n > 2, on va définir une application

de facon récursive, avec det, donnée par le déterminant défini dans la section précédente. Avant de donner
la définition du déterminant, on aurait besoin de la notion suivante.

Définition 6.5. Si A est une matrice de taille m x n et si (i, j) est une paire d’indice (1 < i < m,
1 < j < n), alors la sous-matrice principale associée a la paire (i, j) est la matrice A[i|j] de taille
(m—1) x (n—1) obtenue a partir de A en tracant la i-eme ligne etla j-eme colonne.

1 2 3
Exemple6.6.Si A=|4 5 6], alors
7 8 9

4 6 2 3 1 3
A[l|2]=(7 9), A[?>I1]=(5 6)’ A[2|2]:(7 9)-

Définition 6.7. Pour chaque entier n > 3, on définit 'application
det,, : M« ,(R) — R

de facon récursive par

det,(A) = Y (~D**1A; rdet,_1 (AlLIK]).
k=1
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Théoréme 6.8. Pour tout entier n > 3 l'application déterminant det, peut se calculer a l'aide de
det,,—1 par l'une quelconque des relations suivantes : si A est de taille n x n,

(DL) développement selon la i-eéme ligne de A :

n .
det,(A) = Y (-1)**' A; pdet, 1 (AlilK]),
k=1

(DC) développement selon la j-eme colonnede A :

det,(A) = Y (D" Ay jdet,, 1 (Alk]j1).
k=1

Preuve: 11 s’agit d'une conséquence du Théoréme 6.13. 1l suffit de démontrer que toutes les expressions du détermi-
nant ci-dessus satisfont aux propriétés du Théoreme 6.13. O

Remarque 6.9. Le théoréme précédent nous donne plusieurs facons de calculer explicitement le détermi-
nant de maniére récursive, en calculant det, al’aide de det,_,, jusqu’a revenir sur det. o

Exemple 6.10. Considérons la matrice de taille 3 x 3

1 2 -3
A=|4 5 6
-7 8 9

Pour calculer dets(A), le théoréme dit que nous avons pas moins de 6 facons équivalentes de procéder. Par
exemple, en développant selon la premiére ligne,

3
dets(A) = Y (-DF1A; rdets(A[11K1)
k=1

=DM Ay 1deta(A[1[1]) + (=1)** A; odetz (Al112]) + (= 1)* 1 A; 3deta (A[113])

e [ )

=(5-9-8-6)-2(4-9-(-7)-6)-3(4-8—(-7)-5)
=-2360.

Ou alors, en développant selon la 3-eéme colonne,

3
detz(A) = Y (-1)F*3 A; 3dety (AlKI3])
k=1

=(=1)'"3 A} sdety (A[113]) + (-1)*"3 Ap 3deta (A[213]) + (—1)**3 Az 3det (A[313])

~(-3)det; ((_47)’ : ) ~det ((—17 | (ﬁ)) et ((‘11) (2))

=-34-8-(-7)-5-6(1-8-(-7)-2)+9(1-5-4-2)
=-360.

6.3.2 Une caractérisation du déterminant a partir de ses propriétés algébriques™

On veut étudier des propriétés algébriques des applications

(p:Man(R) _>R.
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Comme une matrice A de taille n x n peut étre décrite de fagon équivalente par ses colonnes ay, ..., a;, € R"
via
A=[a;---a,],
on peut regarder I'application précédente ¢ de facon équivalente
(p:Rnx...an—»R,
—_———
n facteurs

en posant
p@i,...,a,) = @(A).

En particulier, pour des vecteurs ay, ...,a, € R"?, le déterminant de a, ...,a, est défini par
dety(ay,...,a,) :=det,(A),

oll A= [a; ---a,] est la matrice de taille n x n définie par les colonnes ay,...,a, € R".

Nous allons étudier des propriétés de I'application déterminant det,, semblables a celles du cas n = 2. Nous
verrons apres un résultat général qui dit que I'application déterminant est la seule application vérifiant
toutes ces propriétés. Commencons par définir les propriétés, qui généralisent celles du cas de matrices de
taille 2 x 2.

Définition 6.11. Une application

n facteurs
——t—
@ :Myxn([R) — R ou de fagon @:R"x---xR" >R
A— @A) équivalente (ay,...,ap) — @(a,...,an)

est dite

(MUL) multilinéaire si elle est linéaire en chacun de ses vecteurs, i.e. si pour tout k = 1,2,...,n et pour
tous vecteurs ay,...,ax_1,a+1,---,ay fixés, 'application

R" —R

X— (p(aly---rak—lrxyak+]»---ran)

est linéaire, ou, de facon équivalente,

Ain oo A’Lk+7tA’1"k e Agp
¢ : : U
Apa - A;%k+)LA’,;yk - Apn
App o e All,k e A App - All/,k o A
= : oo N ARG oo Lot
Apy o A’n,k o Apn Apy A;;,k o Apn

(ALT) alternée si ¢(ay,...,a,) = 0 dés que deux des vecteurs a; et a; avec i # j sont égaux, ou, de
facon équivalente, ¢ (A) = 0 si deux colonnes de A sont égales;

(NOR) normalisée si ¢(ey,...,e,;) =1, ou, de fagon équivalente, ¢(I;) = 1.

Remarque 6.12. Un application multilinéaire ¢ : R” x --- x R” — R pour n = 2 est précisément une applica-
tion bilinéaire.
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On peut montrer, exactement comme on I'a fait dans le cas n = 2 (section précédente), qu'une application
multilinéaire ¢ : R"” x --- x R — R est alternée si et seulement si elle est antisymétrique, i.e. si 'on échange
deux vecteurs, on change le signe de la fonction :

p@,...,a;...,aj,...,a,) = —¢(@,...,aj,...,a;,...,a,),

ou, de facon équivalente, si B € M« (R) est obtenue de A € M,,«,(R) en transposant deux colonnes, alors
@(B) =—-¢(A). S

Théoreéme 6.13. Pour chaque entier n > 2, l'application déterminant
det, : M xn(R) — R

définie dans la sous-section précédente vérifie la condition (MUL) de multilinéarité, (ALT) d'alternance
et (NOR) de normalisation dans la Définition 6.11. En général, pour tout c € R, il existe une unique
application

q)n,c Myxn(R) — R

qui vérifie (MUL), (ALT) et ®,, .(1,) = c. De facon explicite, ®,, .(A) = c.det, (A) pour tout A€ M« (R).

Preuve: Le fait que det,, satisfait aux propriétés (MUL), (ALT) et (NOR) suit d'un argument par récurrence en em-
ployant la définition récursive de I'application déterminant. La preuve de 'unicité de I'application ®, . vérifiant
(MUL), (ALT) et ®,,(,) = c est omise. Pour montrer que ®, .(A) = c.det,(A) pour tout A € M, ,(R), on note que
I'application A— c.det, (A) satisfait aux conditions (MUL), (ALT) et 'image de I, est c.det,(I,) =c.1 =c. O

Remarque 6.14. Le théoréme précédent nous dit que I'application déterminant est univoquement caracté-
risée par les propriétés (MUL), (ALT) et (NOR). o

Pour simplifier la notation, désormais on va écrire souvent det(a,,...,a,) au lieu de det,(a,,...,a,), pour
aj,...,a, € R" et det(A) au lieu de det,, (A) pour A€ M, (R).

Informel 6.15. Dans la littérature, le déterminant de A est parfois noté | A|. Nous utiliserons rarement
cette notation, car elle rappelle la valeur absolue, et donne donc I'impression qu'un déterminant doit
toujours étre une quantité positive, ce qui n’est pas du tout le cas bien-str.

6.4 Propriétés du déterminant

6.4.1 Le calcul du déterminant a partir des propriétés

Les propriétés énoncées dans le Théoréme 6.8 se traduisent en nos premieres moyens de calcul du déter-
minant.
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Regles de calcul récursif du déterminant

(DET.2) Onadet(z b):ad—bc.

d
(DET.n) Pour une matrice carrée A de taille n> 2 :

(DL) développement selon la i-éme ligne de A :

n .
det(A) = Y (~1)**' A, p det (Alilk]),
k=1

(DC) développement selon la j-éme colonne de A :

det(A) = Y (-1)**/ Ay ; det (Alklj)).
k=1

Par ces relations de récurrence, le déterminant d'une matrice de taille n x n peut toujours se calculer en
passant par le calcul de n déterminants de sous-matrices de taille (n — 1) x (n — 1). Mais a leur tour, le dé-
terminant de chacune de ces matrices de taille (n — 1) x (n— 1) passe par le calcul de n — 1 matrices de taille
(n—-2)x (n—2), etc. Ainsi, si N, représente le nombre d’opérations nécessaires pour calculer le déterminant
d’une matrice de taille n x n, on a

Ny =nNy-1
=nn-1)Ny—»
=nn-1)(n-2)N,_3

|

:n(n—l)(n—3)---4-3-N2=%NZ.

Ainsi, le nombre d’opérations augmente factoriellement avec n, ce qui rend un calcul de déterminant, a
priori, trés coliteux pour des grandes matrices.

Exemple 6.16. Prenons une matrice de taille 10 x 10, par exemple

W g 01Ol = O U1 O = @
N O~ = O s O W
Do ©O Wwul O N NN © O

O W N & OO U1l W

DY O O WU W N,
SO U1 OO N W oWk~
W o OO WO N ©
O N O © W b b 0~
O© W s WUl Ww ol e oo,
SO W o O

Par ce que nous avons dit plus haut, le calcul de det(A) requiert environ 10! (factorielle) opérations, ce qui est
de I'ordre de 3'628'800. Avec une matrice de taille 100 x 100, le nombre d’opérations est de I'ordre de 10158, 41
faudrait a n'importe quel ordinateur, méme trés puissant, un temps bien supérieur a I’age de I'univers pour
effectuer ce calcul (source : Rappaz-Picasso.)

Remarque : La matrice ci-dessus a été générée aléatoirement. 3
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Donc en général, ce n'est pas tres efficace de calculer un déterminant en utilisant les relations de récursion.
En revanche, ce qu'on peut faire est d’utiliser les relations de récurrence, ainsi que les propriétés de base
des fonctions det,,, pour dériver d’autres propriétés générales du déterminant. Celles-ci fourniront des mé-
thodes permettant d’économiser autant que possible sur le nombre d’opérations a effectuer pour calculer
un déterminant, en simplifiant 1a matrice.

6.4.2 Propriétés du déterminant

D’abord, un résultat préliminaire :

Lemme 6.17. Pour toute matrice carrée A on adet(AT) = det(A).

Preuve: Par récurrence sur n. Lorsque n = 2, on a simplement

a b
det(A)—det(C d)—ad—bc—ad—cb—det(b d

a ¢

) =det(A”).
Supposons maintenant que la formule soit correcte pour toute matrice de taille n x n, et considérons une matrice de
taille (1 + 1) x (n+ 1), notée A. En développant selon la premiére colonne, puisque le coefficient d’indice (j,1) de AT
est le coefficient d’indice (1, j) de A, a savoir Ay,j, on a que

n+1 .
det(A") = Y (-1)/*' Ay jdet (AT[j11]).
j=1

Or, par la définition de la transposition, AT [j|1] = (A[1]j])T. De plus, par I'hypothése d’induction, A[1|j] étant une
matrice de taille (n—1) x (n—1),
det((A[111)") = det(all ),

ce qui donne

n+1 X
det(AT) = )" (-1)/*1 Ay j det (A[1]]]) = det(A).
j=1
En effet, cette derniere somme est le déterminant de A, développé selon la premiére ligne. O

Ensuite, les propriétés qui permettront de simplifier le calcul du déterminant :

Proposition 6.18 (Propriétés du déterminant). 1) Si A possede deux colonnes (ou deux lignes)
égales, alors det(A) = 0.

2) Le signe du déterminant change lorsqu’on échange deux colonnes :

det(ay,...,a;,...,a;,...,a,)

=—det(ay,...,a;,...,a;,...,ap)

et c’est pareil si 'on échange deux lignes.

3) Lorsqu’on multiplie une colonne par A, le déterminant est multiplié par A :
det(ay,...,Aa;,...,a,) = Adet(ay,...,a;,...,a,)

et c'est pareil si l'on multiplie une ligne par A.

4) Lorsqu’on rajoute un multiple d’une colonne a une autre colonne, on ne change pas le détermi-
nant:
det(ay,...,a;+1a;,...,a,) = det(ay,...,a;...,a,)

et c’est pareil si ['on rajoute un multiple d’'une ligne a une autre ligne.
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Preuve: Ces propriétés suivent directement du fait que le déterminant est une fonction des colonnes qui est alternée
et multilinéaire.

Par exemple, si deux colonnes de A sont égales, det(A) = 0 suit immédiatement du fait que det(A) = det(ay,...,a,), et
que det est alternée. Puis, si deux lignes de A sont égales, alors deux colonnes de AT sont égales, et donc det(AT) =0.
Par le lemme précédent, det(A) = 0. O

Exemple 6.19. 1) Deux colonnes égales :

2) Echange de deux colonnes :

1 2 0 4 0 2 -1 4
4 -7 3 7 4 3 3

det| o, 5 (=7, 5 5 5
1 6 -3 0 0

3) Extraction d’'une constante sur une colonne :

1 2 0 4 1 1 0 4
3 4 -7 3 3 2 -7 3
detf o~ , 5 g|=2detl o ) 5, 5
1 6 -3 0 1 3 -3 0

4) Rajouter un multiple d’'une ligne a une autre :

1 2 o0 4 9 —2 4 14
3 4 -7 3 7 3
detf o, 5 5|79ty 5, 5 5|
1 6 -3 0 1 6 -3 0

ol 'on a rajouté 2 fois la troisieme ligne a la premiere.

o
Ensuite, il existe des matrices dont le calcul du déterminant ne requiert aucune opération particuliére :
Définition 6.20. Une matrice carrée A est triangulaire supérieure (resp., inférieure) si A; ; = 0 des
que i > j (resp., i < j). On dit que la matrice A est diagonale si A; ; = 0 dés que i # j. Etant donné
dy,...,d, € R, on notera la matrice de taille 7 x n diagonale
d 0 - 0
0 do -~ 0
diag(ds,...,d,) := i )
0 O dy
Exemple 6.21. Une matrice de taille 4 x 4 triangulaire supérieure :
2 -1 4 -2
0 -5 5 0
A=lo 0 1 -1
0o 0 0 3
3

]. ].4 NumChap: chap-determinant, Derniére compilation: 2025-01-13 12:27:17Z. (Version Web: botafogo.saitis.net)


botafogo.saitis.net

6.4. Propriétés du déterminant

Lemme 6.22. Si A est une matrice triangulaire supérieure ou inférieure, alors son déterminant est le
produit de ses termes diagonaux :

n
det(A) = A1+ App = H Ajj-
j=1

Preuve: Montrons la premiere affirmation pour les matrices triangulaires supérieures, par récurrence sur n. Pour
n=2,ona

2
=A11A22-0-A1p= H Ajj.

det(Al‘1 0 )
j=1

A Az

Supposons que le résultat est prouvé pour un certain entier n, et considérons une matrice A de taille (n+1) x (n+1)
triangulaire supérieure. En développant selon la premiere colonne, et en utilisant le fait que tous les A;,; = 0 lorsque
j=2,...,n+1, il ne reste que le terme j = 1. De plus, puisque A[1|1] est une matrice de taille n x n triangulaire supé-
rieure, on peut utiliser I'hypothése d’induction :

n+1 . n+1 n+1
det(A) = Y (-1 Aj 1 det(A[jI1]) = (D' Ay det (A1) = Aa [ A5 =[] 4),;-
j=1 j=2 j=1

Si A est triangulaire inférieure, alors A” est triangulaire supérieure et ses éléments diagonaux sont les mémes, donc le
résultat est aussi vrai. O

En particulier, si A est diagonale,

d 0 - 0
0 do - 0
A=diag(d,,...,dy) := .
0 O dy
alors ;
det(A) =d,---dy, =[] d;.
j=1
Exemple 6.23.
1 76 -21 98 -5 99
0 v2 0 -6 98 -5
0 O 32 53 75 97
det| o o 0 0 4 14 =1-v2-32-0-21-95=0.
0 O 0 0 21 32
0 O 0 0 0 95
S
Exemple 6.24. Matrice identité :
1 0 0
01 - 0
det(I,) =det|. . |=1"=1.
0 0 1
S

Les propriétés énoncées jusqu’ici fournissent déja de quoi calculer un déterminant en évitant de le déve-
lopper systématiquement a I'aide des relations de récurrence. En effet, on a vu que les déterminants les
plus simples a calculer sont ceux des matrices triangulaires, et aussi que des opérations sur les colonnes
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et les lignes correspondent a certaines modifications simples du déterminant. On pourra donc appliquer
des opérations sur les lignes et les colonnes, dans le but de rendre la matrice triangulaire supérieure, ou
au moins avec autant de zéros que possible, ce qui ensuite d'utiliser les relations de récurrence pour une
matrice simplifiée.

Exemple 6.25. Utilisons les propriétés pour calculer le déterminant de la matrice

[SUI \CIN S
— o O
— N W
N OO O

On fait déja apparaitre quelques zéros en soustrayant la troisieme ligne de la deuxiéme, ce qui ne change
pas le déterminant :

1 2 3 4 1 2 3 4
5 6 7 8 3 03 0
detly 6 4 8|92 6 4 8
3 1 1 2 3 1 1 2
Ensuite, en soustrayant la premiére colonne a la troisiéme,
1 2 3 4 1 2 2 4
3 03 0 3 0 0 O
detly 6 4 8|92 6 2 8
3 1 1 2 3 1 -2 2

Maintenant, on peut développer selon la deuxieme ligne, puisqu’elle contient beaucoup de zéros :

=det =-3det|{6 2 8
2 6 2 8 1 —2 9
31 -2 2

En mettant en évidence un 2 dans les deux premieres lignes, puis dans la derniére colonne,

2 2 4 1 1 2 1 1 1
det|6 2 8|=2%det|3 1 4|=2%det|3 1 2
1 -2 2 1 -2 2 1 -2 1

En soustrayant la derniere ligne a la premiere, et en développant selon la premiére ligne,

1 1 1 0 3 0
det|3 1 2|=det|3 1 2
1 -2 1 1 -2 1
3 2
——3det(1 1)_—3-1_—3,
donc det(A) = (-3)-23-(-3) = 72. o

6.4.3 Une curiosité dansle cas n =3

Dans le cas d'une matrice de taille 3 x 3, le développement du déterminant peut se faire a 'aide de la regle
de Sarrus. Celle-ci ne contient rien de profond, mais permet de calculer un déterminant de taille 3 x 3 de
facon systématique, facile a mémoriser. On écrit la matrice A, a la suite de laquelle on rajoute la premiere et
la deuxieme colonne. On parcours ensuite ce tableau de taille 3 x 5 selon certaines diagonales :
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6.5. Interprétation géométrique du déterminant de matrices de taille 3 x 3

et
det(A) = A11A22A33+ A12A23A31 + A13A21A32—A31A22A13— A3 2A23A11 — A3 3421 A1 2.

Remarque 6.26. Il n’existe pas d’équivalent simple de la régle de Sarrus pour des déterminants de matrices
de tailles supérieures. o

6.5 Interprétation géométrique du déterminant de matrices de taille 3 x 3

Dans I'espace, considérons trois vecteurs u,v,w, et le parallélépipede qu’ils définissent :

v

Le volume de ce parallélépipéde, noté Vol(u,v,w), est reliée au déterminant de la matrice de taille 3 x 3 dont
les colonnes sont u,v et w.

Théoreme 6.27. Le volume du parallélépipede est donnée par

Vol(u,v,w) = ‘det([uvw])| ;

Preuve: Omise. O

Pour une visualisation intéressante voir la vidéo sur 3BluelBrown.

6.6 Laformule det(AB) =det(A)det(B)

Dans cette section, nous allons démontrer la propriété qui rend le déterminant réellement utile en algébre
linéaire :

Théoréme 6.28. Pour toute paire de matrices A et B de taillen x n on a

det(AB) = det(A) det(B).
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6.6. La formule det(AB) = det(A) det(B)

Preuve:* On fixe A€M« (R) et on consideére ’application

@ Mpxn(R) — R
B — det(AB).

Or, on remarque que ¢ est multilinéaire et alternée. En effet, si 'on écrit B a partir de ses colonnes via B = [b; ---b,],
alors

@(Alb; ---b} + Ab} - --b,]) = @([Aby --- A(b. + Ab}) --- Ab,]) = ¢([Ab; - -- Ab}. + L Ab} - - Ab,])
=¢([Aby --- Ab}--- Ab,]) + A@([Ab; --- Ab] --- Ab,]),

ol 'on a utilisé dans la derniere égalité que ¢ est multilinéaire. En outre, si B posséde deux colonnes égales, par
exemple B=[b;---b;---bj---b,] avec b; = b}, alors

(p(A[bl--~b,--~bj~--bn])=(p([Ab1~~Abl-~--Ab,---~Abn])=0,

ou I'on a utilisé dans la derniere égalité que ¢ est alternée et Ab; = Ab;. En plus, ¢(,) = det(Al,) = det(A). Par la
derniere partie du Théoréme 6.13 avec ¢ = det(A), on conclut que

det(AB) = ¢(B) = det(A)det(B),

comme on voulait démontrer. O

6.6.1 Déterminant et inversibilité

La preuve ci-dessus (voir les passages en gras) a comme conséquence la généralisation que nous espérions,
a savoir celle du critere que nous avions établi pour les matrices 2 x 2 :

Théoreme 6.29. Une matrice carrée A est inversible si et seulement si det(A) # 0.

Preuve: On suppose que A est inversible, ce qui nous dit qu’il existe une matrice A~! de taille nx ntelleque A1 A=1,,.
Le Théoréme 6.28 nous dit que
det(A™!) det(A) = det(A™' A) = det(I,) = 1,

ce qui implique que det(A) # 0, comme on voulait démontrer.
On suppose maintenant que A n’est pas inversible. On va montrer que det(A) = 0. Notons EV,..., E? les transfor-
mations qui réduisent A. Dans ce cas, A ne peut pas étre réduite a I'identité. On note A la forme échelonnée réduite.
Comme

A=FED...FW 4

n'est pas la matrice identité, c’est une matrice triangulaire supérieure possédant au moins un zéro sur sa diagonale.
Ceci implique que son déterminant est nul, det(A) = 0. On peut donc écrire que

0 = det(A) = det(E?)---det(EV) det(A).

Comme det(E'?) # 0 pour tout i, on en déduit que det(A) = 0. On a donc démontré que si A n’est pas inversible, alors
det(A) =0, comme on voulait démontrer. O

Exemple 6.30. La matrice

S

I
— = e e e
SO OO O O = -
S OO O - O -
oo o OO H—
S O = O O O
S - O OO0 O -
— o O O O O~
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est inversible, puisqu’en soustrayant a la premiére colonne la somme de toutes les autres,

|
&)

det(A) = det

S O O o o o

= (-5)det

CoCoCCocCCoH coo o o~
CoOCCCoOoO O cocooco~ O+
COCOoOH OO0 coo OO
CoOoOHOCCOCO oo~ o OO~
CHO OO0 oo oo o+
— O 0000 oo oo O -

=-5#0.
o
Lutilisation du déterminant permet maintenant d’étudier I'inversibilité de matrices contenant un para-

metre, en évitant de devoir étudier un systeme.

Exemple 6.31. Pour quelles valeurs du parameétre ¢ la matrice

0 t -1
A=| ¢ 10 O
-1 1 t

est-elle inversible?
En développant selon la premiere colonne,
r -1 r -1
det(A) = (—l)tdet(1 ; )+ (t— l)det(10 0 )

=D+ 1D +10(t-1)
=—3+9t-10.

On sait sait donc que A est inversible si et seulement si ¢ n’est pas racine du polynéme P(f) = — 2 +9¢ — 10.
On remarque que t =2 est racine de P, ce qui permet de factoriser (par division Euclidienne par exemple) :

P(t)=(t-2)(-t*> -2t +5).

Comme les racines de —t?> — 2t + 5 sont —1 + /6, on en déduit que A est inversible si et seulement si t ¢

{2,-1-v6,—-1+6}. o

6.6.2 Ledéterminant de l'inverse

Lorsque A est inversible, AA™! =1, et la formule démontrée plus haut permet d’écrire

1=det(,) =det(AA™Y) = det(A) det(A™Y),

qui donne :

-1y _
det(A )_det(A)'

119
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6.6.3 Ledéterminant comme invariant de similitude
Définition 6.32. Deux matrices A et B de taille n x n sont dites semblables s’il existe une matrice de

taille n x n inversible M telle que
A=M'BM.

Lorsque A et B sont semblables, on note A ~ B.

1 1 1 0
A_(O 0) et B—(O 0)

11 . . . .
sont semblables. En effet, en prenant M = ( 0 1), qui est inversible, on obtient

(o 3o offo 1)=lo o4

Exemple 6.33. Les matrices

Proposition 6.34. Si A ~ B, alors det(A) = det(B).

(On dit que le déterminant est un invariant de similitude.)
Preuve:
det(A) = det(M ™' BM)

= det(M ") det(B) det(M)
= det(B) det(M ') det(M)
= det(B)det(M ™' M)
=det(B) det(I,)
=det(B).

O

Le déterminant peut donc étre utilisé pour démontrer a moindre frais que deux matrices ne sont pas sem-
blables :

Exemple 6.35. Les matrices
2 0 0 1 0 1
A=|1 0 -1 et B=|0 2 13
0 3 1 0 0 -1

ne sont pas semblables, car det(A) = 6 (en développant selon la premiére ligne), alors que det(B) = -2. ¢

6.7 Criteres d’'inversibilité de matrices carrées

6.7.1 Lerésultat
Dans la section précédente, nous avons vu un premier critere d’inversibilité général pour une matrice A,
caractérisé par la possibilité de réduire (ou non) A a I'identité. Relions maintenant I'inversibilité a d’autres

propriétés algébriques. (Dans la suite du cours, d’autres criteres viendront s’ajouter a cette liste.)
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Théoréme 6.36. (Criteres d'inversibilité) Soit A une matrice de taille n x n. Alors, les propriétés sui-
vantes sont toutes équivalentes :

1) A estinversible;

2) A est un produit fini de matrices élémentaires;

3) la forme échelonnée réduite de A est1,,;

4) det(A) #0;

5) pour toutb € R", le systeme Ax = b possede une unique solution;

6) le systeme Ax = 0 ne possede que la solution triviale (i.e. Ker(A) = {0});
7) les colonnes de A forment une famille libre de R" ;

8) les colonnes de A forment une famille géneratrice deR" (i.e. Tmg(A) = R").

Preuve: Les équivalences 1 < 2 < 3 ont été démontrées dans le Théoréeme 5.27 et le Corollaire 5.28.
L'équivalence 1 < 4 suit du Théoreme 6.29.

L'équivalence 1 < 5 suit de ’équivalence entre les items (i) et (iv) du Théoreme 4.52, ot1I'on utilise qu'une application
linéaire est bijective si et seulement si sa matrice canonique est inversible (voir Lemme 5.15).

L'équivalence 1 < 6 suit de combiner I'équivalence entre les items (i) et (ii) du Théoréme 4.52 et 'équivalence entre les
items (i) et (iii) du Théoréme 4.46, ou11'on utilise qu'une application linéaire est bijective si et seulement si sa matrice
canonique est inversible (voir Lemme 5.15).

L'équivalence 1 < 7 suit de combiner I'équivalence entre les items (i) et (ii) du Théoreme 4.52 et 'équivalence entre les
items (i) et (iv) du Théoréme 4.46, ou1 I'on utilise qu'une application linéaire est bijective si et seulement si sa matrice
canonique est inversible (voir Lemme 5.15).

L'équivalence 1 « 8 suit de combiner I'équivalence entre les items (i) et (iii) du Théoréme 4.52 et 'équivalence entre
les items (i) et (iv) du Théoreme 4.48, o1 'on utilise qu'une application linéaire est bijective si et seulement si sa
matrice canonique est inversible (voir Lemme 5.15). O

6.7.2 Une application : une simplification de la définition d’inversibilité

Nous avons insisté plusieurs fois sur le fait que la définition d’inversibilité implique deux conditions : il doit
exister B telle que AB =1, et BA =1,. Or nous avons maintenant les outils pour prouver qu’il suffit qu’'une
seule de ces conditions soit vérifiée :

Proposition 6.37. Soit A une matrice de taille n x n.
(INV-G) S'il existe une matrice C de taille n x n telle que CA =1, alors A est inversible et Al=C.

(INV-D) S'il existe une matrice B de taille n x n telle que AB =1,, alors A est inversible et A~' = B.

Preuve: 1. Supposons que CA =1,,. Si x est solution du systéme homogene Ax = 0, alors
x=1,x=CAx=C(Ax) =C0=0.

Donc le systeme homogeéne ne posséde que la solution triviale. Par le théoreme (critére 5), A est inversible : son inverse
A~! existe. En multipliant 'identité CA = I,, a droite par A~!, on obtient C = A~

2. Supposons que AB = I,,. Fixons un y € R” quelconque. On a alors ABy = I,,y =y, que I'on peut récrire Ax, =y
(o1 x« = By). Ceci implique bien que y € Img(A). Comme ceci est vrai pour tout y, on a que Img(A) = R”. Par le
théoréme (critére 7.) ce qui implique que A est inversible. En multipliant I'identité AB = I,, 4 gauche par A~!, on
obtient A™! = B. O
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6.8 Formule de Cramer et conséquences”

6.8.1 Résolution de systemes d’équations linéaires par déterminants
Dans cette sous-section, on présente une application intéressante de la théorie du déterminant a la résolu-
tion des systemes linéaires.

Si A est une matrice inversible de taille n x n, on sait que pour tout b € R”, le systéme
Ax=b
posséde exactement une solution x, donnée par
x=A"'b.

Nous allons voir comment il est possible de calculer chacune des composantes x; de cette solution, sans
passer par la connaissance de A™!.

Définition 6.38. Si M est une matrice de taille n x n, et z € R", M;(z) est la matrice de taille n x n
obtenue a partir de M en remplacant la j-eme colonne par z (sans toucher aux autres colonnes).

V2

1 2 3
Exemple6.39.SiM=|4 5 6|,z=| n |, alors
7 8 9 e

1 v2 3
My(z)=14 n 6
7 e 9

Proposition 6.40. (Formule de Cramer) Soit A une matrice de taille n x n inversible, b € R", et soit
x € R" l'unique solution du systeme Ax = b. Alors pour tout j € {1,2,...,n}, la j-eme composante de x

est égale a
_ det (Aj(b)

1T T deta)

Preuve: Notons A = [a; ---a,]. Calculons le produit de A par (I,,) j(x) :

A ;X)) = Ale;--ej_1Xej1 - ep]
= [Ae;--- Aej_| AXAej, - Aey]
= [al"‘aj—lbaj+1"'an]
=Aj(b).

On adonc
det(4)det (1,);00) = det A((1,);00) | = det (4, ®)).

Or en développant selon la j-éme colonne,
n .
det((1,);®) = Y (=D x; det(((ln)f(x))k, j)
k=1

n .
=Y (D" xpdet(Tn)g, ;) -
k=1
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Dans la deuxiéme ligne, on a utilisé le fait que I'on trace la colonne contenant x, et donc cela revient au méme de
travailler avec I, qu’avec (I,) j(x). Ensuite, remarquons que si k # j, alors (I) j contient une colonne et une ligne de
zéros, et donc en développant selon cette ligne, on voit que det((I,)g, ;) =0.

Il ne subsiste donc, dans la somme ci-dessus, que le terme k= j :

det((1,);®) = (= 1)/ x;det((1n) ;)
= xjdet(ly-1)
= x]' .
Ceci démontre la formule. O

Exemple 6.41. Considérons le systéme linéaire Ax =b donné par

1 2 3 4\(x1\ (5
1 2 3 0||lx| |6

(%) =
1 20 0f|lxs| |7
1 00 0f\xs) |8

Comme det(A) = 4! = 24 # 0, la matrice est inversible et la solution du systéme est unique. Si on s’'intéresse
par exemple a la quatrieme composante x4,

1 235
x_det(A4(b))_idet1 2 36
YT Tdetd) 24 |1 2 0 7
100 8

1115

1 1116
=29ty 1 o 7

100 8

0015

1. ]loo0o1 6
=29 1 0 7

100 8

On a d’abord extrait un 2 de la deuxieme colonne et un 3 de la troisiéme, puis on a soustrait la deuxieéme
colonne de la premiere, et la troisieme de la deuxieme. Maintenant, en développant selon la premiére co-
lonne,

1
x4 = —det
17

— o O O
oS = O O
O O =
[c-BEaN RN RS |

1 01
:Z(_Ddet 01 6
1 0

N}

(2}

1 1 5
—Z(—l)(l)det(1 )

1
= Z(_D(D(G_S)
1

=7
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6.8. Formule de Cramer et conséquences™

Bien-sfir, on trouve la méme chose qu’en résolvant complétement le systéme (), qui serait par exemple de
faire Ll — Ll - Lz, L2 «— L2 —Lg, L3 — L3 - L4, qu1 donne

00 0 4)\(x -1
00 3 0f|lx]| [-1
02 0 0f|xs]| [-1
1 00 0f\xs 8

6.8.2 Une application intéressante : formule pour A™!

Sile systeme considéré est grand, la formule de Cramer pour x; représente un intérét limité du point de vue
calculatoire. En effet elle implique le calcul de deux déterminants, qui comme on sait représente un nombre
d’opérations croissant factoriellement avec la taille du systéme.

Par contre, d'un point de vue théorique elle permet de dériver une formule explicite pour 'inverse d'une
matrice :

Définition 6.42. Soit A une matrice de taille n x n inversible. La matrice complémentaire de A est
la matrice Comp(A) de taille n x n dont les coefficients sont donnés par

Comp(A); ; := (-1)"*/ det(A[jli])

pourtoutl <i,j<n.

Théoreme 6.43. Soit A une matrice de taille n x n. Alors
A.Comp(A) = Comp(A).A=det(A)I,. (6.1)

En conséquence, si A est inversible, l'inverse de A est donnée par

1
Al= A).
det(a) ComP(A)

Preuve: On montrera 'identité A.Comp(A) = det(A)1,, la preuve de l'autre identité de (6.1) est analogue. Or, par
définition du produit de matrices on a que

n n .
(A.Comp(A)), , = Y. A jComp(A) ;= Y (~1))*FA; ; det (Alkl ).
= j=1
Sii=k,alors
n n

(A.Comp(4)), ;= Y A;jComp(A)j; = Y (-1)"*/ A; jdet(Alil j]) = det(A) = det(A)(1,)
= j=1

i,i’

ol l'on a utilisé le Théoréme 6.8 dans la troisieme égalité, en développant selon I'i-éme ligne de A. Si i # k, alors
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6.8. Formule de Cramer et conséquences™

(A.Comp(4)); = Y A Comp(A) = Y (~1)/**4; ;det(A[kl )

J=1

A1

Ai-11
Ain
Ai+1,1
=det
Aj_11
Ain

Aji11

An,l

j=1

Al,n

Ai—l,n
Ai,n

Ai+1,n

Aj+1,n

An,n

i-eme
ligne

j-éme
ligne

ol 'on a utilisé le Théoreme 6.8 dans la troisiéme égalité, en développant selon la k-éme ligne de A. Or, la propriété
d’alternance du déterminant nous dit que le dernier déterminant est nul,. En conséquence,

(A.Comp(A)); ; =0 =det(A)(I,); ;-

On conclut que A.Comp(A) = det(A)I,.

Pour montrer la derniere affirmation, on note que si A est inversible, alors det(A) # 0, et (6.1) nous dit que

A.det(A)"! Comp(A) = det(A) ! Comp(A).A=1,,

ce qui implique que

A~ =det(A) ! Comp(A).

Exemple 6.44. La matrice

1 3
-1 1/,
4 -2

est inversible puisque det(A) = —14 # 0. Utilisons la formule pour calculer son inverse. Indiquons en rouge
le signe de chaque coefficient, venant du (—1)'*/ = +1 dans la matrice complémentaire.

-1

= A
derca) ComPA)
-1 1 1 3 1 3
+det(4 _2) —det(4 _2) +det _1 1)
1 1 2 3 2 3
= —de‘[(1 _2) +det(1 _2) —det(1 1)
1 -1 2 1 2 1
eret(1 4) —det(1 4) +det ] _1)
-2 14 4
=——1314 -7 1
B 5 -7 -3
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6.9. Résumé du chapitre sur le déterminant

6.9 Résumé du chapitre sur le déterminant

DETERMINANT :
A A
det (A;j A;i) = A1Y1A2y2 - A1,2A2,1
ET,SI n>2,
A A o Aig Ao Apz - Agp Az Az Az
A A e A A A e A A A e A
der| A2t A2e Al e[ A2 As Ay ge| A Ase sl
An,l An,2 An,n An,2 An,S An,n An,l An,3 An,n
A0 Allj2)
An Azz -0 A
A A Y E
+ (D" 1A pdet| T 3 Bl
An,l An,3 An,nfl
Amn]
SOUS-MATRICE PRINCIPALE A[ilj]:
Al,l Al,j—l Al']' A1J+1 Al,n
Al ... Apj-1 A+l Al
Aic11 - Aj-1j-1 Aj-1,j Ai-1,j+1 -+ Ai-1n : ’ Co
i-eme e | Aimny e Aicnj-1 Ai-jer --- Aicin
ligne - Al ... Ai,j—l Ai,j Ai,j+1 co Ain [ilj]:= 1 A A A
i+1,1 «-- Ait1,j-1 Ait1j+1 - Aitln
Ais11 - Airj-1 Aitlj Aivlj+l -+ Aivln
An,l An,j—l An,j+1 An,n

Apt oo Anjor Anj Anje1 - Ann

f

j-éme
colonne

AUTRES MOYENS DE CALCULER LE DETERMINANT :
(S) POUR n=3

+ +
Al A A1l Al
AN N 7
A= | A1 Az A1 App
A3l Asp

det(A) = A11A22A33+ A12A23A31 + A13A21A32—A31A20A13 — A3 As3A11 — A3 3A21A1 .

(DL) DEVELOPPEMENT SELON LA i-EME LIGNE DE A

det(A) = Y (-1)**1 4; ; det (Alilk]),
k=1
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6.9. Résumé du chapitre sur le déterminant

(DC) DEVELOPPEMENT SELON LA j-EME COLONNE DE A

n

det(A) = Y (-1)** Ay ;det(Alklf]).
k=1
(TRI) CAS TRIANGULAIRE
Ap A o Alg Aip 0 -+ 0

(:) A.2,2 oo AZ,n A?,1 A.2,2 ces ()

det
0 0 o Apn Ani Ap2 0 Ann

DETERMINANT ET GEOMETRIE :

AIRE DU PARALLELOGRAMME DEFINI PAR (1’21’1) ET (ALZ)

’(Al,l AI,Z)
2,1 Az

Az Azp

VOLUME DU PARALLELEPIPEDE DEFINIPAR | Ay 1 |,| A2 Axs|=|[A21 Asp Ass

A1) (A2 Az An Ay A
ET
A31) \Aszp Asz3 Az1 Az Aszgs

PROPRIETES DU DETERMINANT :
(MUL) MULTILINEAIRITE

Ain - All,k+AA,1,,k o Aln
det| : . : . :
Apy o A LHAAL L e Ang
A1 Al L Aln A1 Ay Al
=det| : : +Adet| : :
An,l Aln,k An n An,l A,r,l,k An n
A o Ain AAg -0 AA, Aiyr o A
CONSEQUENCE: det|A| @ -, : |[|=det| : .. : |=2A"det :
An,l An,n AAn,l AAn,n An,l An,n
(ALT) ALTERNANCE
Arn A1 A1 A1
SIDEUXCOLONNESDE | : .. : |SONTEGALES =det| : .. : [=o0
An,l An,n An,l An,n
(TRA) TRANSPOSITION
[ det(a”) = det(4) |
(PRO) PRODUIT
| det(AB) = det(A)det(B) | VA, B€Mpxn(®)
(INV) INVERSE
[ det(A™1) = det(A)™! = 1/ det(A) ] V A€M, ,(R) INVERSIBLE
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6.9. Résumé du chapitre sur le déterminant

(SEM) MATRICES SEMBLABLES

A~B (= B=PAP™! AVEC P INVERSIBLE) = | det(A) = det(B)

(RED) REDUCTION

1 2 N-1 N -1 #&' OEL.I}
A Ay S Ay = det(4) = Y det(A)
FER 1SN

U (L: —A: L-
& _(L]i A]iL]i]

CONDITIONS EQUIVALENTES POUR INVERSIBILITE DE MATRICE 7 x n: —— (VOIR THM 6.36)

1) AINVERSIBLE

2) A PRODUIT FINI DE MATRICES ELEMENTAIRES

3) FERDE AESTI,

4) det(A) #0

5) Ax=b COMPATIBLE DETERMINE Yb € R"

6) Ax =0 COMPATIBLE DETERMINE (= Ker(A) = {0});

7) COLONNES DE A SONT FAMILLE LIBRE DE R";

8) COLONNES DE A SONT FAMILLE GENERATRICE DE R” (= Img(A) = R")

FORMULE DE CRAMER :*
A1,1 Al,j—l Al,j A1’j+1 Al,n bl A1’1 Al,j—l b1 A1’j+1 Al,n
A1 ... Ajj-1 Aij Aij+1 ... Ain bi|:=| Ai_1y ... Aj1,j-1 bi Ai—1j+1 ... Ai—1n
Ap1 ... Apj-1 Anjj Anj+1 --- Ann i Apy ... Apj-1 by, Anj+1 - Ann
Jj-eme j-éme
colonne colonne
det(A; (b))
1
AINVERSIBLE => X = detd) SOLDUSEL Ax=b
e
det(A, (b))

MATRICE COMPLEMENTAIRE D’UNE MATRICE 7 x n :*

Comp(A);,; := (-1)"*/ det (ALjli1) = AComp(A) = Comp(A) A = det(A) I,
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Chapitre 7

Définitions abstraites II : bases, dimension et
théoreme du rang

7.1 Introduction

Dans ce chapitre, on introduit plus de notions relatives aux espaces vectoriel abstraites. En particulier, on
verra les notions de base d'un espace vectoriel, de coordonnées relatives a une base, de dimension, et de
représentation matricielle d'une application linéaire relative & deux bases. On conclura ce chapitre avec'un
des résultats les plus importants de I'algebre linéaire : le Théoréme du Rang.

Objectifs de ce chapitre

Ala fin de ce chapitre vous devriez étre capable de
(0.1) vérifier ou construire des familles libres et/ou génératrices d'un espace vectoriel;

(0.2) extraire une base d'une famille génératrice et compléter en une base une famille libre d'un
espace vectoriel;

(0.3) calculer le noyau et 'image d’'une application linéaire, ainsi que des bases de ces sous-
espaces vectoriels;

(0.4) utiliser le théoreme du rang pour calculer des dimensions de sous-espaces.

Nouveau vocabulaire dans ce chapitre

e base » espace engendré par les colonnes d’'une
e dimension matrice
» rang d’'une application linéaire » espace engendré par les lignes d'une ma-
e rang d’'une matrice trice

7.2 Bases

7.2.1 Définition et exemples

Dans toute cette section, V est un espace vectoriel fixé.
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7.2. Bases

Définition 7.1. Soit V un espace vectoriel. Une famille finie de vecteurs 98 = {vy, vy,...,vp} S V est
une base de V si les deux conditions suivantes sont vérifiées :

(B.1) 2 est une famille libre,

(B.2) 2 estune famille génératrice de V, c’est-a-dire que V = Vect{vy, v3,..., vp}.

Noter que I'on peut appliquer la définition ci-dessus aussi a tout sous-espace vectoriel W d’un espace vec-
toriel V, et parler aussi d'une base d'un sous-espace vectoriel W.

Exemple 7.2. Considérons V = R”". Rappelons que |'on peut écrire tout vecteur x € R” comme

X=Xx1€; +Xxzey---+Xxn€;,

1 0
1 0

et =1.1, e€e=1.1, ... €enp:=
0 0 1

Comme cette famille de vecteurs est libre , on conclut que %can = {ey,...,e,} est bien une base, la base
canonique de R”. >

Exemple 7.3. Dans V = R?, considérons les vecteurs

wefi) sl

et montrons que 98 = {v1, vy} est une base de V. D’abord, on voit que v; et v, ne sont pas colinéaires, et
donc que £ est libre. Ensuite, pour montrer qu’elle engendre bien tout V, fixons un x € V quelconque, et
montrons qu'il peut s’écrire comme combinaison linéaire de v; et v,, c’est-a-dire qu'’il existe des scalaires
A1 et A, tels que

X=A1v] +Aovs.

Si on nome x1, x, les composantes de X, alors cette derniére devient

=1 i)+(5)

qui n’est autre que

=
+
w
=
no
1

X2.

Apres Ly — Ly — 3Ly,

(%) 2&1 - 7/12 = X,
Bl = x —%xl.

En procédant “du bas vers le haut”, on trouve
_ 3 X 7 X — 1 X 2 X
/11 1341 + 1342 2“2 131 + 342

Ceci montre que x peut effectivement s’écrire comme combinaison linéaire de v; et vo. Comme ceci vaut
pour toutx € V, 28 engendre bien V.

On a donc montré que 28 est une base de V. 3
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7.2. Bases

Exemple 7.4. Considérons V =P, 'ensemble des polynémes a coefficients réels, de degré au plus égal a n.
Rappelons que tout élément p € P, est de la forme

pt)=ag+ait+ayt>+---+apt", teR.

Considérons les polynémes ey, ey, ..., e, € P, définis ainsi : pour tout ¢ € R,

ep(t):=1,
el (t):=t,
ex(t):= tz,
e,(t):=t".

Pour le polynome écrit au-dessus,
p=apey+ae+---+apey.

Donc la famille {eg, ey, ..., ey} engendre P,,. Mais on a aussi montré dans une section précédente que cette
famille est libre. Ainsi, la famille %B.q, = {€g, €1, ..., e,} forme une base, appelée base canonique de P,. S

Exemple 7.5. Considérons, dans V =P, la famille 98 = (q1, g2, g2), ol
Gt =3,  q)=1-2t, qgs(t)=t>+t.
Montrons que 2 est une base de V. Pour commencer, montrons que 28 est libre, en posant
Mg+ 292+ 2A3q3 =0,
qui signifie, apres avoir regroupé les termes,
BAL+A2) + (=21, + A3)t+A3t> =0,  VreR.

On sait qu'un polynéme s’annule en tout ¢ € R si et seulement si tous ses coefficients sont nuls. On en déduit
que A3 =0, puis que 1, = %)Lg =0, puisque 1; = —%/12 = 0. Ceci montre que % est libre.

Montrons ensuite que 98 engendre [P,. Pour ce faire, fixons un p € P, quelconque, et montrons qu’on peut
trouver des scalaires a1, a, tels que
p=ai1q1+axqr+asqgs.

Sip(t)y=a+bt+ ct?, cela signifie que
a+bt+ct’=a13+ax(1-20)+as(>+1), VieR,
qui devient, apres avoir regroupé les termes,
Baj+az—a)+(—2a+as—b)t+(as—c)t>* =0, Vr¢eR.

On voit donc que a1, a», a3 doivent satisfaire

3a; + a» = a,
(%) - 2a2 + a3 = b,
a3 = C.
On trouve
1 1 1 1
az=c, a2=§(c—b), (x3=§a+gb—éc.
Ceci montre que 98 engendre P,.
Donc on a bien montré que 28 est une base de P,. 3
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7.2. Bases

7.2.2 Extraire une base d’'une famille génératrice

Supposons qu'un sous-espace W < V soit engendré par une famille :
W =Vect{v,,..., vp}.

Par définition, tout vecteur w € W peut s’écrire comme combinaison linéaire des vy, ..., v, mais cela ne
signifie pas que ces vecteurs forment une base pour W : il se peut que certains ne soient pas nécessaires
dans la description de W; en d’autres termes, cette famille peut contenir “trop” de vecteurs, certains de ses
vecteurs peuvent étre superflus.

Théoréme 7.6 (Extraction d’'une base a partir d’'une famille génératrice). SoitV un espace vectoriel,
et soit
F ={v1,...,Ur}

une famille génératrice de V. Si un des vecteurs de &, disons v;, peut s'‘écrire comme combinaison
linéaire des autres vy (k # j), alors en retirant v;, la famille

g\{l}j}z{vl»-“y Vj—ly Vj+1)---) VI‘}

engendre toujours W. En conséquence, étant donné une famille génératrice & = {v,,...,v,} deV, il
existe une base 8 < .

Preuve: Puisque & engendre V, tout vecteur v € V peut s’écrire
v=a1V1+---+a;vy.

Sivi=X;zja;v; alors

r r r r
V= Z a;v; = (Z aivi)+ajvj = Z a,-v,-+aj Zaivi
i=1 i=1 i=1 i=1
i#] i#] i#]
r
=) (ai+aja)v;,

i=1
i#]

donc v peut s'écrire comme combinaison linéaire des éléments de & \ {v;}. Ceci signifie que la famille & \ {v;} en-
gendre aussi V.

Pour démontrer le dernier résultat, on procede par récursion. Si la famille génératrice & = {vy,..., v} de V est libre,
elle est une base et on pose 98 = &. Si ce n'est pas le cas, il existe un vecteur v; qui peut s’écrire comme combinaison
linéaire des autres vy (k # j). La premiére partie du théoreme nous dit que & \ {v;} est une famille génératrice de V.
Si elle est libre alors elle est une base et on pose 9 = % \ {v;}. Sinon, on répete I'argument avec & \ {v;} pour trouver
un vecteur vy avec ¢ # j qui peut s’écrire comme combinaison linéaire des autres vy (k # j,¢). La premiere partie
du théoréme nous dit que & \ {v}, vy} est une famille génératrice de V. Si elle est libre alors elle est une base et on
pose % = F \ {v}, vo}. En répétant cette procédure, on trouve une famille génératrice et libre 28 de V incluse dans &,
comme on voulait démontrer. O

Ce dernier résultat fournit un algorithme pour construire une base d'un espace vectoriel V, du moment que
I'on posséde une famille génératrice. Le premier pas de 1'algorithme n’est pas forcément facile a calculer :
on va voir dans la suite une simplification de cet algorithme d’extraction.
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7.3. Dimension

Algorithme d’extraction d’'une base a partir d’'une famille génératrice

Soit & = {vy, ..., v;} une famille génératrice finie de V.
(EXT.1) Chercher un vecteur v; € & qui peut s’exprimer comme combinaison linéaire des autres.
(EXT.2) S’ily en a un, retirer v; de la famille, et recommencer. S’'il n'y en a pas, s'arréter.

Une fois que cet algorithme s’arréte, on obtient une famille 28 € % qui engendre toujours V, et dans
laquelle aucun vecteur ne peut s’exprimer comme combinaison linéaire des autres; c’est donc une
base de V.

Exemple 7.7. Soit V = R*, et soit W < V le sous-espace défini par

W = Vect{wy,wy, w3},

3 5 1
-1 —4 2
Wi = 0 ’ Wp = 4 ’ W3 = 4
2 3 1

Remarquons que {w;,w»,ws} n’est pas libre puisque w, = 2w; —ws. Donc wy est “superflu”, et on peut le
retirer, sans changer W :
W = Vect{w,ws}.

Maintenant, w et w3 n’étant pas colinéaires, 98 := {w;,ws} est une base de . o

7.3 Dimension

7.3.1 Lanotion fondamentale de dimension

C’est a 'aide de la notion de base que I’on définit naturellement celle de dimension.

Commencons par voir une premiere conséquence de I’existence d'une base :

Lemme 7.8. Si % = {v1,..., vy} est une base d'un espace vectoriel V, et si & <V est une famille conte-
nant plus de vecteurs que 98 (c'est-a-dire plus de p vecteurs), alors & est liée.

Preuve: Le résultat va suivre de ce que nous avons vu dans un chapitre précédent : dans R”, toute famille de plus de
p vecteurs est liée.

Ecrivons & = {wy,..., wi} € W, avec k > p. Considérons la relation linéaire
(%)71: aywy+-+apw=0y.
Appliquons [-]g des deux cotés de cette relation. Par linéarité, et comme [0y]5 =0, on a
(*)2: arlwilg +---+arlwileg =0.

Comme {[w;]g, ..., [Wr]lg} est une famille de vecteurs de R”, on sait qu’elle est liée puisque k > p. On conclut qu'il
existe une famille de coefficients a;, ..., @y, non tous nuls, tels que (x); soit vérifiée. Puisque [-]g est linéaire et inver-
sible, sa réciproque [-]é1 est aussi linéaire (voir lemme de la section précédente). Donc en appliquant [-];31 des deux
cOtés de ()2, onrécupere (*)1, qui est donc vérifiée pour les mémes coefficients a j, ce qui implique que & estliée. O

Ainsi, si 28 est une base de V, on sait qu'une famille libre dans V ne peut pas contenir plus de vecteurs que
le nombre de vecteurs contenus dans 8. Ceci implique aussi :
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7.3. Dimension

Théoréme 7.9. Toutes les bases d'un méme espace vectoriel V contiennent le méme nombre d’élé-
ments.

Preuve: Soient % = {vy,..., vp} et B ={un,..., wq} deux bases de V. Si on suppose que p > ¢, alors le lemme précé-
dent implique que 28 est liée, ce qui n’est pas possible puisque 28 est une base; on conclut que p < g. De méme, si on
suppose que g > p, alors le lemme précédent implique que %8’ est liée, ce qui n’est pas possible puisque %8’ est une
base; on conclut que g < p.Onadonc p=g. O

Puisque toutes les bases d'un espace ont le méme nombre d’éléments, ce nombre décrit une propriété
intrinséque de cet espace :

Définition 7.10. Siun espace vectoriel V posséde une base contenant un nombre fini 7 de vecteurs,
on dit que V est de dimension finie, et que sa dimension est égale a n, ce que I'on note comme suit :
dim(V) = n.

Exemple 7.11. Dans R3, considérons le sous-espace W = Vect{vy,v»}, oll

4 0
V) = 1 y Vo = 3
-3 2

Puisque v; et v» ne sont pas colinéaires, et qu’ils engendrent W, on en déduit que 2 = {vy, v} est une base
de W. Ainsi, dim(W) = 2, c’est un plan. S

Exemple 7.12. Considérons V = R”. Comme la base canonique {ey,...,e;} est formée de n vecteurs, n'im-
porte quelle autre base doit aussi avoir # vecteurs, et donc
dim(@R") = n.
o
Exemple 7.13. Considérons V = P,,. Comme base la base canonique {ey, ..., e;} est formée de n+1 vecteurs,
n'importe quelle autre base doit aussi avoir n + 1 vecteurs, et donc

dim(P,)=n+1.

<

Remarque 7.14. 1] existe des espaces vectoriels, comme par exemple I"espace de toutes les fonctions f :
[a, b] — R, qui ne sont pas de dimension finie : il n’existe aucune famille finie (fi,..., f,) telle que toute
fonction puisse s’écrire comme combinaison linéaire de fi,..., f;;. On dit que cet espace est de dimension
infinie. 3

Théoréme 7.15. Dans un sous-espace vectoriel V de dimension n, toute famille libre contenant n
vecteurs est une base de V.

Preuve: Supposons que & € V, & = {vy,..., Uy}, est libre. Prenons un v € V, et définissons &' := & u{v}. Le Théoréeme
7.9 nous dit que &’ est liée, car elle contient 7 + 1 vecteur. Alors, il existe A1,...,A1,.1, pas tous nuls, tels que
M+ 4+ A0+ A0 =0.
Si A;+1 =0, cela signifie qu’au moins un des 1,...,1, est non-nul, et que
My +---+A,v,=0,

et donc que & est liée, une contradiction. On en conclut que A, # 0, ce qui permet d’écrire w comme combinaison
linéaire des éléments de & :

Donc & est bien une base de V. O
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7.3.2 Complétion d’'une famille libre en une base

Théoréeme 7.16 (Complétion d’'une famille libre en une base). Soit V un espace vectoriel de dimen-
sion finie n,
F ={v1,..., 0} SV

une famille libre et soit vy ¢ Vect%. Alors, & U{vr+1} = {v1,..., Ur41} est libre.
En conséquence, étant donné une famille libre & = {v,,...,v;}, alors r < n et il existe des vecteurs
Vr+l1,..., Uy deV tels que

B={v1,..., Vr, Vrsly---, Upn}

estunebasede V.

Preuve: Pour montrer la premiere partie, on procéde pas I’absurde. On suppose qu'il existe a;,...,ar+1 € R tels que
au moins est un non nul et
av+...+ar V41 =0y (7.1)

On affirme que @, # 0 dans ce cas. En effet, si a,+; =0, alors (7.1) devient

a1 +...+a;v =0y,

ce qui implique a; = ... = a, =0, vu que & est libre, mais cela est absurde, car on avait suppose qu’au moins un
coefficient dans (7.1) est non nul. En conséquence, a1 # 0 et (7.1) nous dit que
aq a
Vpyl = V1 +...+ —— v, € VectZ,
dr+1 Ar+1
ce qui est absurde, car on avait supposé que v, ¢ Vect%. En conséquence, {v,+1}UZ ={vy,..., Vr41} est libre.

On montre la derniére partie du théoreme. Si r = n, alors & est une base et on pose donc 28 = . On suppose dé-
sormais r < n et en conséquence % n'engendre pas V. Alors, il existe au moins un vecteur v, € V qui ne peut pas
s’écrire comme combinaison linéaire d’éléments de &. La premiére partie nous dit que

{Ul,..., Ur, Ul’+l}

est libre. Si cette famille n’engendre toujours pas V, on recommence : il doit exister un vecteur v,.» € V qui ne peut
pas s’écrire comme combinaison linéaire de ses éléments, et donc

(V1,0 Uy Urs1, Vrg2}

est libre, d’apres la premiére partie du théoreme. Comme la dimension de V est finie et vaut n, ce procédé continue
jusqu’a obtenir une famille libre qui contient exactement n éléments, et qui forme donc une base de V. O

Exemple 7.17. Considérons la famille libre & = {v;,v,} < R3 out

4 0
V] = 0 y Vo = 3
-3 2

Clairement, & est libre, mais elle n'engendre pas R3 (car 2 < 3!). Par le théoréme ci-dessus, on peut com-
pléter & en une base de R, en lui rajoutant un vecteur qui n’est pas une combinaison linéaire de v; et v,.
Comment choisir ce vecteur?

Remarquons que toute combinaison linéaire de v; et v, est de la forme

4 0 40!1
ai| 0 |+a2|3]|= 3as
-3 2 -3a;+2a>
On peut donc prendre n'importe quel vecteur qui n’est pas de cette forme. Par exemple
4
V3 = 3
0
Maintenant, {vy,vy,v3} est une base de R3. o
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7.4 Lien entre familles libres, familles génératrices et applications linéaires

Théoréme 7.18. Soit T : V — V' une application linéaire et soit & = {vy, ..., v;} €V une famille. On
rappelle que T(F) ={T (v1),..., T(v,)} € V' est la famille image.

(LL) SiT(F)={T(vy),..., T(v,)} < V' estlibre, alors & ={vy,...,v,} €V estlibre.
(LIL) Si & ={v,...,v,} SV estlibreet T est injective, alors T(F) ={T (v1),..., T(v,)} < V' est libre.
(GLD) Si% ={vy,...,v,} SV est génératricedeV et T(F) ={T(v1),..., T(v;)} € V' est libre, alors T est
injective.
(GS) SiT(F)={T(v),..., T(v,)} S V' est génératrice de V', alors T est surjective.

(GSG) Si & ={vy,..., v} SV est génératrice de V et T est surjective, alors T(¥) = {T (v1),..., T(v,)} <
V' est génératrice de V'.

En conséquence, T est bijective si et seulement s'il existe une base B = {vy,..., vy} de V dont l'image
T(B) ={T(n1),..., T(vy)} est une base de V'.

Preuve: On montre d’abord 'implication (LL). On suppose que T(%) = {T(v1),..., T(v,)} € V' est libre. Considérons
une combinaison linéaire nulle des éléments de & donnée par

Oy =a1v; +---+a,v,.
Alors, la linéarité de T nous dit que
Oy =TOy)=T(av1+-+a,v)=a;T(v)+--+a,T(v;).
Comme T (&) ={T(11),..., T(v,)} < V' estlibre, on déduit que a; =--- = a, =0, i.e. & est libre.
On prouve ensuite 'implication (LL). On suppose que T(Z) ={T(v1),..., T(v;)} < V' est une famille génératrice de V'.
Alors, pour tout v’ € V' il existe ay,...,a, € R tels que

V=a1Tw) ++a,Tw,)=T(@ v+ +a,vy),

ot 'on a utilisé la linéarité de T dans la derniére égalité. En conséquence, v’ € Img(T), ce qui nous dit que T est
surjective.

On montre maintenant I'implication (LIL). On suppose que T est une application linéaire injective, et on va montrer
que T(F) ={T(v1),..., T(v;)} < V' est libre. Considérons une combinaison linéaire nulle des éléments de T(%),

Oyr=a;T(v)+-+a, T(v)=T(av1+:--+a,v,).

Comme T est injective, ona @ v; + -+ + a, v, = Oy, et comme & est une libre, on en déduitque a; =---=a, =0, i.e.
T (%) estlibre.
On prouve puis I'implication (GLI). On suppose que & = {vy, ..., V;} € V est une famille génératrice de V et T(&¥) =

{T(v1),..., T(vy)} < V' estlibre. On va montrer que T est injective. Soient v, w € V tels que T (v) = T(w). Alors, comme
& estune famille génératrice de V, il existe a1, f1 ..., ar, Br € Rtels que

v=ai1v1+--+a,vy et w:ﬁlvl+"'+ﬁrl/r-
Or, T(v) = T(w) nous dit que
a1 Tw)+-+a, Tw,)=T@v++a,v,)=TW)=T(w)=T(Brv1++Brv) =1 T(v) +--+ B, T(v;),

ce qui implique que
(@1 =BT () +---+(ay—B)T(v;) =0y

Comme T(%) est libre, on conclut que @1 — 1 =0, ..., @, — B, =0, i.e. a; = B1, ..., &y = B, ce qui implique
v=av1+tapvr=piv++ fros=w.

En conséquence, T est injective.
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On montre I'implication dans (GSG). On suppose que & = {vy,...,U;} € V est une famille génératrice de V et T est
surjective. On va montrer que T (%) = {T(v1),..., T(v;)} € V' est une famille génératrice de V'. Soit v’ € V'. Comme T
est surjective, il existe v € V tel que T(v) = v'. Comme & = {vy,...,V;} € V est une famille génératrice de V, il existe
ai,...,ar € Rtels que

v=a1V1+---+a;vy.
En conséquence,

V=Tw) =T v+ +a,v)=a1T(wn) +-+a,T(v,),

ce qui implique que v’ € VectT (&), i.e. T(F) ={T(v1),..., T(v;)} < V' est une famille génératrice de V.

Finalement, pour prouver la derniére partie, on note que si T est bijective et 9 = {v,..., vy} une base de V, alors
(LIL) et (GSG) nous disent que T'(%) = {T(v1),..., T(vp)} est une base de V'. Réciproquement, étant donné une base
B={v1,...,vp}de V,si T(%B) ={T(v1),..., T(vp)} est une base de V', (GLI) et (GS) nous disent que T est bijective. O

On peut résumer toutes les implications du Théoréme 7.18 de la forme graphique suivante :

GsG) T(F) gén.

7.5 Une base pour Ker(A)

Rappelons que le noyau d'une application T : R"” — R associée a une matrice A de taille m x n est
Ker(T) = Ker(A) = {xe R"| Ax = 0}.

Le noyau étant un sous-espace vectoriel de R” (I'ensemble de départ), il est important de trouver une base
pour le décrire.

Voyons comment le calcul méne en général directement a une base du noyau, sur un exemple concret. Il
est bien important de comprendre la méthode utilisée dans ce cas particulier, car elle sera exploitée dans la
preuve du théoréme énoncé plus bas :

Exemple 7.19. Calculons le noyau Ker(A) de la matrice d’avant,
1 2 0 3 -4
A=[ajaazag,a;]=|0 -2 2 1 1
1 5 -3 1 -5
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Comme on cherche les x tels que Ax = 0, qui est équivalent 2 Ax = 0, on utilise la forme échelonnée réduite
déja calculée,

10 2 0 1
A=|0 1 -1 0 -1
00 0 1 -1

On en déduit la présence de deux variables libres dans le systéme Ax = 0, x3 et x5. Les autres composantes
s’expriment en fonction de x3 = set x5 = ¢:

Xy =-2s—t,
X2 =S+1,
Xqg =1.

Maintenant, écrivons explicitement la dépendance en s et £, en mettant ces variables en évidence :

Ker(A) = {xe R*| Ax = 0}

X1 —2s—t
X2 S+1
=< |lx3]|= s ’ s, teR
X4 t
X5 t
X1 -2 -1
X2 1 1
=< |x3|=s|1]|+¢] 0 ‘s,tEIR
X4 0 1
X5 0 1
Comme les vecteurs
-2 -1
1 1
V] = 1 y Vo = 0
0 1
0 1

sont indépendants et engendrent le noyau, ils forment une base de Ker(A). En particulier, dim(Ker(A4)) =
2. 23

Dans ce dernier exemple, nous avons vu apparaitre deux variables libres, qui ont donné lieu a deux vecteurs
qui formaient directement une base pour le noyau. Il se trouve que ce procédé mene toujours directement
aune base du noyau.

Théoreme 7.20. Pour toute matrice A, la dimension du noyau Ker(A) est égale au nombre de variables
libres apparaissant dans le systeme Ax = 0. (De plus, la méthode directe utilisée dans l'exemple précé-
dent meéne toujours a une base du noyau.)

Preuve: Supposons que A est une matrice de taille m x n a £ variables liées x,,, ..., x,, et que les variables x,, ..., x4, ,
soient libres. Lorsqu’on met ces variables en évidence, comme dans I'exemple ci-dessus, a chacune de ces variables
Xq; Sera associée un vecteur v; € R". Or ces vecteurs possedent la propriété suivante : pour tout 1 < j < n-/,1a i;-
éme composante de v; est un 1, alors que ses composantes ¢/, pour j’ # j, sont nulles. Ceci implique que la famille
{v1,...,vi} estlibre. Puisqu’elle engendre Ker(A), elle forme une base du noyau. Ceci implique que dim(Ker(A)) = k, le
nombre de variables libres. O

Pour clarté, on présente le contenue du résultat précédent sous forme d’algorithme.
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Algorithme pour calculer une base du noyau d’'une matrice A € M, (R) :

(KR.1) calculer la forme échelonnée réduite A de A;

(KR.2) les numéros de colonnes conténant des pivots de A nous donnent les variables liées xp, ..., Xp,
et les autres variables sont libres x4, ..., g, ,;

(KR.3) les coefficients de I'i-eme ligne de A (1 <i< ¥ sont des zéros avec la possible exception de
Ajp, =letAq,...,Aiq, ,, ce quidonnel'équation xp, = —A; g, Xg, — - — Ai g, 1 Xg, 0

(KR.4) aumoyen des équations précédentes on réécrit chaque variable liée x,, en termes de variables
libres pour
X1

€ Ker(A),
Xn

ce qui dit que

X1
= quvl +--.- +an7[vn_[,
Xn
ol
0, sik=qgs avecs# j,
(Vj)k:Z 1, Sikij,

—ﬁi,q]., sik=pj,
pourl<j<n—-¢;
(KR.4) lafamille {vy,...,v,_¢} est une base de Ker(A).

7.6 Une base pour Img(A)

Si T:R" — R™ est une application linéaire définie par une matrice A de taille m x n, on sait que I’ensemble
image Img(A) = Col(A) est un sous-espace vectoriel de R (si T n’est pas surjective, c’est un sous-espace
strict). Dans cette section nous allons voir un moyen de trouver une base pour le décrire, qui est une amé-
lioration de la méthode générale présentée dans la Sous-section 7.2.2.

7.6.1 Extraire une base des colonnes

D’un point de vue calculatoire, 'ensemble image Img(A) se calcule en trouvant tous les y € R” pour lesquels
le systeme
Ax=y

possede au moins une solution. Ensuite, chercher une base pour Img(A) présente a priori une seconde
étape.

Or, on sait que I'ensemble image est 'ensemble de toutes les combinaisons linéaires des colonnes de A :
Img(T) = Img(A) = Col(A) = Vect{a; ---a,},

ou {a; ---a,} désigne 'ensemble de colonnes de A. Comme les colonnes engendrent Img(A), le Théoréme
7.6 nous dit que certaines d’entre elles forment une base de Img(A). Voyons ¢a sur un exemple (un peu trop)
simple.
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Exemple 7.21. Considérons 'application T : R* — R® dont la matrice est donnée par

A=lajazazay] =

S O -

0 0O
0 0O
0 10
Comme a, et a4 sont identiquement nulles, elles ne participent pas a Col(A) :

Col(A) = Vect{a;,ap,as, a4} = Vect{a;,as}.

De plus, a; et asg sont linéairement indépendantes, et donc elles forment une base de I'espace qu’elles en-
gendrent. Donc 28 = (a;,a3) forme une base de Col(A). o

Dans ce dernier exemple, on a pu simplement retirer des colonnes nulles, sachant qu’elles ne contribuent
pas a l’espace Col(A).

Dans la Sous-section 7.2.2 nous avons déja décrit dans le cadre abstrait des espaces vectoriels le processus
qui permet de retirer les vecteurs “superflus” dans une famille qui engendre un sous-espace W, donnant
un algorithme menant a une base de W : on retire un a un les vecteurs qui peuvent étre exprimés comme
combinaisons linéaires des autres, et quand on ne peut plus en retirer, c’est qu’on est en possession d'une
base. Appliquons ce résultat pour calculer 'ensemble image d'une matrice, W = Col(A) :

Exemple 7.22. Considérons I'application linéaire T : R® — R dont la matrice est
1 2 0 3 -4

A=[ajaazag,a;]=|0 -2 2 1 1
1 5 -3 1 -5

A priori,
Col(A) = Vect{a;,ay,as,ay,as}.

Or on remarque que ay = 2a; — ag, et donc le lemme ci-dessus garantit qu’on peut retirer a, sans changer
I'espace engendré :
Col(A) = Vect{a;,az,ay,as}.

On remarque aussi que a5 = —a; + az — ay, et donc
Col(A) = Vect{a;, a3, as}.

Maintenant, on peut remarquer que aj, ag et a4 sont linéairement indépendantes. Comme elles engendrent
Col(A), elles forment donc une base de Col(A).

Remarquons en passant que puisque cette base contient trois vecteurs, dim(Col(A)) = 3, qui est aussi la
dimension de I'’espace d’arrivée. Ceci a pour conséquence que 'application T (x) := Ax est surjective. 3

7.6.2 Une méthode pour identifier les colonnes retirables

Dans le dernier exemple, on a pu trouver des colonnes qui étaient combinaisons linéaires des autres, mais
n'y a-t-il pas un moyen plus méthodique de trouver facilement les colonnes “superflues”, pour ne garder
que celles qui forment une base de Col(A)? La réponse est “oui”, et pour le comprendre il faut reprendre le
procédé de réduction vu au début du cours.

Définition 7.23. Soit A une matrice de taille m x n et soit A sa forme échelonnée réduite. Sila k-eme
colonne de A contient un pivot, on dit que la k-éme colonne de A est une colonne-pivot

Rappelons que les pivots, dans A, sont les coefficients principaux égaux a 1, seuls coefficients non-nuls de
leur colonne :
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0 - 05-1----.0 0 0 0
0 - 00 110 0 0
0 - 0 0 -61:-1----.0 0
0 - 00 00 11 0
0 - 00 0 0 oo 0 eev eer Pl

Lunicité de la forme échelonnée réduite implique que la notion de colonne-pivot, pour A, est bien définie.
Exemple 7.24. Considérons

3 5 -4
A=|-3 -2 4
6 1 -8

Alors les colonnes 1 et 2 de A sont des colonnes-pivot, car aprés réduction, les colonnes 1 et 2 de A sont
celles qui contiennent des pivots :

Théoréme 7.25. Les colonnes-pivot d’'une matrice A forment une base de Img(A). En particulier,
dim(Img(A)) est égale au nombre de colonnes-pivot de A.

Pour démontrer le théoréme, nous aurons besoin du résultat suivant, qui dit que les dépendances linéaires
existant entre des colonnes d’'une matrice sont les mémes que celles existant entre les colonnes correspon-
dantes de sa réduite :

Lemme 7.26. Soit A=[a;---a;] € M, (R), et soit F = {a;,,...,a;,} S {a1, -+ ,a,} un sous-ensemble de
colonnes de A. Si A= [r;---1,] est la forme échelonnée réduite de A, et si F = {r;,,...,r;,} S {ry, -+, 1y}
est le sous-ensemble de colonnes de A correspondant a %, alors & est libre (resp., génératrice de Col(A))
si et seulement si & est libre (resp., génératrice de Col(A)).
Preuve: Si les colonnes considérées sont iy, ..., iz, alors
F ={a;,...,a;,},

F ={ri},..,Ti,}.

Comme A est la forme échelonnée réduite de A4, il existe une matrice inversible E € M mxmR), donnée par un produit
de matrices élémentaires, telle que A = EA (voir Théoréme 5.27). Alors,

[r) - ry) = A=EA=E[a; --- a,] = [(Ea)) --- (Fa,)],

i.e.r; = Ea; pour tout entier 1 < i < n. Comme E estinversible, d’apresle Théoréme 7.18 in Section 7.4, & = {a;,,...,a;,}
est libre (resp., génératrice de Col(A)) si et seulement si

F =E(¥) = {Ea,,,...,Ea;,} = {r;,...,1;,}
est libre (resp., génératrice de Col(A)). Ceci démontre le lemme. O

Exemple 7.27. Les colonnes 1, 3 et 8 de A sont dépendantes si et seulement si les colonnes 1, 3 et 8 de A
sont dépendantes. 3
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Une conséquence directe du résultat ci-dessus :

Proposition 7.28. Un sous-ensemble 28 = {a;,,...,a;,} S {ai,...,a,} des colonnes de A forme une base

de Col(A) si et seulement si le sous-ensemble correspondant % = {r;,,...,r;,} S {r1,...,r,} de colonnes
de la forme échelonnée réduite A de A forme une base de Col(A).

Exemple 7.29. Soit A une matrice de taille 7 x 11. Les colonnes 2, 5 et 8 de A forment une base de Col(A) si
et seulement si les colonnes 2, 5 et 8 de A forment une base de Col(A). >

Nous pouvons maintenant prouver le théoréme :
Preuve: Commencons par deux remarques concernant la forme échelonnée réduite A :

(r1) dans A4, les colonnes contenant des pivots sont linéairement indépendantes, puisqu’elles ont toutes un seul
coefficient non nul (le pivot “1”), chaque fois situé a une hauteur différente;

(r2) dans A, toute colonne qui ne contient pas de pivot peut s’écrire comme combinaison linéaire des colonnes qui
contiennent un pivot, et qui sont situées a sa gauche.

Par conséquent, le lemme énoncé plus haut garantit que les colonnes de A ne contenant pas de pivot s’écrivent
comme des combinaison linéaires des colonnes de A contenant de pivot, et les colonnes contenant un pivot forment
une base de Col(A). Par la proposition précédente, ceci implique que les colonnes-pivot de A forment une base de
Col(A). O

Voyons comment utiliser le théoréme pour obtenir plus facilement une base de Col(A) :

Exemple 7.30. Considérons la méme matrice que celle du début de cette section :

1 2 0 3 -4
A:[a1a2a3a4,a5]= 0o -2 2 1 1
1 5 -3 1 -5
Apreés réduction,
1 0 2 0 1
A=|0 1 -1 0 -1
0 0 0 1 -1

Comme les colonnes 1,2 et 4 de A sont celles contenant des pivots, on conclut que 28 = {a;,ap, a4} est une
base de Col(A). En particulier, dim(Img(A)) = 3. 3

Seulement pour clarté on présente le résultat suivant, dont on aura besoin dans la suite.

Corollaire 7.31. Soit 28 = {a;,...,a;,} < {ai,...,a,} l'ensemble de colonnes-pivot de A € M, (R).
Alors, Vect{a;, ..., a;, ,} = Vectfay,...,a;,_1} pour toutr1 < j < l.

Preuve: Si a;;_; n'est pas une colonne-pivot de A, I'énoncé du corollaire est seulement une fagon équivalente de
réécrire la remarque (r2) dans la preuve du théoreme précédent. Sia;;_; est une colonne-pivotde A, alorsa;; 1 =a;_,.
Dans ce cas, la remarque (r2) de la preuve du théoreme précédent nous dit aussi que

Vect{a,-l,...,a,-j_l} = Vect{al,...,a,-j_l} = Vect{al,...,a,'j_l}.
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7.7 LeThéoréme du Rang

7.7.1 Le théoreme du rang pour des applications linéaires

Théoreéme 7.32. Soient VetV' deux espaces vectoriels de dimensions finies, et soit T : V — V' une
application linéaire. Alors
dim (Ker(7)) + dim (Img(7)) = dim(V).

Preuve: Soit n = dim(V), et soit p = dim(Ker(T)). Comme Ker(7) est un sous-espace vectoriel de V, on a forcément
que p < n. Ce que 'on doit donc montrer, c’est que dim(Img(7)) = n— p.

Si p=mn,onalmg(T) = {0y}, et donc dim(Img(7T)) = 0, et le théoreme est démontré.

Si p < n, posons r := n— p, qui est par définition plus grand ou égal a 1. Nous allons montrer que dim(Img(7)) =r.
Pour ce faire, commengons par considérer une base %Bxer () de Ker(T) :

%Ker(T) = {Ul,...,l/p}.

Puisque p < n, Bxer(r) West pas une base de V. Mais on peut malgré tout la compléter en rajoutant n— p = r vecteurs,
afin d’obtenir une base de V' :
By ={v1,..., Up, W1, ..., Wr}.

Montrons maintenant que la famille
B ={T(wy),..., T(wy)}

est une base de Img(T).
1) 98’ estlibre. En effet, considérons une combinaison linéaire nulle,

a1 T(wy)+--+a,T(wy) =0y .
On va montrer que a; =--- = a, = 0. Par la linéarité de T, on peut écrire cette derniere comme
T(aiwy+---+a,w;) =0y,

qui indique que le vecteur a; wy +- -+ a, w, est dans Ker(7). On peut donc le décomposer dans la base PBer(r) :

aywy+-tarwr=v+. Ay,
Or, on peut récrire cette derniére comme

Alvl+.../1pvp—a1w1—---—arw, =0y.

Comme By = {vy,...,Vp, w1,..., W} estune base de V, on a donc que

M==Ap=-ay=-+=-a,=0.

Ainsi, a; =--- = a, =0, ce qui démontre I'affirmation.
2) %' engendre Img(T). En effet, considérons un v’ € Img(T), c’est-a-dire un élément v’ € V' pour lequel il existe
un v e V tel que v' = T(v). Puisque I'on peut décomposer v dans la base %y,

v=Avi o+ AU A A+ + Apwy,
on a donc que
v'=T()
=TAvr+-+ A v+ AW+ + A wp)
=M T+ + A TWp) + A1 T(wy) + -+ 1, T(wp)
=Ara T(wy) +--+ A, T(wp),

ot 'on a utilisé dans la derniére ligne que vy € Ker(T), et donc T (v) = 0. La derniére identité implique que %’
engendre bien Img(7).

Ainsi, %8’ est une base de Img(T), et comme elle contient r éléments, on a que dim(Img(T)) = r. On a donc bien que
dim (Ker(7)) + dim (Img(T)) = p+r
=p+(n-p) =n=dim(V).
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7.7.2 Une version alternative du Théoréme du Rang : le cas des matrices

Dans cette sous-section on va donner une autre facon de prouver le Théoreme du Rang. Considérons une
matrice A de taille m x n et 'application linéaire associée, T(x) = Ax:

T

V17

R” R™

On a déja dit que
o Ker(A) est un sous-espace vectoriel de R”,
o Img(A) est un sous-espace vectoriel de R".

Exemple 7.33. Considérons I'application linéaire T : R®> — R® rencontrée dans les sections précédentes,
dont la matrice est

1 2 0 3 -4
A=10 -2 2 1 1],
1 5 -3 1 -5
et dont la forme échelonnée réduite est
1 0 2 0 1
A=l0 1 -1 0 -1
0O 0 0 1 -1

Rappelons ce que nous avons déja dit :

e Les colonnes 1,2,4 de A contiennent des pivots, ce qui implique que les colonnes 1,2,4 de A sont des
colonnes-pivot et forment une base de Img(A), ce qui implique que

dim (Img(A4)) = 3.
o Lesvariables x3, x5 sont libres, ce qui implique (voir théoreme de la section précédente) que
dim (Ker(4)) = 2.

Par conséquent,
dim (Ker(A4)) + dim (Img(A)) =2+3 =5.

Ici, “5” est également la dimension de I'espace de départ (R°), qui est également égal au nombre de colonnes
de A. 3

Ce que nous venons d’observer est en fait vrai pour toute matrice : la somme des dimensions de ’ensemble
image et du noyau est toujours égale a la dimension de I'espace de départ. C’est le Théoréme du rang,
énonce pour des application linéaires données sous la forme de matrices. Pour le méme résultat, mais dé-
montré dans le cadre des espaces vectoriels, voir le Théoréme 7.32.

Théoreéme 7.34. Soit A une matrice de taille m x n. Alors

dim (Ker(A)) + dim (Img(A)) = n.
Preuve: La structure générale d'une matrice réduite sera toujours du type suivant :
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n
0 - 011 -~ 0 0 0 0
0 - 00 ---11 0 0 0
| .
0 - 00 011 -~ 0 0
0 - 0 0 00 -1 .0 [ m
LR e
0 - 00 0 0 0 V1

TR N N NN N N N T N S N
L L LP L PP L P L L P L L

+ Le nombre de colonnes contenant un pivot (au nombre de 5 en bleu sur 'image) donne le nombre d’éléments
contenus dans une base de Img(A), et donc est égal a dim(Img(A)).

« Ensuite toutes les autres colonnes (au nombre de 9 en rouge sur I'image) représentent des variables libres, et
donnent donc la dimension du noyau, dim(Ker(A)). Comme il y a en tout n colonnes (n = 14 sur 'image), on a
bien

dim (Img(A)) + dim (Ker(4)) = n.

Le terme “rang” doit encore étre défini:

Définition 7.35. Soit A une matrice de taille m x n. Le rang de A est défini comme la dimension de
son ensemble image :
rang(A) := dim (Img(A)).

Parfois, le rang est aussi noté rg(A) (en anglais on écrit plutét rank(A)).
Si A est une matrice de taille m x n, alors

1) rang(A) < m, car I'ensemble image de A est un sous-espace vectoriel de R, donc sa dimension est
au plus égale a m;

2) rang(A) < n, car la dimension de 'ensemble image de A est au plus égale au nombre de colonnes de
A.

Par conséquent,
rang(A) < min{m, n}.

Informel 7.36. Plus le rang d'une matrice de taille m x n est grand, plus cette matrice définit une
application qui “remplit” son ensemble d’arrivée. En particulier, si I'application est surjective, alors
son rang vaut m.

Voyons quelques exemples d'utilisation simple du théoréme du rang.

Exemple 7.37. Soit A une matrice de taille 6 x 9. Alors Ker(A) a dimension au moins égale a 3. En effet,
rang(A) < min{6,9} = 6, et donc par le théoreme du rang,

dim (Ker(A)) =9 -rang(A) >9-6=3.
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7.7.3 Une application : 'espace engendré par les lignes d’'une matrice

Nous avons déja souvent décrit un matrice de taille m x n a ’aide de ses colonnes a; € R :
A=la;---a,].
Mais on peut aussi aussi la décrire a I'aide de ses lignes,

T
[l
A=| |,

m

ou/ty,..., ¢, sont des vecteurs de R”. En d’autres termes, les lignes de A sont les colonnes de AT

Al =101---0,).
1 0 2 S (2 A T
Exemple7.38.A—(_4 3 5) peutsecrlreA—(ézT),ou
1 -4
€1= 0 , €2= 3
2 5

Définition 7.39. Soit A une matrice de taille m x n, dont les lignes sont ¢7,...,¢% . Alors I'espace-

ligne de A est le sous-espace vectoriel de R” engendré par ses lignes :

Lgn(A) :=Vect{ly,...,n}.

Lemme 7.40. Si A et B sont deux matrices équivalentes selon les lignes (i.e., on peut passer de l'une a

Pautre a l'aide d’'un nombre fini d'opérations élémentaires sur les lignes), alors

Lgn(A) = Lgn(B).

Preuve: Supposons que B peut s’obtenir par une suite d’opérations élémentaires sur les lignes. Alors toute combi-
naison linéaire des lignes de B est aussi une combinaison linéaire des lignes de A. Ceci implique Lgn(B) < Lgn(A). Le

méme argument montre que Lgn(A) < Lgn(B), ce qui entraine Lgn(A) = Lgn(B).

Corollaire 7.41. Si A est la forme échelonnée réduite de A, alors les lignes de A contenant un pivot

(s’ily en a) forment une base de1.gn(A) et delLgn(A).

Preuve: Regardons A :

0 0i1 --- 0 0 0 0
0 00--’:_10 0 0
0 0 0 011 0 0
0 0 0 00 -1 .0
LR =
0 0 0 0 0 0 a1
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Les lignes contenant un pivot possédent des “1” a des emplacements différents, précédés de “0” : elles sont donc
clairement indépendantes. Puisqu’elles engendrent évidemment Lgn(A), elles forment une base de Lgn(A).

Par le lemme précédent, toute famille de vecteurs qui forme une base de Lgn(A) forme aussi une base de Lgn(A4). O

Intéressons-nous maintenant a la dimension de I’espace engendré par les lignes. Par définition,
dim (Lgn(A)) = rang(A”).

Le résultat suivant montre que les espaces engendrés par les colonnes et les lignes d'une matrice quel-
conque ont toujours méme dimension :

Théoreme 7.42. Si A est une matrice quelconque,

rang(A) = rang(AT).

Preuve: Soit A la forme échelonnée réduite de A. La chose importante 2 remarquer est que dans A, le nombre de
colonnes contenant un pivot est égal au nombre de lignes non nulles. C’est plus clair sur un dessin :

0 - 011 --- 0 0 0 0
0 - 00 ---11 0 0 0
| .
0 - 00 011 0 0
0 - 0 0 00 -1 .0
LR e
0 - 00 00 0 11
T T7 T T
P PP P p

On peut donc écrire

rang(A) = nombre de colonnes-pivot de A
= nombre de colonnes contenant un pivot dans A
= nombre de lignes non-nulles dans A
=dim (Lgn(ﬁ))
= dim (Lgn(4))
= rang(AT) .

Dans la quatrieme ligne, on a utilisé le corollaire ci-dessus. Dans la cinquiéme ligne, on a utilisé le lemme du dessus.
O

7.8 Résumé du chapitre sur les bases, la dimension et le Théoreme du Rang

BASED’'UNEV V:

B =1{v1,0,...,vp} =V BASE = % FAMILLE LIBRE ET % FAMILLE GENERATRICE DE V

v~

= V=Vect{vy,va,...,Up}
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EXEMPLES DE BASES :
1\ (o 0
o] |1 0 5
$ 1.1,---,]1.|  — BASEDER", {1,£,¢%,---,t"} — BASEDEP,,
o/ \o 1
—~— ~~
€] € €,
10 e 0 00 - 1YfOo 0O - 0YfO O -~ 0 00 -0
00 ...() 00...010...001...0 00...1
< . PR I | . | . [N I )
0 0 00 - 0/\0 0O - 0/l00 -+ 0 00 -0
0 .. 0 e 0 00 --- 0
0 .. 0 - 0 00 --- 0
Y y | . - BASEDE men(R),
0 00 1
Eml Emz E;':yﬂ
EXTRACTION D’UNE BASE A PARTIR D’UNE FAMILLE GENERATRICE & = {vy,..., v}
(EXT.1) CHERCHER v; € & CL DES AUTRES }_BASE@ZQ\{U.,,_,}QL@
(EXT.2) RETIRER v; E’T RECOMMENCER, SINON S’ARRETER I

DIMENSION dim(V) of EV V' :

[ TOUTES LES BASES D’UN EV V ONT MEME QUANTITE D’ELEMENTS ] (VOIR THM. 7.9)
|

[ dim(V) := QUANTITE D’ELEMENTS D’UNE BASE DE V ]
COMPLETION D’UNE FAMILLE LIBRE EN UNE BASE :

| #={v,...,v,} S VLIBRE=3v,,,...,v, TELSQUE B ={vy,..., vy, Vrs1,..., Uy} BASE | (VOIR THM 7.16)

LIEN ENTRE FAMILLES LIBRES, GENERATRICES, INJECTIVITE ET SURJECTIVITE :

T:V—V'AL

F={vy,...,vpt €V

(VOIRTHM. 7.18)

GsG) T(F) gén.

148
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BASE DU NOYAU D’UNE MATRICE A € My, (R)

(1) A% ...%% A ——(2) | PIVOTS DE A DONNENT VAR LIEES: X,,,..., Xp, |= VARLIBRES: x4, ..., X, ,
FER
——(3) | i-EME LIGNE DE ADONNE xp, = —A; 4, X, =+~ A g, ,Xq, ,
X1
——(4) | REMPLACER VAR LIEES PAR VAR LIBRES DANS | : | € Ker(A)
Xn
X1 0, sik=qs, avecs# j,
—»@ S =xg it +xg,  Vaer, OU (V) :=1 1, sik=gqj, A<j<n-0
Xn _A/i,qjv Sik:pi»

——(6) [ v1,...,Va_¢} BASE DE Ker(A) | (VOIR THM 7.20)

BASE DE LIMAGE D’UNE MATRICE A € M, x,(R) :

COLONNE-PIVOT DE A € M;;;x»(R) := COLONNE DE A DONT FER DE A CONTIENT PIVOT
l
{COLONNES-PIVOT DE A€M, « n([R)} = BASE DE Img(A) [(VOIR THM 7.25)

ESPACE-COLONNE D’'UNE MATRICE A:

Col(A) := Vect{ COLONNES DEA } —— [ Col(A) = Img(A)

THEOREME DU RANG :

T:V — V' AL = dim(Ker(T)) + dim (Img(7)) = dim(V) |(VOIR THM 7.32)
S~————
=:rrang(7T)

ou

A€ Mypxpn(R) = dim (Ker(4)) + dim (Img(A)) = n | (VOIR THM 7.34)
(A4)
=rrang

ESPACE-LIGNES D’'UNE MATRICE A:

Lgn(A) := Vect{ LIGNESDEA } —— | Lgn(A) =Lgn( A )
FER

RANG DE LA TRANSPOSEE D’UNE MATRICE A:

rang(A) = rang(AT) (VOIR THM 7.42)
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Chapitre 8

Représentations en coordonnées et
matricielles

8.1 Introduction

Dans la pratique, I'étude d'un probléme impliquant un espace vectoriel se fait en choisissant une base de
celui-ci. Dans le cas de dimension finie 7, cela nous permet d’identifier I'espace vectoriel avec R", a partir
des l'application donnée par le vecteur de coordonnées relatives a la base choisie. De la méme facon, le
choix de bases nous permet d’identifier les applications linéaires et matrices, au moyen de la représentation
matricielle relatives aux bases choisies.

Bien-siir, un probléme peut s’énoncer naturellement dans une base 98, mais étre plus facilement soluble
dans une autre base 8’, mieux adaptée a la résolution du probléme. On aura donc souvent recours a un
changement de base.

Nous aborderons donc les coordonnées des vecteurs relatives a des bases, les représentations des appli-
cations linéaires relatives a des bases et le changement de base. Les point fondamentaux de ce chapitre
seront :

1) d’abord, nous considérerons le probléeme de savoir comment les coordonnées d'un vecteur se trans-
forment quand on change de base dans un espace vectoriel;

2) ensuite, nous verrons comment la matrice d'une application linéaire se transforme lorsqu’on change
de base dans les espaces vectoriels de départ et d’arrivée.

Nous présenterons chaque méthode dans un espace vectoriel quelconque, puis I'utiliserons dans diverses
situations, en particulier pour les applications T : R" — R™.

~

Objectifs de ce chapitre

Ala fin de ce chapitre vous devriez étre capable de

(0.1) calculer les coordonnées d'un vecteur relatives a une base;

(0.2) calculer la représentation matricielle d'une application linéaire relative a deux bases;
(0.3) calculer la matrice de passage relative a deux bases;

(0.4) utiliser les matrices de passage pour calculer les coordonnées d'un vecteur;

(0.5) utiliser la formule de changement de base pour calculer des représentations relatives a des
bases différentes.
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8.2. Coordonnées d’un vecteur relatives a une base

Nouveau vocabulaire dans ce chapitre

o coordonnées tion linéaire relative a deux bases
o dimension
» représentation matricielle d'une applica- e matrice de passage

8.2 Coordonnées d’'un vecteur relatives a une base

Soit V un espace vectoriel et % = {vy, v2,...,V,} une base. Lavantage d’'une base est qu’elle fournit une
maniere simple et univoque de représenter les vecteurs de V, comme le résultat suivant le montre.

Lemme 8.1. Soit V un espace vectoriel et B = {v1, vy, ..., vp} S V une famille finie de vecteurs. Alors,
9 est une base de V si et seulement pour tout vecteur v € V il existe des uniques scalaires ay, ..., a, € R
tels que

v=aiv e+ aplp. (8.1)

Preuve: On suppose que 98 est une base de V. Alors, comme 2 est une famille génératrice de V, étant donné v e V il
existe des scalaires ay,...,a, € Rtels que
V= a1V1+"'+apl/p.

En plus, on affirme que ces scalaires sont uniques. En effet, s'il existe aussi a’l, el a;, e R tels que
= ! + oo + !
v=ayv; a,Up.
en soustrayant les derniéres expressions, on obtient que
! !
Oy = (a1 —a))vi+--+(ap—a,)vp.

Comme 2 est libre, ceci entraine
I _ _ I _
a;—a; —--~—afp—ap—0,
etdonca;=a),..., ap= a;,.
Réciproquement, on suppose que tout vecteur v € V s’écrit comme combinaison linéaire unique des éléments de 2.
A fortiori, 98 est une famille génératrice de V, vu que tout v € V s’écrit comme combinaison linéaire des éléments de

2. En outre, on affirme que £ est une famille libre. En effet, on suppose que
Oy =pfrv1+-+Ppvp.
Or, comme le vecteur nul 0y doit s’écrire comme combinaison linéaire unique des éléments de 93, et
Oy =0.v1+---+0.vp,
on conclut que 1 =--- = f, = 0, comme on voulait démontrer. O
Définition 8.2. Les scalaires a;, ..., @) définis dans (8.1) sont les coordonnées (ou composantes) de

v relatives a la base 2. En plus, on peut stocker ces nombres dans le vecteur de coordonnées (ou
composantes) de v relatives a la base 28 défini par
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Informel 8.3. Attention : les composantes sont des nombres que ’on peut utiliser pour décrire un
vecteur, mais le vecteur existait, avant qu’'on ne connaisse ses composantes, avant méme qu’on ne
parle de base!

D’un c6té, un vecteur v € V et un objet abstrait. De l'autre, sa représentation dans la base 28, a I'aide des
nombres ay, ..., @p, en fait un objet avec lequel on peut faire des calculs.

Remarque 8.4. L' ordre dans lequel on stocke les ay, ..., @, est important. En effet, la k-éme composante a
est associée au k-éme vecteur de la base, vg. Il est donc important, quand on introduit une base, de fixer
l'ordre de ses vecteurs. Donc pour remarquer que les vecteurs de 98 sont ordonnés, on écrit parfois

'% = (Ul)"'l Up)y
qui est une famille ordonnée, au lieu de
B ={v1,...,Vp}.

<o

Insistons sur le fait que le vecteur [v]g € RP contient exactement la méme information que v (il représente
V), puisque v peut toujours étre reconstruit exactement a ’aide des composantes de [v]g :

ayvyt--t+aplp="v.

Ceci implique que finalement, deés qu’on est en possession d'une base dans un sous-espace vectoriel, aussi
abstrait soit-il, ses vecteurs peuvent étre traités comme des vecteurs de R”!

Exemple 8.5. On a vu dans 'Exemple 7.2 que la famille %, = {ey,...,e,} est bien une base de R”, appelée
base canonique de R”. On voit bien que
(X] B, =X,

pour tout x € R”, ©

Exemple 8.6. On a vu dans 'Exemple 7.3 que la famille 9 = {v;,v,} donnée par

wefi) =)

est une base de V = R?. Largument pour montrer que 9 dans I'Exemple 7.3 nous donne aussi les coordon-
nées de tout x € R?. En effet, par définition,
a1
Xlz = ( )

ap

si et seulement si
X=a1V] +asvy.

Sil’on nome x1, x, les composantes de x, alors cette derniéere identité devient
X1l _ a 2 iy -7
x) M1 3 )

2 — Tax = Xxi,
(*){ 1 2 1

qui n’est autre que

ay + 3a» X2.

Apres Ly — Ly — %LL

2a; — Tas = X,
() _ 1
5 Q2 = .X'Z—le.
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8.3. Représentation matricielle d'une application linéaire relative a deux bases

En procédant “du bas vers le haut”, on trouve

_3 7 __1 2
a1—§x1+ﬁx2, ag——ﬁx1+ﬁx2.
En conséquence,
3 A
x|z = 13x1+13x2
B L+ 2x)
13417 1342
pour tout x € R?, o

Exemple 8.7. On a montré dans 'Exemple 7.4 que la famille es %B.an = {€g, €1,..., e} P, est une base de
P,., appelée base canonique de P,,. Avec la base canonique %.an, I'application [-]g associe au polyndme p
du dessus le vecteur de R"*! défini par
ao
ai
(plez =

an

On peut alors manipuler le polyndme p al’aide de sa représentation sous la forme [p] g, exactement comme
si ¢’était un vecteur de R*!! 3

On peut aussi dire plus sur 'application fondamentale :

Lemme 8.8 (Linéarité et inversibilité de I'application “composantes”). Soir % = {vy,...,v,} une
base d’'un espace vectoriel V. Lapplication [l g, qui associe a v le vecteur deRP formé des composantes
de v relatives a la baseZ8,

[laz:V—-RP
v [Vig
est linéaire et bijective.
Preuve: Soient v, w € V et A € R. On suppose que
a B
vlg=1 : et Wwlg=1| " |
ap Bp

e v=a1v1+- - +apvpetw=Prv;+---+ vy Alors,
vHAw=(avy+- -+ apvp) + ABrvr +-+ Bprp) = (@1 + AP VL + -+ (@p + ABp) Uy,

ce qui nous dit que
a)+ Aﬁl ay ﬁl
[v+Awlg = =] |+A] ¢ | =vig+AMwlg.
ap+ABp ap By
En conséquence, I'application [-]g : V — RP est linéaire. Pour montrer que cette application linéaire est bijective, on

utilise la derniére partie du Théoréme 7.18. En effet, on voit bien que I'image de la base 28 par I'application [-]g: V —
R” est la base canonique %Bcan de R”, ce qui nous dit que [-]g : V — RP est bijective. O

8.3 Représentation matricielle d’'une application linéaire relative a deux bases

Considérons deux espaces vectoriels, V et V', ainsi qu'une application linéaire T: V — V.
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T
v — 4

Supposons maintenant que ces deux espaces vectoriels sont tous deux de dimension finie, chacun muni
d’une base :

o B={v1,...,vp} estune base de V,

o B ={v},...,v),} estune base de V'.

Nous allons voir maintenant comment l'utilisation de ces bases va permettre de ramener I'étude de T a
I’étude d’une application linéaire de R” dans R™.

Définition 8.9. La matrice (ou représentation matricielle) de 'application linéaire T: V — V' re-
lative aux bases 2 = {vy,..., v} (départ) et B’ = {v],...,v},} (arrivée) est la matrice de taille m x p
définie par

[Tlop:= [[T@D] g [TWp)] g

Dansle cas V =V’ et 8 = %', on écrira plutot [T]g au lieu de [T]g—_g.

Théoréme 8.10. Soient V et V' deux espaces vectoriels, avec des bases % et B’', respectivement. On
suppose que dim(V) = n et dim(V') = m. Soit T : V — V' une application linéaire. Alors,

([T g =Tla—zlVs (8.2)

pour tout v € V. En plus, [T]g —g est 'unique matrice qui satisfait (8.2), i.e. si A est une matrice de
taille m x n telle que [T (v)] @ = Alvlg pour toutveV, alors A= [Tz —.

Preuve: Etant donne v € V, décomposons-le sur % :
v=a1v1+---t+aptp,
ce qui permet de décrire v univoquement a I’aide du vecteur de R” qui lui est associé :

a)

(V] =
ap

Ensuite, regardons I'image de v par T. Puisque T est linéaire,

Tw)=T(av1+---+apvp)
=aT()+---+apT(vy).

En utilisant ensuite la linéarité de [-] &',
[T(V)]@r = [al T(Vl) +eee+ ap T(Vp)]@r

=a[Tw)] g+ +ap[TWp)]y .
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Cette derniere ligne est une combinaison linéaire des vecteurs [T (v1)lgr, -, [T (vp)lge de R™, on peut donc l'inter-
préter comme un produit d’'une matrice par le vecteur [v]g :

a
[TW)] g = ar[TWD)] g+ + ap[T(vp)] g = [[T(Vl)]@/"'[T(Vp)]@/]
S mxn ’ ap
——
=[vlg

=[lT] g [Twp)] g | 101,

comme on voulait démontrer.
Finalement, pour montrer 'unicité, il suffit de noter que A[v;] = Ae; est la i-éme colonne de A pour tout 1 < i <
n. O

Ce que nous avons fait ci-dessus peut se résumer dans le shéma suivant :

[l

ou, sinon, par la commutativité du rectangle

1% s V!

['a (g

[T s

RrRP R
En utilisant les bases 28 et %', ainsi que les applications [-] g et [-] s qui leur sont associées, nous avons pu
prendre I'application

v—T(v)

qui est abstraite, et nous ’avons rendue plus concrete, en la représentant a ’aide d'une matrice : on peut
maintenant la voir comme une application linéaire de R” dans R", dont la matrice est [T]g ¢ :

aB > T = Ta'u_o’ 7/
Wz — [TW)] g4 =Tz —zlvlz

———
eRr cRm
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En conséquence, 'étude de T peut se réduire a celle de la matrice [T]g'.—g.

Point clé : Matrice d’'une application linéaire et vecteurs de coordonnées

Pour une application linéaire T: V — V', et bases 2 de V et &' de V', on a I'identité fondamentale

[T(v)]ggr = [T]%“—@ [U]@

pour tout ve V, et [T] g g est'unique matrice qui vérifie cette propriété pour tout ve V.

Exemple 8.11. Considérons 'application T : P3 — P, définie ainsi : pour p € P3,
T(p)=p',
i.e. T(p)(t) := p'(t) pour tout 7 € R, o1 p'(¢) est la dérivée de p par rapport a t.
Cette application est clairement linéaire puisque
T(ap+pBq) =(ap+pq) =ap'+pq =aT(p)+pT(q).

Calculons maintenant la matrice associée a cette application relative
¢ alabase canonique %B.ay = {ey, €1, €2, e3} dans Ps, et
« alabase canonique 8., = {eo, e1, e2} dans P,.

Par ce qu’on a dit plus haut, cette matrice sera

an an

(T epty st = || TC€0)] g, [TC€0] gy, [T(e2)] g, [T(e0)] 5, |-

Comme

=1, e(=t, e(d=t, ed=t,
ona

ep(=0, (=1, e(t)=2t, e4(t)=3¢,
et donc

T(ep) =0, T(e1) =ep, T(ep) =2e, T(e3) =3ey,
c’est-a-dire
T(eg) =0eg +0eq +0ey,
T(e1) =1eg+0e; +0ey,

T(ep) =0eg+2e;1 +0ey,
T(e3) =0ep+0e; +3e,.

On peut donc écrire

[T(eO)]ch’:an ’ [T(el)]%éan

w oo o o -

SO O O O

[T(eZ)]@éan ’ [T(e3)]%éan
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La matrice qui représente T relative a ce choix de bases est donc

01 00
[T]@(,:an‘_@can =10 0 20
0 0 0 3

Prenons par exemple le polynéme p € P3 défini par
p(t)=2+12-51,

pour lequel

Son image par T est T(p) € P», dont le vecteur de coordonnées relatives a %éan est donnée par

Il
\S}

01 00 0
[T(p)]%éan = [T]‘%éan‘_%can [p]%can =10 0 2 0 1
0 0 0 3 -15

qui est bien la décomposition de
pl(H)=@2+t*-563) =2t—15¢°

relative a %8/ :

can °
0
[pl]%can = 2
-15
©
Exemple 8.12. Considérons I'application
T:Py — R
p(0) )
— T = ,

ou p' (1) désigne la dérivée de p(r) par rapport a t. Remarquons que T est linéaire, puisque pour tous p, g €
P, et tout scalaires a, 3,

_ [ ap(0)+pq(0)
rap+p0 = (4 p)

_(p©)
- “(p’(l)

q(O)) _
+p (q,(l) =aT(p)+BT(q).

Puisqu’on connait la base canonique %Bcan = {e, €1, €2} dans P, et la base canonique 9, = {e;, e»} dans R2

(on écrit %éan juste pour la distinguer de I'autre, mais c’est bien la base canonique de R?), on peut calculer
la matrice de taille 2 x 3 qui représente T relative a ces bases :

an

(Tt B = | [ TC00) ] g, [T0)] 5, [T(€)] 5 |-
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Comme ey(t) =1, e1(t) =t, ex(t) = tz, ona

(eo(@) (1
T(EO)_(%(I))_ 0),

(e (@) _ (0
riew=(29)-().

_ (e2(0)) _ (0
T(ez)—(e,z(l))— 2),

etdonc
1 00
[T]%éan‘_%can - (0 1 2) °
Par exemple, prenons le polynéme p(t) =9 —2¢ + 7t2, et calculons son image. Alors
[T(P)] gy, = [Tzt B [P) B
9

(1 0 0) (9)

= 2| = ,

0 1 2| 12

p(O))

P o

On présente les propriétés fondamentales des représentations matricielles des applications linéaires.

qui est bien (

Proposition 8.13. Soient V, V' et V" des espaces vectoriels de dimension finie et soient %8, B' et 8"
des bases de V, V' et V", respectivement. Soient T : V — V' et S: V' — V" des applications linéaires.
Alors,

(COM) [SoTlmr—z =[Sl -z T —%;
(D) lidv]g—2 = Idim), oitidy : V — V désigne l'application identité de V, qui associeve V aveV;

(IN]) pourveV,ona
veKer(T) < [vlg € Ker ([Tl —2),

ce quiimplique que T est injective si et seulement si la matrice [T] g — est injective;

(SUR) pourv'eV',ona
v eImg(T) & [V € Img([T]w—2),

ce quiimplique que T est surjective si et seulement si la matrice [T] g —g est surjective;
(INV) T est bijective si et seulement si [T g est une matrice inversible, et dans ce cas [T];é},{_ 2=
(T g

Preuve: On montre d’abord la premieére identité. Pour le faire, étant donné v € V, on a
[So Tl (vl = [(So D) 50 = [S(T@)] _, = 1Sl [T)] 3 = (Sl [TV s ()5

Par I'unicité de la représentation matricielle dans le Théoreme 8.10, on conclut que [So Tl gr. g = [Slggr ' [Tz — .-
Pour montrer la deuxieme identité, noter que

Laimv) [V = [Vl = [idv (1) ] 4 = lidv]z—z (Vs

pour tout v € V. Lunicité de la représentation matricielle dans le Théoréme 8.10 nous dit que [idv]z—2 = Igimv)-
On prouve maintenant I'item (INJ). On suppose que dim(V) = n et dim(V') = m. Alors,

veKer(T) & T(v) =0y & [T(V)] 4 =0
& [Tlg—zlvlg=0< (vigeKer([Tlp—a),
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ot 'on a utilisé dans la deuxieme équivalence que [-]g : V' — R™ est bijective, et dans dans la troisieme équivalence
I'identité fondamentale

[T(W)] g =Tl —zlvla

pour v € V. La derniére partie de I'item (INJ) suit du fait qu'une application linéaire est injective si et seulement si son
noyau est réduit a zéro (voir Lemme 4.43).
On montre I'item (SUR). On suppose que dim(V) = n et dim(V’) = m. Alors,

v' € Img(T) < il existe ve V tel que T(v) = v’ il existe ve V tel que [T(v)] 4 = [V] g
silexiste ve Vtelque [Tlg —gzlvlig =[V]g
< il existe x € R" tel que [T]gr—gx = [V < (Vg € Img([T—2),

ol 'on a utilisé dans la deuxieme équivalence que [-]g : V' — R™ est bijective, dans dans la troisieme équivalence
I'identité fondamentale

[T(W)] g =Tl —zlvla

pour v € V, et dans la quatrieme équivalence que [-]g : V — R” est bijective. La derniere partie de I'item (SUR) suit
directement de ce que I'on a montré précédemment et du fait que [-] g : V' — R™ est bijective.
On va finalement prouver l'item (INV). On suppose que T est bijective et on montrera que [T]g . est inversible et
[T];/BI,H 2= [T~!%_g . Comme T est bijective, soit T~! 'application réciproque. Alors, les deux premiers items nous
disent que

Liimv) = lidv]z—2 =T o Tlg-2 =T g 2Tz 2

et

Liimv) = lidylgea = [ToT g g =Tg—z(T g _gu.

En conséquence, [T] 4. g estinversible et [T] ;31,_ 2= (T7Y 2z Réciproquement, si [T] g . g €st une matrice inver-
sible, alors elle est injective et surjective, et, d’apres les items (INJ) et (SUR), T est injective et surjective, i.e. bijective,
comme on voulait démontrer. O

Nous reviendrons plus en profondeur sur la représentation d'une application linéaire a I’aide d’'une matrice,
en particulier dans le cas T: R" — R™.

8.4 Les matrices de passage

8.4.1 Motivation
Pour commencer, étudions les relations existant entre les composantes d'un méme vecteur, exprimé relati-
vement a une base ou a une autre.

Avant de voir I'approche dans le cas général, commencons par un exemple simple.

Exemple 8.14. Dans le plan, considérons le vecteur

()

Considérons maintenant la base 28 = {b1,b»}, dont les vecteurs sont disons

el oef)

Quelles sont les composantes de x relatives a 8?2 Ce qu’on cherche ici est

Ko=)

qui ne signifie rien d’autre que
X= ,Blbl + ﬁzbg .
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Or cette derniere s’exprime comme

i

qui est équivalent au systéme d’équations linéaires

reefl)

|
ol

{ Br + 2B
- + P2

Il
—

dont la solution est B, =1, B, = 2. Ainsi,

qui signifie x = b; + 2b,.

Remarque: Il est plus utile de penser que x est un vecteur dans le plan, et que ce vecteur peut étre représenté
en composantes, relatives a la base canonique %, ou ala base %8 :

5 1
(X] Bean = (1) ) (x] = (2) .

@

€ P

Bien-sir, il serait intéressant d’avoir un procédé permettant d’obtenir directement les composantes d'un
vecteur quelconque dans une base, en fonction des composantes dans 'autre base :

_(m) ﬁ1)=
(1) 2 ()

Abordons le probléme d'un point de vue général.

Soit V un espace vectoriel de dimension p. Supposons que |'on ait deux bases dans V :
t%:{bl,...,bp}, (gz{cl,...,Cp}.

Si v € V est un vecteur quelconque, il peut étre décomposé dans une base ou dans l'autre, et les compo-
santes relatives a ces bases seront a priori différentes :
B 71
vlg=1| * |, [Vlg =
Bp Yp
Nous aimerions savoir comment les composantes relatives a une base, par exemple les f,..., B, peuvent

se calculer a partir des composantes dans 'autre base, c’est-a-dire les y1,...,yp.
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Le but de la prochaine sous-section c’est de voir que cette relation est linéaire, et peut donc s’exprimer a
I'aide d'une matrice.

8.4.2 Ladéfinition de matrice de passage
On rappelle I'application identité idy : V — V, définie par
idy(v):=v, YveV.

Cette application ne porte en elle rien de vraiment intéressant. Mais considérons comme avant deux bases
pour décrire V, notées € et %B.

Définition 8.15. Soit V un espace vectoriel de dimension finie et soient 98 et € deux bases de V. La
matrice de passage (ou de changement de base) de 28 vers €, notée Px. g, est définie via

Py :=lidv]¢—a.

Etant un cas particulier de représentation matricielle d'une application linéaire, on trouve immédiatement
plusieurs propriétés des matrices de passage.

Proposition 8.16. Soit V' un espace vectoriel de dimension finie et soient 98 = {by,...,bp} et € =
{c1,...,cp deux bases de V. Alors,

(i) Pg—g=[[b1le-bple],
(ii) [vle = P¢—glvlig pourtoutveV;

(iii) P estinversibleet Py_ 3 ' = Py <.
Preuve: Le premier item suit de la définition de représentation matricielle, vu que
Py =lidvligs = | [idv(b0)] g - [idv (bp)] | = [1B1Lie -+ 1bylee].
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Le deuxieme item suit de I'identité (8.2) du Théoreme 8.10 pour T = idy. Finalement, comme l'application idy est
bijective, le dernier item de la Proposition 8.13 nous dit que P¢._g = [idy]¢.—g est inversible. En plus, la méme pro-
position nous dit que

Py 5 =lidvlg. g = lidy' 1z« = lidv]g—« = Pa—«,

ol 'on a utilisé dans la derniére égalité que id;1 =idy. O

On peut représenter la matrice de passage de forme graphique via le diagramme suivant. On présente aussi
de fagon sommaire le point clé de cette section.

idy

14 — v

[le

lidv]e—a
/\

Point clé : Matrice de passage et vecteurs de coordonnées ‘

Pour un espace vectoriel V' de dimension finie, et bases 28 et ¢ de V, on a I'identité fondamentale

| [Vl = Pg-—alvlg |

pour tout v € V, et P4 g est'unique matrice qui vérifie cette propriété pour tout ve V.

Exemple 8.17. Dans le plan, considérons comme tout a I'’heure le vecteur
= 5
=11
Pour étre plus précis, notons %Bcan = {€1, €2} la base canonique, et récrivons

5
[x]%can - (1) *

Considérons maintenant la base 28 = {b;, b,} définie par :

el wef)

Calculons [x] g, en fonction de [X]g_,, en utilisant le théoréme :

(X]% = PR Bun [X| B »
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Py, =|lellzles].

On doit donc trouver les composantes de e) et e, relatives a 8. Mais comme

1 2
[bl]@can = (_1) ’ [bZ]chan = (1)

signifie en fait

by = e - e,
bz = 2e; + ey,
ona 1 1
{ e = §b1 + §b2,
e = —%bl + %bg ,
Ainsi,
e1]s = 1/3 (er]0 = -2/3
118 = 1/3]" 2198 = 1/3 1’
et donc

1/3 —2/3)

Py, =|lellsles] = (1/3 1/3

Donc les coordonnées de x relatives a 28 sont

1/3 —2/3\(5) _(1
[X]gg = P@‘-@can [x]-%can - (1/3 ]_/3 ) (1) B (2) '

comme nous avions trouvé plus haut. Si maintenant on souhaite pluté6t transformer des composantes rela-

tives a £ en des composantes relatives a %cap, on calcule

Py =Py oL (13 23 _(1 2
an T 3(-1/3 1/3) T \-1 1

1
X]g = (2) )

alors ses composantes relatives a %B.qn, sont, comme on sait déja,
1 2\(1 5
=Py = = .
X Bean = PBean—2 X1z (_1 1) (2) (1)

Exemple 8.18. Supposons que I'on considere, dans R3, le vecteur

Donc si par exemple on prend x tel que

1
x=|2
3

Considérons la base de R3, 2 = {b;,b», bs}, dont les vecteurs sont (on laisse au lecteur le soin de vérifier que
2B est effectivement une base) :

0 1 0
b;=|0{, b,=|0], bs; =2
1 -1 0

Ensuite, cherchons les composantes de x relatives a 98, en utilisant le formalisme présenté plus haut.

NumChap: chap-chgmt-de-base, Derniére compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) ].63


botafogo.saitis.net

8.4. Les matrices de passage

Pour bien faire, récrivons explicitement ce que nous savons :

1
X B = 2]
3
ainsi que
0 1 0
(b1lz..=(0], (b2lz..=| 0 |, [bsle.,, = |2
1 -1 0

Pour exprimer les composantes de x relatives a 98, nous allons utiliser la formule
X% = PR Beon (X Ben »
ol la matrice de passage est donnée par
Pg—a., = [leilzle]zlels].

Or si on écrit explicitement les définitions des vecteurs de la base 23,

bl = es,
b = e -es,
bg = 2e.

Comme on doit exprimer les composantes des vecteurs de la base canonique par rapport a 48, il faut inverser
ces relations. On trouve facilement

e = b1 +b2,
e = 3bs,
€3 = b]_r
c’est-a-dire
1 0 1
lellz=1|1], lex]g=|{0|, lesla=(0],
0 3 0

ce qui donne

[X]% = P%‘_%can [X] PBean

0 1
0 0
1

3 0

i e ~ N e R ]

Remarque : Pour le calcul de P»._g_,
aurait été de commencer par calculer

une facon tout a fait équivalente de faire mais écrite différemment

0O 1 O
Ijgfgcan‘_g'g = [[bl]ggczxn [bz]%can [bg]%can] =|0 0 2 4
1 -1 0

puis de calculer son inverse (par exemple avec I'algorithme de Gauss-Jordan) :

1 0 1

P@‘_%can:p@can‘_gg_ =11 0 0
1

0o 10

164 NumChap: chap-chgmt-de-base, Derniére compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)


botafogo.saitis.net

8.5. Formule de changement de base

8.5 Formule de changement de base

On a vu dans les sections précédentes comment exprimer une application linéaire
T:V-V',

lorsqu’on possede une base 28 dans V, et une base %’ dans V'. Sil’on consideére en plus une autre base €
de V, et une base ¢’ de V', on a donc deux fagons de représenter la méme application linéaire T, comme
indiqué par la commutativité des rectangles dans le diagramme ci-dessous.

1% T N4

[ g

[l et

R” R™

~

P

R” > R™

[Tl

On va voir dans la sous-section suivante qu'’il existe en fait une relation directe entre les deux représenta-
tions matricielles de T.

8.5.1 Changement de base dans le cas général T:V — V'
Le résultat suivant est une conséquence directe mais trés importante de la Proposition 8.13.

Théoréme 8.19 (Formule de changement de base). Soient V et V' deux espaces vectoriels de dimen-
sion finie. Soient 9B et calC deux bases de V, et B' et calC' deux bases de V'. Pour toute application
linéaire T:V — V', ona

[Tl¢—¢ =P — Tl —pPp_<c.

Preuve: Comme T =idy/oT oidy, alors le premier item de la Proposition 8.13 nous dit que
[Tlgr— = lidyr o T eidy]er—¢ = [idv/lg—g [T] g —gg o lidv]g—4 = Pgr—gp [T — s Pp—c,
comme on voulait démontrer. O

En interchangeant I'ordre des bases, le théoreme précédent nous donne aussi l'identité

(T — = Pa—¢'[Tl¢'—¢Pe—-

En effet, cette formule est équivalente a celle du théoréme, car on obtient la deuxiéme en multipliant la
premiére a droite par Pg.«, puis a gauche par Py .

Le théoreme précédent nous permet de comprendre la relation entre les matrices [T]g—g et [T]¢ ¢, que
I'on peut présenter de facon graphique avec le diagramme commutatif suivant (i.e., sil’on suit a travers le
diagramme un chemin d’un objet a un autre, le résultat par composition des morphismes ne dépend que
del'objet de départ et de I'objet d’arrivée).
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8.5. Formule de changement de base

T N V'
[']gg’
e
> R™

(T o

Py

RP > R

[Tlegr —¢

Pour simplifier un peu le schéma, gardons uniquement les espaces de départ et d’arrivée, les bases relative-
ment auxquelles ils sont associés, ainsi que les matrices associées a T relatives a ces bases :

(Tw -z < mm
7

R
Py ¢ Pig P > Pegr gy
R™

R” >

[T
Base € / o \ Base €’

Dans ce diagramme, on peut monter ou descendre librement a ’aide des matrices de changement de base,
puisqu’elles sont inversibles .

!/
Base 28 \ / Base 2
RP

8.5.2 Changementdebasedanslecas7:V — V
Le cas que nous utiliserons le plus est lorsque T applique V dans lui-méme, c’est-a-direou V' =V :
T: V-V,

Si on suppose aussi que I'on a deux bases pour décrire V, 2 et €, et qu'on on prend €' = €, B’ = %, le
schéma devient plus simple :

Base 2 \ /- Base 28
RP

[T)s m

> R
¢ > Py
R™M

Py ¢ Pg o Py <\

R” ?

[Tl
Base € / \ Base €

Maintenant, comme Py = P45 !, 1aformule de changement de base du Théoréme 8.19 prend la forme
plus connue :

[Tl = Py ' [Tl¢Pg—a,

ou, sinon, la version équivalente

[T) =Pzl Tl¢Pg_c " .
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8.6 Exemples

Exploitons les diverses formules de changement de base vues dans les sections précédentes, sur quelques
exemples concrets.

Toutes les applications linéaires que nous avons considérées jusqu’a présent ont généralement été définies
relativement a la base canonique : leur matrice s’obtenait en calculant les images des vecteurs de la base
canonique.

Mais on sait maintenant exprimer la matrice d'une application relative a n'importe quelle base. Nous allons
donc repasser par certaines applications rencontrées précédemment, et étudier leur matrices relatives a des
bases qui ne sont pas canoniques.

Exemple 8.20. Considérons I'application linéaire T : R® — R? définie par

X X

! 2x,-5x3) (0 2 —5\["}

Tlx]:= = X2
X1 +3x2 1 3 0

X3 X3

Remarquons que lorsqu'une application est définie de cette facon, il est implicitement admis que les coor-
données (ici x1, X2, x3) sont relatives aux bases canoniques des ensembles de départ et d’arrivée. Ici, pour
les distinguer, nous noterons temporairement

o B.an =1{€1,e2,e3} la base canonique de R3,
o B.an = {€1,e2} la base canonique de R2,

Donc la matrice ci-dessus est en fait

(Tt = |[T@D)] 5, [TEeD)] 5, [Tle3)] 5,
_(0 2 —5)
1 3 0)°

Considérons maintenant les bases 48 = {by,b,, b3} de R3 et € = {c;,cy} de R?, ol

1 1 0
b;=|1|, b= 0], bs=|1],
0 -1 0

%) wef)

Calculons la matrice de T relative a ces deux nouvelles bases, [T]g—«. On peut s’aider du schéma

[T]%can —2can

%can

> B

P“/?czm‘*ge P%‘*%can ngcan‘*(g <\
\
I4

B €

C

an
Pg—man

[T¢—m
pour retrouver la formule :
(T¢—z = Pg—.., [T Bry— B PR —2 -

Or, comme les vecteurs de 28 ont été donnés en composantes relatives a la base canonique,

1 1 0
[bl],%um =|1 y [bZ]%can = 0 ’ [bs]«%cun =1 ’
0 -1 0
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on a déja
1 1
Pﬁ/}mn‘_t@ = [[bl]fﬂcnn [bZ]t%mn [b?’]‘o’q(‘«ah] = 1 0 1
0 -1 0
Ensuite,
0 2
[cl]%cﬂn - (_1) 4 [CZ]%can - (3) ’
et donc
P%@e%can = P%can‘_(g_l
= (1611, [€2) s ]
(0 2y 32 -1
“l-1 3 “\172 0)°
On adonc

[ T] € —B = P%‘_ggcan [ T] %can‘_'%c;m P'%can —B

_(3/2 —1)(0 2 —5) Loy
1/2 0J)\1 3 0 0 -1 0
(-1 13/2 0
1 572 1)

<o

Exemple 8.21. Considérons la projection proj, sur une droite d passant par I'origine et faisant un angle de
0 avece; :

6 =0.300...

()

Rappelons que sa matrice relative a la base canonique est donnée par

[broi ] _ cos?’f  cos@sinf
PIOal%ean = | cos@singd  sin20

Plus naturelle, pour décrire cette projection, serait une base dans laquelle les vecteurs sont orientés dans
des directions qui tiennent compte de la position de I’axe d. Par exemple, une base 98 = {b;,b,} ot b, dirige
d, et b, est perpendiculaire a d :
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b, b

Par définition de la projection,
proj;(b1) =by,  proj,(b2) =0,

ce qui donne
. 1 . 0
[proj,(b1)], = (0) , [projg(ba)] 4 = (0) .

Par conséquent, la matrice relative a cette base prend une forme particulierement simple :

. 1 0
[prOJdlgze:(O 0)

Vérifions que c’est bien ce que I'on obtient en faisant le changement de base, de %y, vers 2.

Tout d’abord, on écrit explicitement les vecteurs de la nouvelle base en fonction de ceux de I'ancienne.
Puisque d fait un angle 8 avec I'’horizontale, en les prenant orientés comme sur la figure ci-dessus, et uni-
taires,

cos@

—sinf
[b1l.q, = (sin@ ) '

cosd

) , (b2l = (

Ainsi, la matrice de changement de base est

cosf —sin@)

Pgp —g=|.
PBean—P sinf@ cosf

La formule du changement de base donne donc

[projd] B = P%can Rz ! [projd] '@can P'gecan —%B
cosO sinf cos?60 cosfsinf) (cosf —sinf
—sin@ cosfO/)\cosOsinf sin%6 sinf cos®

“(o o)

Dans dernier exemple, on a observé qu'une application (la projection) prenait une forme plus simple quand
on la regardait dans une base qui était adaptée a la géométrie du probléme. Faisons maintenant I'inverse :
prenons une transformation, définie dans une base naturelle, et voyons quelle forme elle prend dans une
autre base :

<

Exemple 8.22. Considérons la réflexion par rapport a une droite d qui passe par I'origine, que nous avions
notée refl;. Utilisons a nouveau la base ou b; dirige d, et b, est perpendiculaire a d. On remarque que
I'application de la réflexion sur ces vecteurs prend une forme tres simple :
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8.7. Résumé du chapitre sur les coordonnées et les représentations matricielles

2

b,
b; =refl;(by)
m

7y

A}
A}

“ refl (by)

refl;(b1) =b1, refl;(by) = —by.

Par conséquent,

1 0
[reflg] o = [[reﬂd(bl)]@ [r6ﬂd(b2)]@] = (0 _1) .

Maintenant, exprimons la matrice de refl; relative a la base canonique. Comme la matrice de passage est la
méme qu’avant,

[reflylgs,,, = Pa,,,—alrefly] @P;é{m P
cosf -—sinf)({1 O0)\( cosO@ sinf
sinf cosf J\0 —1)\-sinf@ cos@
_ [cos?*6—sin?6  2sinfcosl
2sinfcosf  sin%0 —cos?6

_ [cos(20)  sin(20) )
" |sin(20) —cos(26)]°

Cette expression est bien celle que nous avions obtenue précédemment. o

8.7 Résumé du chapitre sur les coordonnées et les représentations matricielles

RESULTAT FONDAMENTAL :

B={vy,...,vy} BASEDEV < VveV3da,...,a,ecR TELSQUE v:a1v1+---+anvn]
(VOIR LEMME 8.1)

COORDONNEES DE v € V RELATIVESABASE 8 = {v},...,v,) S V¢

X
x; POUR CALCULER X1, ..., X, :

Wlg=| . [eR" & v=xu+tx0p |[—{ (U [V=xvi+ - +X,0,]=SELEN x1,..., X,
(2) RESOUDRE LE SEL!

coordonnées
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8.7. Résumé du chapitre sur les coordonnées et les représentations matricielles

EXEMPLE FONDAMENTAL :
1 0
1 0
VE[R”ETQBcan= N B AT I = g, =V
0 0 1

MATRICE D’AL T': V — V' RELATIVE AUX BASES 8 = {v,,...,v,} S VET %' = {v},...,v,,} S V':

(Tlasa:= | [T gy -+ [T@)]

ETSIV' =VET % =2
[Tz =T ®—2m

IDENTITE FONDAMENTALE :

[TW)) g = Ta—azlvla

PROPRIETES POURT:V — V'ET S: V' — V" AVECBASES BV, B cV'ETB"'cV":

[SoTlgr—gg =[Slar—a T —2 ET lidv]®—2 = Ldim)

INJECTIVITE, SURJECTIVITE ET BIJECTIVITED’'UNEALT:V — V'

veKer(T) < [vlg € Ker ([T]z—z) = [ T INJECTIVE < [T . INJECTIVE ]
v elmg(T) & [v'1g € Img ([T —z) = [ T SURJECTIVE & [T] 4.2 SURJECTIVE ]
U

[ T BIJECTIVE < [T]g g BIJECTIVE

MATRICE DE PASSAGE (OU DE CHANGEMENT DE BASE) DE BASE 4 = {v,,...,v,;} € V VERS UNE BASE
€ ={wy,...,wyt SV

Pgg:=lidvlg—a = [[Vl]%"‘ [Vn]cg]

IDENTITE FONDAMENTALE :

[ (V] = Pe—mlv]a

PROPRIETE :

Py INVERSIBLEET P!, = Py«

FORMULES DE CHANGEMENT DE BASE :

[ [T)¢—¢ =Pg—az [T g — g P—¢ ] (VOIR THM. 8.19)

ETSIV' =V

[Tl¢ = P¢—a|TaPg—¢ =Pg 4 TlaPg_¢
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Chapitre 9

Valeurs et vecteurs propres

9.1 Motivation

Les notions introduites jusqu’ici permettent de dire des choses trés globales sur une application linéaire
T:V-V'.

Si V et V' sont de dimensions finies, une telle application peut étre représentée par une matrice, et nous
savons l'utiliser pour étudier I'injectivité, la surjectivité; nous avons plusieurs critéeres permettant de déter-
miner quand I'application est bijective (via I'inversibilité de sa matrice et le déterminant).

Mais ce que nous n’avons pas encore c’est un outil, un peu comme la dérivée en analyse, qui nous permette
de dire des choses plus fines sur cette application.

Nous nous concentrerons sur les applications linéaires
T:R"—R™.

Pour motiver les nouvelles notions que nous allons introduire, voyons un exemple simple dans le plan :

Exemple 9.1. Considérons 'application T : R?> — R? définie par
) =xroo={, 2y )=
X2 5X1—35X2

Les colonnes de A étant indépendantes, cette application est bijective.

Mais ne peut-on rien dire de plus? Par exemple, peut-on dire plus précisément comment Ax est relié géo-
métriquement ax?

Pour essayer de mieux comprendre cette application, faisons varier x sur I'animation ci-dessous, et obser-
vons comment 'image Ax se comporte :

15
1
05 (®) &
-4 -3 -2 -1 1 2 3 P v
-05
-1
-5 BT

On se rend compte que certaines directions semblent jouer un role particulier. Sous I'action de T, c’est-a-
dire lorsqu’on multiplie par A,
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9.2. Définitions de valeur propre, de vecteur propre et d’espace propre

 tout vecteur x sur la droite dirigée par vy = 1 subit uniquement une modification de longueur, par

un facteur %,
Ax = %x.

 tout vecteur x sur la droite dirigée par v, = 1 subit uniquement une modification de sens :

AX = —X.

En d’autres termes, les deux directions spécifiées par v; et v» sont particulieres puisqu’elles définissent des
vecteurs dont la direction ne change pas sous l'action de T. Leur longueur et leur sens, par contre, peuvent
étre altérés.

Ces vecteurs particuliers v, et vy, que nous appellerons vecteurs propres, fournissent un point de départ pour
comprendre la géométrie de I'application T. Au chapitre suivant, sur la diagonalisation, nous utiliserons ces
vecteurs propres pour construire une nouvelle base dans laquelle nous exprimerons 7. 3

Objectifs de ce chapitre

Ala fin de ce chapitre vous devriez étre capable de
(O0.1) calculer le polynome caractéristique, les valeurs et les espaces propres d'une matrice carrée;

(0.2) calculer les multiplicités algébriques et géométriques des valeurs propres d'une matrice car-
rée.

Nouveau vocabulaire dans ce chapitre

 valeur propre e polyndme caractéristique
I propr s e

® vecteur propre » multiplicité algébrique

e spectre

e espace propre o multiplicité géométrique

9.2 Définitions de valeur propre, de vecteur propre et d’espace propre

En général, lorsqu’on multiplie un vecteur x € R” par une matrice A de taille n x n, on change la direction
de x.

Or on a vu dans I'exemple de la section précédente qu’il peut exister des vecteurs v particuliers dont la
direction n’est pas modifiée lorsqu’ils sont multipliés par A. En d’autres termes, pour ces vecteurs, Av est
colinéaire a v.

Définition 9.2. Soit VV us espace vectoriel et soit T: V — V une application linéaire. Un vecteur v € V
non nul est appelé vecteur propre de T s’il existe A € R tel que

T(w)=Av.

Le scalaire A est appelé valeur propre de T, et v est un vecteur propre associé a 1.

Comme a toute matrice A de taille n x n correspond une application linéaire T : R” — R", définie par T'(x) :=
Ax, on définit les vecteurs propres (resp., valeurs propres) de A comme étant ceux (resp., celles) de T,
comme indiqué dans la définition suivante, ce qui représentera le cas le plus intéressant dans ce cours.
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9.2. Définitions de valeur propre, de vecteur propre et d’espace propre

Définition 9.3. Soit A une matrice de taille nx n. Un vecteur v e R” non nul est appelé vecteur propre
de A s’il existe A € R tel que
Av = Av.

Le scalaire A est appelé valeur propre de A, et v est un vecteur propre associé a 1.

Exemple 9.4. Soit A = (é S)

6
e Siv= ( 5), alors

wels 9524

et donc v est vecteur propre, avec valeur propre A = —4.

ot 90

qui n’est pas colinéaire a v, donc v n’est pas vecteur propre.

0
e Siv= (1), alors

Exemple 9.5. Pour une matrice de taille n x n diagonale,

d 0 - 0
0 dy - 0
A=diag(d,,...,d,) =| . .. .
0 0 - d,

ona
Aekzdkek, Vk=1,...,n,

et donc chaque vecteur de la base canonique ey est vecteur propre, avec valeur propre dj.

<o

Nous verrons bient6t comment calculer les vecteurs et valeurs propres d'une matrice. Mais parfois, lorsque
I'application associée a un sens géométrique direct, on peut les connaitre sans faire de calculs, par simple

observation.

Exemple 9.6. Considérons la projection sur une droite passant par I'origine :

f =0.300...

fa()

» Nous avons déja remarqué que les vecteurs sur d ne sont pas modifiés par la projection :
proj,(v) =v=1v, Vved,

Ainsi, tous les vecteurs de d sont vecteurs propres de proj,;, avec valeur propre A = 1.
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» Les vecteurs qui sont perpendiculaires a d ont tous comme projection le vecteur nul :
proj;(v) =0=0v, vvld,

Ainsi, tous les vecteurs perpendiculaires a d sont vecteurs propres de proj,, avec valeur propre A = 0.

IIn’y a, apparemment en tout cas, pas d’autres vecteurs propres. 3

Exemple 9.7. On peut faire de méme avec la réflexion par rapport a une droite :

6 =10.300... *

refl, ()

» Tout vecteur sur d est vecteur propre, avec valeur propre A =1:
refl;(v) =v=1v, Vved,
» Tout vecteur perpendiculaire a d est vecteur propre, avec valeur propre A = —1:
refl;(v) = —v=(-1)v, Yvld.
3

Une matrice ne possede pas toujours des vecteurs et valeurs propres. En effet, I'existence de vecteurs v qui
soient colinéaires a leur image Av est une propriété géométrique particuliere que beaucoup de transforma-
tions, méme naturelles, ne satisfont pas.

Exemple 9.8. Considérons la rotation d’angle 6, x — T'(x) = rotg(x) :

6 =1.000... oto()

Pour les valeurs de 8 € [—-m, ] qui sont différentes de 0 et +, rotg(x) pointe toujours dans une direction
différente de x. Donc pour ces valeurs de 8, sa matrice n’a pas de vecteurs propres. Par contre,

¢ Sif =0, alors évidemment la rotation ne fait rien,
roty(x) =x,  VxeR?,

et donc n'importe quel vecteur du plan est vecteur propre, avec valeur propre A = 1.

e Si0 =+, alors I'effet de la rotation est de renverser x,
oty (X) = =X, Vx € IRZ,

et donc n'importe quel vecteur du plan est vecteur propre, avec valeur propre 1 = —1.

Nous reviendrons plus tard sur ces cas particuliers. S

La question se pose maintenant de savoir comment calculer les vecteurs propres et valeurs propres de facon
systématique, pour une matrice donnée.
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9.2.1 Espace propre

Par linéarité, si v est vecteur propre avec valeur propre A, alors tout vecteur non nul colinéaire a v est aussi
vecteur propre avec valeur propre 1 .

Donc dés qu'une application linéaire ou une matrice posséde une valeur propre, il y a une infinité de vec-
teurs propres qui lui sont associés. Ceci mene a considérer, pour une valeur propre A donnée, I'’ensemble
de tous les vecteurs propres associés a A :

Définition 9.9. Soit T: V — V une application linéaire et A une valeur propre de T. Lensemble
Ey:={veV:Tw=2Av}cV

est appelé espace propre associé a 1. De facon plus concrete, soit A une matrice de taille n x n et 1
une valeur propre de A. Lensemble

Ey:={veR": Av=Av} cR"

est aussi appelé espace propre associé a A.

Remarque 9.10. Noter que E, contient toujours le vecteur nul 0. 3

Exemple 9.11. Nous avons vu plus haut que A = —4 était valeur propre de la matrice
1 6
A= .
s 2
Calculons son espace propre associé. Pour ce faire, on cherche tous les v solutions de

Av = —4v.

Comme on sait, ce systéme doit posséder une infinité de solutions! En nommant les composantes de v, on

peut I'écrire
1 6 4] —_4 4] ‘
5 2\, %)

En passant le second membre du c6té gauche,

5 6 V1] 0

5 6)\vo) \0)°
L'espace propre associé a 1 = —4 est donc une droite :

Ey=lv= t(_GS)‘tER}=Vect{(_65)}.

Exemple 9.12. Considérons I'application associée a

4 -1 6
A=12 1 6
2 -1 8

Supposons que I'on ait déja montré que A = 2 est valeur propre. Calculons son espace propre associé, E :
on cherche tous les v € R® solutions de
Av =2v,
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c’est-a-dire

4 -1 6 4] 41
2 1 6 Vo |=2|1o
2 -1 8 [%:] U3

En passant le second membre du c6té gauche,

2 -1 6\(n\ (O
-1
2 -1 6/\vs) \o

\S)
»
<
NS
I
o

qui est équivalent a

2 -1 6\(n\ (O
0 0 ollwl=]o0
o o oflws) \o

On peut donc prendre v, et v3 comme variables libres, et prendre v; = %(vz —6v3) comme variable de base.
Ainsi, tout vecteur de la forme

3U2 =33 1/2 -3
v= %) =v| 1 |+v3| O
U3 0 1

est vecteur propre de A, avec valeur propre 2. Ceci montre que I’espace propre E, est un plan :

1/2 -3
E,=<v=s| 1 |+ 0 ||s,teR
0 1
1/2\ (-3
= Vect 11,10
1

<o

Remarque 9.13. On I'a observé sur ces deux premiers exemples : une fois la valeur propre connue, la re-
cherche des vecteurs propres qui lui sont associés mene foujours a un systeme possédant une infinité de
solutions. o

Donc une fois une valeur propre connue, un calcul explicite d’espace propre n’est que la résolution d’'un
systeme du type Av = Av. La question naturelle, a laquelle nous répondrons dans la section suivante, est de
savoir comment trouver les valeurs propres.

Mais avant ca, remarquons que dans les deux exemples ci-dessus, I'espace propre trouvé était engendré
par certains vecteurs, et avait donc une structure de sous-espace vectoriel. C’est 'origine du terme “espace”
propre :

Lemme 9.14. Lespace propre d’'une application linéaire T : V — V (resp., d’'une matrice carrée A de
taille n) associé a une valeur propre A peut s'écrire

Ej = Ker(T — Aidy) (resp., Ej = Ker(A— Mn)).

Par conséquent, c’est un sous-espace vectoriel de V (resp., R™).
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Preuve: On fait la preuve dans le cas des matrices, le cas des applications linéaires étant pareil. Dans ce cas, on note
que

VeEE) © Av=Av
S Av-Av=0
S (A-A1)v=0
< veKer(A-A11,).

Comme A - AI, est une application linéaire, nous savons depuis les chapitres précédents que son noyau est un sous-

espace vectoriel de R” O

9.2.2 Matrices inversibles et la valeur propre nulle

Théoreme 9.15. Une matrice A de taille n x n est inversible si et seulement si A = 0 n'est pas valeur
propre.

Preuve: On sait que A est inversible si et seulement si son noyau ne contient que le vecteur nul. Or le noyau pouvant
étre défini comme '’ensemble des vecteurs v tels que Av = 0v, ceci donne I'équivalence. O

On trouvera ici (3BluelBrown) une discussion qui pourra vous aider a comprendre certaines des choses
faites ici, et qui motive aussiI'usage que nous ferons plus tard des vecteurs et valeurs propres.

9.3 Le polyndome caractéristique

Voyons le résultat qui rendra la recherche de valeurs propres un probleme purement algébrique :

Théoréeme 9.16. Soit A une matrice de taille n x n. Alors A € R est valeur propre de A si et seulement si

det(A—-AI,) =0.

Preuve: En effet, A est valeur propre de A si et seulement s'il existe un vecteur non-nul v tel que Av = Av. On a vu
plus haut que ceci est équivalent a dire que v € Ker(A — A1,). Mais 'existence de vecteurs non-nuls dans le noyau
d’une matrice (ici : la matrice A— A1,) implique que celle-ci n’est pas inversible, ce qui est équivalent a dire que son
déterminant est nul. O

Exemple 9.17. Considérons encore une fois la matrice
1 6
A= .
s 2
Par le théoréme, toutes les valeurs propres se trouvent en étudiant I'équation

det(A—- A1) =0.

Comme
1-1 6
det(A—AL) —det( 5 2_/1)
=1-1)2-1)-30
=A%*-31-28
=A+HA-7),
A possede exactement deux valeurs propres : A = —4 (comme nous avions déja observé) et 1, =7. 3
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Comme dans ce dernier exemple, la fonction A — det(A— A1,) sera toujours un polynéme en A.

Définition 9.18. Soit A une matrice de taille n x . Le polynéme
Pa(A) :=det(A-A1,)

est appelé le polyndme caractéristique de A.

Les valeurs propres d'une matrice se trouvent donc en cherchant les racines de son polynéme caractéris-
tique.

1 -5
Exemple 9.19. Soit A = (1 1 ) Ona

-A -5

1
PA()L)—det( L 1a

)=(1—)L)2+5.

Comme Py4(A) > 5 pour tout A, P4 n’'a pas de racines. Donc A ne posséde aucune valeur propre, et aucun
vecteur propre. <

Exemple 9.20. Pour une matrice diagonale A = diag(d,,...,d,) de taille n x non a

PA(A) = det(A—A1,)
= det(diag(dy — A,...,dn— 1))
=(d =) (dp—N),

donc les valeurs propres de A sont ses éléments diagonaux dj, ..., d,. o

9.3.1 Recherche de vecteurs et valeurs propres

Pour trouver les vecteurs propres et valeurs propres (s'il y en a) d'une matrice A, on pourra donc procéder
comimne suit :

1) Calculer le spectre de A, noté spectre(A), et défini comme I'’ensemble de toutes ses valeurs propres,
racines du polynome caractéristique, P4 (1) = 0.

2) Si spectre(A) # @, calculer pour chaque valeur propre A € spectre(A) 'espace propre associé Ej, en
trouvant toutes les solutions de Av = Av.

Informel 9.21. A priori, si A est une matrice de taille n x n, P4(1) est un polyndme de degré n.
Comme on cherche les racines de P4(1), on a avantage a le calculer avec précaution, de facon a
tout de suite I'obtenir sous une forme factorisée (ou aussi factorisée que possible). Dans I’exemple
suivant, un choix judicieux d’opérations sur la matrice A — A3 évite de devoir étudier un polynéme
de degré 3.

Exemple 9.22. Cherchons les vecteurs et valeurs propres de
1 -1 -1
A=|-1 1 -1
-1 -1 1
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Commencons par la recherche des valeurs propres, en calculant

1-14 -1 -1

PoA)=det| -1 1-A -1
-1 -1 1-A

-1-1 -1 -1
=det|-1-14 1-1 -1
-1-4 -1 1-A

1 -1 -1
=—(1+A)det|l 1-4 -1
1 -1 1-2
1 -1 -1
=—(1+A)det]0 2-A 0
0 0o 2-1

=—1+A)2-21)>2.

(Dans la deuxieéme ligne nous avons rajouté les colonnes 2 et 3 a la premiere, dans la troisiéme nous avons
extrait un (1+1) dela premiére colonne, et dans la quatrieme nous avons soustrait la premiere de la deuxieme
et troisieme ligne. Dans la derniere ligne, nous avons profité du fait que la matrice était triangulaire.)

Nous avons donc deux valeurs propres, 1; = —1 et A, = 2. On calcule facilement leurs espaces propres asso-
Ciés :

E_; =Ker(A+1,) =Vect

1
1
1
-1 -1
E, =Ker(A-21I,) = Vect 1/,]0

9.3.2 Le polyndme caractéristique est un invariant de similitude

Rappelons que deux matrices carrées sont semblables, A ~ B, s'il existe une matrice inversible M telle que
A=MBM™.

Théoreéme 9.23. Si deux matrices sont semblables, A ~ B, alors elles ont le méme polynome caracté-
ristique :
PsA)=Pp(A), VAeR.

Par conséquent, elles ont le méme spectre : spectre(A) = spectre(B).
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Preuve: Si A= MBM™1, alors en récrivant I,, = MM~ = M1, M7},

P4(A) = det(A—Al)
=det(MBM ™' —AMM™)
=det(M(B-AI,)M ™)
= det(M)det(B — A1) det(M ™)
= det(B - A1,)det(M) det(M ™)
=det(B - Al,)det(MM ™)
=det(B—Al,)
=Pg(A).

Considérons une application linéaire
T:R"—R".

Sil’on posséde deux bases dans R”, notées 28 et ¢, T peut se représenter comme une matrice,

o [T]4 relative a 98, ou

e [T]« relative a 6,
La formule du changement de base nous dit que

[Tl = P« Tl¢Pe—z

=Pg¢.z [TlePg—_2.

Ceci implique que [T]g ~ [T]«, et donc, par le théoréme ci-dessus, que ces deux matrices ont le méme
spectre.

Ceci montre que le spectre est bel et bien associé a 'application, pas a la matrice qui est utilisée pour la
représenter relativement a une base ou une autre.

9.4 Multiplicités algébriques et géométriques
Lutilisation des valeurs et vecteurs propres, dans I’étude d'une application linéaire, sera

Définition 9.24. Soit 1; une valeur propre d’'une matrice A. La multiplicité algébrique de A estle
plus grand entier n tel que (A — Ax)" divise P4(A); on note cet entier mult,(A).
En d’autres termes, si la factorisation complete du polyndme caractéristique contient
Ps(A) = "'(A—/lk)n"',

alors mult, (1) = n.

Remarque 9.25. On sait par le théoreme fondamental de 1'algebre que P4(A) possede au plus n racines
réelles. Ceci signifie que si A posséde les valeurs propres 11,..., A, alors

k
Z mult,(1;) < n.
j=1
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Exemple 9.26. Pour notre matrice
1 6
a=5 )
Pa)=A+4'A-7",

qui donne mult,(—4) = 1, mult,(7) = 1. o

nous avions trouvé

Exemple 9.27. Le polyndme caractéristique de la matrice identité I,, étant
P, =0-1",

I'unique valeur propre A; = 1 est de multiplicité algébrique mult, (1) = n. 3

Définition 9.28. Soit A4 une valeur propre d'une matrice A. La multiplicité géométrique de 1 est
la dimension de son espace propre :

multg (1) := dim(E)) = dim (Ker(A—Ax1,)).
Remarque 9.29. Par définition, une multiplicité géométrique est toujours > 1. 3

Théoreme 9.30. Soit Ay une valeur propre de A. Alors

multg (Ar) < multy(Ag).

Preuve: Considérons une valeur propre de A, qu'on notera A pour simplifier, et son espace propre son espace propre
associé, £, . Posons
k := multg (1p) = dim(Ey,),

et considérons des vecteurs propres v, ...,V formant une base de Ej,. Complétons cette famille en une base de R" :
B ={V1,...,Vi,;Wisly..., Wpt.
Soit A’ la matrice de I'application linéaire T'(x) = Ax relative a la base % :
A= [[To))] g [TO0] 5 TWei) g [T ] ]
Puisque chaque v;1 est vecteur propre de T, T(v;) = Agv;, A’ ala structure suivante :

Ao

0 C

Maintenant, rappelons que A et A’ sont semblables, et posseédent donc le méme polynéme caractéristique :
Ps(M) =Py Q).
Mais par la structure de A’ donnée ci-dessus,
PyA) =det(A' —A1,)
Ao—A

=det Ao—A

0 C-AL,_k

=o-N*det(C-A1,_).

182 NumChap: chap-val-et-vect-propres, Derniére compilation: 2025-01-13 12:27:17Z. (Version Web: botafogo.saitis.net)


botafogo.saitis.net

9.4. Multiplicités algébriques et géométriques

O
Exemple 9.31. Reprenons la matrice vue plus haut :
1 -1 -1
A=]1-1 1 -1
-1 -1 1
Nous avions calculé
Pa)=—(1+1)'2-1)72.
Nous avons donc deux valeurs propres,
¢ A1 = -1, de multiplicité algébrique mult,(1;) =1,
e 1» =2, de multiplicité algébrique mult,(A,) = 2.
En ce qui concerne les espaces propres,
E_; =Ker(A+1,) = Vect )
qui implique multg (A1) = 1, et
-1 -1
E, =Ker(A-21,) = Vect 11,10 ,
0 1
qui implique multg(A2) = 2. Donc dans cet exemple,
multa A1) = multg(ftl) R
mult,(Ay) = multg A2).
o

Exemple 9.32. Considérons la matrice
31
B= .
oo
D’une part, son polyndme caractéristique est donné par
Pg() =(B-2)?,

et donc B ne posséde qu'une valeur propre A; = 3, de multiplicité algébrique mult,(1;) = 2. Mais on a
d’autre part que

E; =Ker(A-3I,) = Vect{ } ,
qui implique multg(1,) = 1. Donc dans ce cas,

multg (A1) <multg(A;).
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9.5 Résumé du chapitre sur les valeurs et vecteurs propres

VALEUR PROPRE ET VECTEUR PROPRE DE MATRICE CARREE A € M, (R) :

Av=Av AVEC vz£0

S

vecteur propre  valeur propre

ESPACE PROPRE DE MATRICE A € M, (R) POUR VALEUR PROPRE A :

Ep:=(veR": Av=Av} = ’v VECTEUR PROPRE AVEC VALEUR PROPRE A < ve Ey \ {0} ‘

|
CONSEQUENCE :| A =0 VALEUR PROPRE DE A < ANON INJECTIVE |— | Ey = Ker(4) |

POLYNOME CARACTERISTIQUE DE A € M, (R)

P4(A):=det(A-A1,) ——  POLYNOME DE DEGRE n

RESULTAT FONDAMENTALI :

POUR 1y € R,Ag VALEUR PROPRE DE A < 1y RACINE DE P4 (1) — CALCUL DE VALEURS PROPRES!

RESULTAT FONDAMENTAL II :

POUR A, € RVALEUR PROPRE DE A, E), = Ker(A-Ap1,) — CALCUL D’ESPACE PROPRE!

SPECTRE DE MATRICE A€ M, (R) :

spectre(A) := {1 € R: A VALEUR PROPRE DE A}

MULTIPLICITE ALGEBRIQUE DE VALEUR PROPRE ) :

mult,(Ag) := max{k € N: (A - A9)* DIVISE P4(1)}

MULTIPLICITE GEOMETRIQUE DE VALEUR PROPRE A :

multg(Ag) := dim(Ey,)

RESULTAT REMARQUABLE :

VA VALEUR PROPRE multg (1) < mult, (1) [(VOIR THM 9.30)
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Chapitre 10

Diagonalisation

10.1 Motivation et définition

Nous l'avions dit au début du chapitre sur les vecteurs et valeurs propres, notre but était de un outil per-
mettant d’étudier une application linéaire de facon plus géométrique.

Objectifs de ce chapitre

Ala fin de ce chapitre vous devriez étre capable de
(0.1) déterminer siune matrice est diagonalisable, et la diagonaliser si possible;
(0.2) utiliser la diagonalisation pour calculer des puissances d'une matrice.

Nouveau vocabulaire dans ce chapitre

o matrice diagonalisable o diagonalisation d’'une matrice

10.1.1 Unidéal:les matrices diagonales

Commencons par décrire les applications qui, méme en grande dimensions, sont tres simples a comprendre::
les applications dont la matrice (relative a la base canonique) est diagonale. En effet, considérons une ap-
plication T : R" — R" définie par

X1 dl o - 0 X1 d1x1

X2 0 dz 0 X2 ngz
x=| . |=T®:=. . . =

X5 0 0 - dy\x, duxy

Une telle application se comprend simplement dans le sens suivant : chaque variable x; n'est que multipliée
par di, et w’interfére pas avec les autres variables.

Informel 10.1. Donc une application linéaire dont la matrice dans une base est diagonale corres-
pond dans cette base a faire, indépendamment pour chaque k, une simple “dilatation” ou “étire-
ment” (“stretching” en anglais) par un facteur dj selon la composante k.

Exemple 10.2. Dans le plan, considérons

. (2) —T(x) = (ﬁ _01) (2) ) (i?z) ‘
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Dans ce cas, 'effet de T simple a décrire : elle multiplie x; par 2, et change le signe de x,. Ceci permet de
construire I'image d'un x quelconque a la regle et au compas :

A
1.5

h

0.5

-15 r

LJ

10.1.2 Obijectif

On sait que la représentation matricielle d'une application linéaire relative a la base canonique n’est qu'une
représentation parmi d’autres. Au vu de la discussion ci-dessus, on peut donc se poser la question de savoir
si, pour une application linéaire donnée, il existe une base dans laquelle sa matrice est diagonale. Si c’est le
cas (parce que ¢a ne sera pas toujours possible), alors on a tout avantage a choisir cette base pour travailler,
puisque dans cette base 'application ne devient qu'une modification multiplicative de chacune des com-
posantes, indépendamment des autres. Le but de la diagonalisation, que nous présentons dans ce chapitre,
est de déterminer si une application donnée peut (ou ne peut pas) étre rendue diagonale dans une base bien
choisie.

Puisque la diagonalisation a pour but de réduire une application a une base dans laquelle elle “multiplie
simplement les composantes par des nombres”, c’est sans surprise que les notions de vecteur propre et
valeur propre joueront un role central dans son développement.

Avant de passer a I'étude générale de la diagonalisation, voyons comment elle s'implémente dans un cas
simple.
10.1.3 Diagonaliser une application dans le plan

Exemple 10.3. Reprenons I'application utilisée comme motivation de la notion de vecteur propre, dans le

chapitre précédent :
( 1) o) (1 : ) ) ( 1) '
X2 2 X1 2 X2 X2

On a donc la matrice relative a la base canonique donnée par

0 1
[T]@m:(l l) .

2 2

Nous avions remarqué que certains vecteurs subissaient, sous I'action de T, une simple multiplication par
un scalaire. Maintenant que 1’on sait que ces vecteurs sont les vecteurs propres, on peut les calculer expli-
citement. Puisque

Pipy,,, () =20 +1-1,

on a deux valeurs propres :

2
¢ A1 = 3, avec espace propre associé E% = Vect{ (1) } )
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-1
e A, = —1, avec espace propre associé E_; = VECt{( 1 )} .

On peut représenter ces espaces propres, et vérifier comment ils sont modifiés sous I'action de T :

15
1
0.5 (®) &
-4 -3 =2 -1 1 2 3 4
-05
-1

Ensuite, choisissons deux vecteurs propres,

2
Vlz(l)EE;, V2:(1)€E_1.

Ces vecteurs étant indépendants (évident, mais surtout vrai parce qu’ils sont associés a des valeurs propres
distinctes!), ils forment une base de R? : %8 = {v;,v»}.

Exprimons T dans cette base 98 formée de vecteurs propres :

[Tl = Py ' | T) By Ptosn—2 -

Comme

2 1 o111
P‘%“a““%:(l 1)' P‘%““‘%lzﬁ(—l 2)’

ona

On a ainsi diagonalisé T ; sur la diagonale de [T]g apparaissent précisément les valeurs propres.

Maintenant, lorsqu’on est dans la base 28, 'effet de T sur un vecteur devient transparent puisque sa matrice
est diagonale. En effet, si
X1
Xz = ,
(x]2 ( xz)

1 1
[T®)] 4 = [T)zXg = ((2) _01) (xl) _ (le) _

X2 —X2

alors

Avec cette information, on peut maintenant retourner sur I'animation du dessus, et observer comment ef-
fectivement, sous I'action de T, relativement a 28, la premiére composante de x, est multipliée par %, etla
deuxieme est multipliée par —1. 3
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10.1.4 Définition générale de la diagonalisabilité

Définition 10.4. Une matrice A est diagonalisable si elle est semblable a une matrice diagonale,
c’est-a-dire s'il existe une matrice diagonale D, et une matrice inversible M telles que

A=PDP'.

Remarque 10.5. o Lacondition peut aussi s’exprimer par “A = Q~!DQ”, avec Q inversible, mais on verra
que celle-ci est plus naturelle.

» Toute matrice diagonale est diagonalisable.

Maintenant se pose la question : comment savoir si une matrice est diagonalisable ?

On s’en doute, cette question est reliée a I'existence de valeurs et de vecteurs propres. Mais ¢ca n’est pas
suffisant, comme on verra dans la section suivante.

10.2 Vecteurs propres associés a des valeurs propres distinctes

Théoréme 10.6. Soient Ay, ..., Ay des valeurs propres distinctes (A; # A jSii# ) d’une matrice A, et
soientvy,..., Vi des vecteurs non-nuls tels que

e V) est vecteur propre associé a A1,
. :
* Vi est vecteur propre associé a Ay.

Alors la famille {vy, ..., vy} est libre.

Preuve: On démontre le résultat par récurrence sur k, c’est-a-dire sur le nombre de vecteurs propres dans la famille.
Si k=1,iln'yarien a démontrer, car c’est direct.

Supposons que le résultat est vrai pour des famille de k valeurs propres et k vecteurs propres, et considérons une
famille qui en contient k + 1 vecteurs :

e V) est vecteur propre associé a A,
o
* Vi1 estvecteur propre associé a Ag.1,

ou tous les A ; sont distincts, et tous les v; sont non-nuls.

Considérons la relation
avi+-+ g1V = 0.

Comme avant, agissons de deux maniere sur cette relation :

« en multipliant par A des deux cotés,
a1 vy + o+ @1 Ak Vi1 = 0;
e en multipliant par A;.; des deux cotés,
@1 A1V + o+ A1 A1 Ves1 = 0.
En faisant la différence de ces deux expressions, le terme a .1 A+1Vi+1 disparait, et il reste

a1(A = AgsDvi +- -+ agp(Ag — Ag1)ve =0,
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et comme 'hypothése d'induction garantit que {vy,..., v} estlibre, tous les coefficients de cette combinaison linéaire
sont nuls :
a1(A; = Ag41) =0, , A —Ags1) =0.

Mais A4 est distinct de toutes les autres valeurs propres : A; — Ag,; # 0. De 1a, on tire que a; = 0,...,a; = 0. En
réinjectant ces zéros dans la relation de départ, elle devient

Af+1Vik+1 = 0.
Comme vi.; #0, on conclut que a4, est nul comme les autres, et donc que la famille {vy,---, v} estlibre. O

On peut effectivement remarquer que dans les quelques exemples vus précédemment, des familles de vec-
teurs propres associés a des valeurs propres distinctes étaient toujours libres.

)

possede exactement deux valeurs propres, A; = —4 et 1, = 7. Les espaces propres associés sont

(Y] e}

Orsivy € E_4 et vy € E7 sont tous deux non-nuls, alors {v;, vy} est toujours libre. o

Exemple 10.7. On a vu que la matrice

10.3 Critere de base

Le résultat suivant est une caractérisation de la diagonalisabilité d’'une matrice, qui utilise les vecteurs
propres de cette matrice :

Théoreéme 10.8. Soit A une matrice de taille n x n. Alors A est diagonalisable si et seulement si A
possede n vecteurs propres linéairement indépendants.

De plus, dans le cas oil A est diagonalisable, A= PDP™!, alors
o D asur sa diagonale des valeurs propres de A,

o les colonnes de P sont les n vecteurs propres indépendants de A.

Preuve: Supposons que A est diagonalisable : il existe donc D = diag(dy, ..., d,) et P = [m; - --m], inversible, telle que
A= PDP~!. Remarquons alors que puisque P est inversible, ses colonnes sont indépendantes. Ensuite, si on multiplie
a droite par P, on obtient

AP=PD.

Si on exprime D comme
D =[dye;---duen],

alors

PD=P[de; - dpey]
= [leel e anen]

= [d1m1 .- dnmn] .
On peut donc exprimer AP = PD comme suit :
[Am; --- Am,| = [dym; -~ d,m,],

qui implique bien que Am; = d;m; pour tout j = 1,...,n, et donc que A posséde n vecteurs propres linéairement
indépendants.
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Inversément, supposons que A posséde n vecteurs propres linéairement indépendants, que I'on peut noter vy, ..., vy.
Nommons leurs valeurs propres respectives A1,..., A, :

AVjZ/lej, j:l,...,l’l.

Posons
Pi=[vy--vy,l, D :=diag(Aq,...,15).

Puisque les v; sont indépendants, P est inversible. Calculons :

AP = Alvy---vy]

=[Avy - Avy]
=[Avy - Apvyl
=PD.
En multipliant a droite par P!, on obtient A= PDP™!, qui signifie bien que A est diagonalisable. O

Informel 10.9. Donc une matrice est diagonalisable si et seulement s’il est possible de construire
une base de R” composée uniquement de vecteurs propres de cette matrice.

Remarque 10.10. Ce qui n’est pas précisé, dans I'énoncé du théoréme ci-dessus, mais que nous avons ob-
servé dans la preuve, c’est que I'ordre dans lequel les valeurs propres sont rangées sur la diagonale de D doit
respecter I'ordre dans lequel les vecteurs propres sont rangés pour former P. On le fera explicitement dans
des cas particuliers, plus bas. o

Avant de voir quelques exemples, donnons une conséquence directe du théoreme :

Corollaire 10.11. Si A est une matrice de taille n x n avec n valeurs propres distinctes, alors elle est
diagonalisable.

Preuve: Si A posséde n valeurs propres distinctes, alors elle posséde aussi n vecteurs propres. Puisque ces vecteurs
propres sont associés a des valeurs propres distinctes, ils sont linéairement indépendants. Par le théoreme ci-dessus,
ceci implique que A est diagonalisable. O

Exemple 10.12. Soit A = (? _53

vecteur propre. Par conséquent, A n'est pas diagonalisable. 3

). Comme P4(A) = (5—-1)%+3 >3, An’aaucune valeur propre, donc aucun

31
Exemple 10.13. Nous avons aussi vu que B = ( 0 3) possede une seule valeur propre, 1, = 3, mais que

E3=Ker(A-3D) = Vect{ ((1)) } .

Ceci implique que B ne possede pas deux vecteurs propres linéairement indépendants, donc B n’est pas
diagonalisable. ©

nforme .14. Dans ce dernier exemple, on a une matrice qui possede une infinité de vecteurs
Infi 110.14. D d 1 t d finité d t
propres, mais qui n’est pas diagonalisable parce que ses vecteurs propres ne “remplissent” pas assez

R? (ils ne permettent pas de former une base).

Exemple 10.15. Etudions la diagonalisabilité de

1 2 0
B=]0 3 0
2 -4 2
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On calcule :

1-12 2 0
Pg(A)=det| 0 3-1 O
2 -4 2-1

2-1
=1-M2-1)EB-1).

=6—Anm%121 0)

Comme B est une matrice de taille 3 x 3 avec 3 valeurs propres distinctes, le corollaire ci-dessus implique
que B est diagonalisable. Ecrivons la diagonalisation explicitement.

D’abord, calculons les espaces propres :

1
E, =Vect 0 ,
-2
0
E,=Vect< |0 3,
1
1
E3 =Vect 1
-2

Pour ce faire, il nous faut un vecteur propre pour chaque valeur propre. Choisissons, pour chaque valeur
propre, un vecteur propre associé :

e Pour 1; =1, on peut prendre

0
e Pour 1, =2, on peut prendre v, = 0).
1
1
¢ Pour A3 =3, on peut prendre vy = | 1

2
(Les vecteurs vy, vy, V3 sont automatiquement indépendants, puisqu’ils sont associés a des valeurs propres
distinctes.)

Maintenant, pour réaliser la diagonalisation, on place ces valeurs propres sur une diagonale, et les vecteurs
propres associés, dans le méme ordre, dans une matrice de changement de base :

0 0 1 0 1
D:=|0 2 0}, P=[vivv]=10 0 1],
0 0 3 -2 1 -2

qui donne la diagonalisation B= PDP™!.

Mais on pourrait aussi organiser les valeurs propres dans un ordre différent; la seule condition a respecter
est que le placement des vecteurs propres dans la matrice de changement de base respecte l'ordre choisi pour
les valeur propres. Par exemple,

200 0 1 1
D:=|0 3 0|, P:=[wvv]=|0 1 0],
0 0 1 -2 -2
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qui donne la diagonalisation B= PDP!, o

Exemple 10.16. Etudions la diagonalisabilité de

1 3 3
C=|-3 -5 -3
3 3 1

Cette fois,
PcA)=1-1)(A+2)2.

On n’a que deux valeurs propres (et pas 3), donc les hypothéses du corollaire ne sont pas satisfaites. Pour
voir si I'hypothése du théoréme est satisfaites, on doit voir s'il est possible de former une base de R® avec
des vecteurs propres.

Or I'étude des espaces propres révele que
e Pour 1, =1, Ej est engendré par

-1 -1
e Pour Ay =-2,E_yestengendréparw; =| 1 [etwp =] 0
0 1

Puisque {v;,w;,w>} est libre, donc forme une base de R?; ainsi, le théoreme implique que C est diagonali-
sable. La diagonalisation peut se faire par exemple avec

0 0 1 -1 -1
D:=|0 -2 0], P:=[viwyws]=|-1 1 o0,
0 0 -2 1 0 1
qui donne C = PDP~!. Bien-siir, d’autres choix sont possibles. 3

10.4 Deuxiéme critere

Le deuxiéme critéere est essentiellement une conséquence du premier, mais prend une forme dans laquelle
on peut déterminer la diagonalisabilité uniquement a partir de la connaissance des multiplicités géomé-
triques des valeurs propres :

Théoreme 10.17. Soit A une matrice de taille n x n. On suppose que toutes les racines du polynéme
caractéristique P4 () de A sont réelles. Alors A est diagonalisable si et seulement si

Y multg() = n.
Aespectre(A)

De plus, cette derniere égalité est vérifiée si et seulement si

multg (1) = mult,(A), VA € spectre(A).

Preuve: Supposons que spectre(A) = {11,...,Ag}. = : Supposons que A est diagonalisable. Par le théoreme de la sec-

tion précédente, il existe donc une base de R, formée de vecteurs propres de A :

B={vi,...,Vu}.
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Comme chaque v; est vecteur propre, il doit étre associé a une des valeurs propres de spectre(A). Pour i = 1,...,k,
définissons m; comme étant le nombre de vecteurs de la famille {v,,...,v,} qui sont associés a la valeur propre 1;. On
adonc

i _

Puisque 28 est une base, les vecteurs de {vy,...,v,} qui sont associés a une méme valeur propre forment une famille
libre, donc
m; <multg(4;).

Mais comme on sait aussi que multg (1;) < multy(A;), on peut écrire

k

k
=) m; <) multg(A;) < Y multy(A;) < n
i=1 i i

by

qui implique
Z multg(A;) = Z mult,(1;) =
i=1
Remarquons aussi que cette derniére implique que

multg (1;) = mult,(A;), Yi=1,...,k.

En effet, s’il existe un i tel que
multg (A;) <mult,(A;),
alors
k k

Y multg(1;) < ) multy(4;).

i=1 i=1
<« : (Le paragraphe qui suit est un peu lourd en notations, méme sil’idée est simple.) Supposons maintenant que cette
derniére égalité est vraie. Pour chaque i = 1,..., k, définissons g; := multg (A;) = dim(E),,), et considérons une base de
Ej,, notée

=i’ vy, . vy
Montrons que I'union de toutes ces bases,
B =B U UBy

qui contient par définition n vecteurs, est libre.
On considere donc la relation linéaire

M, . (k) (k)_
(%) A+ /1gk 2 =0.

Plus précisément,
k g

Sil’on introduit les vecteurs
8i
e (1) (D)
w; = Z )Lj Vi
j=1
alors (*) devient
(%) Wi+ +wi =0.

Mais chaque w; € Ey,, et donc les wy,...,wy sont des vecteurs propres associés a des valeurs propres distinctes, ils
forment donc une famille libre. Ceci signifie que si leur somme est nulle, alors ils sont tous nuls :

w; =0, Vi=1,..., k.

Mais comme %B; = {v(ll),v;‘), ,vgi)} est une base, ses vecteurs sont indépendants, et donc

w; = A(li)v(li) +oeet /lgl_)vgi) =0

implique que )Lgi) == Agi) = 0. Ceci montre que £ est libre; puisqu’elle contient 7 vecteurs, c’est une base de R”.
Par conséquent, A est diagonalisable. O
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Exemple 10.18. Dans la section précédente, on avait considéré

1 2 0
B=|0 3 0
2 -4 2

On a vu que cette matrice possede trois valeurs propres, chacune de multiplicité géométrique égale a 1, ce
qui implique
Y multgA)=1+1+1=3.
Aespectre(A)
Par le théoréme ci-dessus, on en déduit que B est diagonalisable. o

Exemple 10.19. Etudions la diagonalisabilité de

1 -1 0
A=|1 1 O
0 0 1

Comme
Pa)=(1-D(QA*-21+2),
A<O!
A ne posséde qu'une valeur propre : A1 = 1, avec mult,(1) = 1. Or comme

0
E, =Ker(A—-1,) =Vects |0 ,
1

on a multg (1) = 1. Puisqu’ici n =3, on a

Y multg(A) <3,
Aespectre(A)

v~

=1

v

le théoreme implique que A n’est pas diagonalisable. 3

10.5 Puissances de matrices diagonalisables
Dans cette section on va voir une application pratique de la diagonalisation.

Lemme 10.20. Soit A un matrice de taille n x n diagonalisable. En conséquence, il existe une matrice
inversible P de taille n x n telle que P~' AP est une matrice diagonale diag(d,, ..., d,,), ce qui équivaut
décrire
A= Pdiag(d,,...,d,)P .
Alors, pour tout entier positif k,
A¥ = pdiag(df,...,d5 P71

Preuve: On montre le résultat par récurrence sur k, le cas k = 1 étant direct. Si 'on suppose que le résultat est vrai
pour N, alors

Ak+1 — AkA
= (Pdiag(dy,...,d% P71 (P diag(d,,...,d) P
= pdiag(df,...,d%diag(d,, ..., d,) P!
= Pdiag(dF*!,..., kPt

comme on voulait démontrer. O
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Exemple 10.21. Soit
0

A=

©OIoXOI it
0N O
©|~xo|0

Ol

On va calculer A%, Pour le faire, on va montrer que A est diagonalisable et la diagonaliser. On calcule
d’abord le polynéme caractéristique de A, qui nous donne

[—

©oloowols |

A 0 0
P4(A) =det(A—Al3) =det

7_1 _8
:(1—/’l)det(9_é _ZEA)
:—()1—1)(/12————

=—A-1DA*-1)=-A-1%A+1).

En conséquence, les valeurs propres de A sont —1, avec multiplicité algébrique 1, et 1, avec multiplicité
algébrique 2.

On calcule maintenant une base des espaces propres associées. Pour A = -1, ona

2 0 0
E_j=Ker(A+Iz)=Ker[g & -3f,
8 a2
9 9 9
et comme la forme échelonnée réduite de A + I3 est
1 0 O
1
01 -1,
0 0 O
on voit que
1 0 O
E.y=Ker|0 1 -3
0 0 O
X1
= Xo|:x1=0,x2=x3/2
X3
0
=< |x3/2]:x3€R
X3
0 0
=Vects [ 1/2| } =Vect{ | 1
De facon analogue, pour A=1,0na
0 O 0
Ey=Ker(A-Iz)=Ker[s -% -3|,
8 _4 _16
9 9 9
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et comme la forme échelonnée réduite de A —1I3 est

1 -1 -2
0 O o1,
0 O 0
on voit que
1 -1 -2
E;=Ker|0 O 0
0 0 0
X1 X
= Xo|:x1=—+2x3
2
X3
%+2x3
= X2 1 X2, x3 ER
X3
1/2 2 1 2
= Vect 1 ],]0]p=Vects|[2],
0 1 0 1
Alors, sil’on pose
-1 0 O 01 2
D=0 1 0 et P=|1 2 O
0 01 2 01
on voit que
A=PDP7 !,
ce qui implique que
A1000 _ p 51000 p-1
Or,
-1 0 0\ [plo o 1 00
D% —fpo 1 0 = 0 11900 o [=]o 1 o]=1I,
0 0 1 0 0 11000 0 0 1

ce qui nous dit que
A = pplp=t = prp~t = pp7l=1;.
o

Exemple 10.22 (Un exemple sur modeles de population). Dans cet exemple on va étudier I'évolution dans
le temps d'une population d’organismes du méme type. Nos hypotheses sur ces organismes sont :

(H1) chaque organisme a une durée de vie maximale de N € N* unités de temps (e.g. minutes, heures,
jours, années), et on va noter 'dge d'un organisme avec 1 <i < N;

(H2) siun organisme a age 1 < i < N, la probabilité de survivre encore un jour est p;;1—; € [0,1];
(H3) siun organisme a dge 1 < i < N, la quantité d’organismes qu’il engendre est r; € N.

On remarque que |'’on considére qu'un organisme a age i s'il a vécu i — 1 unités de temps mais pas (encore)
son i-éme unité de temps. En particulier, 'dge d'un organisme nouveau-né est i = 1.

On va noter g; (k) la quantité d’organismes ayant age i au temps k € N (aussi mesuré dans les mémes unités
de temps que I'age des organismes).
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Dans notre modele, on considere que 'unité de temps choisie est trop petite par rapport aux quantités
étudiées de sorte qu’il n’ait pas trop de sens d’analyser le comportement de ces quantités a I'intérieur d'une
unité de temps.

D’apres nos hypotheses

qr(k+1)=riqi(k)+---+rngn(k),
qi(k+1) = pi—i-n4qik),

pourtout1<i< NetkeN.Silonpose

q1(k)
g2 (k)
q(k) := : ,
qn (k)
alors
q1(k+1) nqik) +  raqk)  + -+ rN-14n-1(k) + rngn(k)
G2(k+1) p2—14q1(k)
g3(k+1) | = p3—2q2(k)
qn(k+1) PN—-1)GN-1(k)
r rp e FN-1 N qi1(k)
P21 o - 0 0 g2 (k)
= 0 p3—2 - 0 0 : ,
: : . : qn-1(k)
0 0 - pnewn-p O qgn (k)
)
ie.

qk+1)=Lq(k),

ce qui implique que
q(k) = L¥q(0).

La matrice L est appelée la matrice de Leslie du modele. On est ainsi intéressé a calculer L* pour k > 1.

On va calculer q(k) pour I'’exemple de modele de population avec N = 3 donnée par la matrice de Leslie

0 7 6
L=]1 0 O
010

0
ao- 1]
1

On va montrer que L est diagonalisable et on va appliquer le lemme précédent pour calculer L. Dans ce
cas le polynome caractéristique de L est

et I’état initial

-2 7 6
Pi() =det(L—Al3)=det| 1 -A 0 |=-23+71+6,
0 1 -A
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ol 'on a développé selon la premiere ligne. En regardant les diviseurs de 6, on voit que A = —2,-1,3 sont
des racines de Py (A1). En conséquence, les valeurs propres de L sont A = —2,—1,3. Comme on a trois valeurs
propres différentes, L est diagonalisable. En fait, on voit bien que

4 1 9
vi=|-21, vy =|—-1 et vy3=|3
1 1 1

4 1 9 -2 0 0
P=1-2 -1 3 et D=0 -1 0
1 1 1 0 0 3
on voit que
L=PDP!,
On a aussi dans ce cas que
1 2 3
-1 5 5
Po=l-7 7 3
L e
20 20 10

On conclut que

4 1 9\(=2F o o)t -2 -3
tf=ppfpl=|-2 -1 3|[ 0 (DF of|-1 L 3
k{1 3 T
1 1 1 0 0 3 35 3 1o
k+2 k+2  qk+2) /1 2 _3
(_2)1;1 (_l)kil 31;1 5 5 F
|2 k b k : k R
(-2) (-1 3 35 36 10
ce qui nous dit que
k+2 k+2  qk+2) /1 2 _3
(=2)¥"° (=Dt 3 5 —& —35)\(0

q(k) — qu(o) — (_2)k+l (_1)k+1 3k+1 _le % % 1

2% =k 3k % % /U

(_2)k+2 (_1)k+2 3k+2 -1

— k+1 k+1 k+1 7

=2k cpka gl 2

G L G VL L A

_4(_2)k+2+7(_1)k+2+3k+2

— _4(_2)k+1+7(_1)k+1+3k+1
—4(-2)F +7(-1)k + 3%

Sil'on pose ay = (-4(-2)F + 7(~1)¥ + 3%) /4, on trouve ainsi

Aj+2
q(k) =| ag+1
ag

On sait que la limite de a; lorsque k tend vers infini est aussi +oo, vu que I'opérande 3* est dominant. On
peut aussi calculer les premieres valeurs de ay, ce qui donne

k 0 1 2 3 4 5 6 7 8 9 10
ay 1 1 0 13 6 91 120 673 1383 5431 13740
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10.6 Diagonalisation dans le cas complexe*

0 -1
A=
1 0
on voit que son polyndme caractéristique est P4(A) = A2 +1, qui n’a pas de racines réelles. En conséquence,
on ne peut pas a priori appliquer aucune des définitions ou méthodes de ce chapitre ou celui d’avant, car A
n’'a pas de valeurs propres (réelles). Par contre, cette restriction de considérer des valeurs et vecteurs propres

réels est d’'une certaine facon artificielle, car on voit bien que le polynome P 4(1) = A2 +1 admet précisément
deuxracines: —i et i dans C.

Sil’on consideére la matrice

En fait, de fagon plus générale, toutes les définitions et résultats de ce chapitre et celui d’avant peuvent se
faire en considérant des nombres complexes, en particulier, on peut parler des valeurs et vecteurs propres
complexes. L'avantage de ce point de vue c’est que I'on peut trouver dans C toutes les racines du polynéme
caractéristique de toute matrice carrée A (méme si A a des coefficients réels). Dans ce sens, toute matrice
carrée de taille n x n possede toujours des valeurs propres. Au lieu de voir la théorie générale, qui est plus
ou moins pareille a celle que I'on étudie dans le cas réel, on va se contenter dans cette section de faire
seulement un exemple pour illustrer un peu la situation.

Exemple 10.23. Soit

1 V3
2 0 %
A=l 0 2 0
V3 1
-3 0 3

On va montrer que A est diagonalisable sil’on travaille dans les complexes, mais elle n’est pas diagonalisable
sil’on travaille seulement avec les nombres réels. On calcule d’abord le polyndme caractéristique de A, qui
nous donne

1_ 0 V3

2 2

Pa(A) =det(A—AI3)=det| O 2-7 0
3

-2 0 3-1
1_1 B
2 2 A

) (Az—%)2+z

=—A-2)(A>=1+1).

Comme le discriminant du polynéme A? — A + 1 est négatif, il n’a pas de racines réelles. Si I'on travaille avec
les nombres complexes, on note par contre que

—iV3 V3
1 2l 3)(/1_1-%1 3).

PA(A)z—(A—Z)(/IZ—/l+1)=—()L—2)(/1— .

En conséquence, les valeurs propres de A sont 2, (1 —iv/3)/2 et (1+iv/3)/2, chacune avec multiplicité algé-
brique 1.

On calcule maintenant une base des espaces propres associées. Pour A =2, on a

_3 V3
5 03
Er =Ker(A—-2I3) =Ker| O o1,
_\V3 0o -3
2 2
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et comme la forme échelonnée réduite de A— 215 est

1 00
0 0 1],
0 0O
on voit que
1 00
E,=Ker|0O 0 1
0 0O
X1
= X2 xl—X3=0
X3
0
= Xo|:x2€R
0
0
= Vect 1
0
Pour A = (1-iv/3)/2,0na
" i3, 3
1-iv3 2 2
Em=Ker(A— 5 Ig)=Ker 0 §+i‘/7§
’ VRPN
2 2

On calcule la forme échelonnée réduite de A— ((1 —v/3)/2)I3, ce qui nous donne
L — 4%

e —2 g,
0 v3 f2 \/5(\/§+i) f2
L3

Ly

13- -Z

oo © ol
Njw
+
S

En conséquence,

Ty
0
W
|
A
—
(=)
O =
o O

= Xo|:x1=1ix3,X2=0

ix?,
= 0 |:x3e€C
X3

=Vect< |0

Pour A = (1+iv/3)/2,0ona

NQJ
o
> Mg

E,..s = Ker(A-
2

V3 -y

1+iv3

13) = Ker
2

NG
=)

200

NumChap: chap-diagonalisation, Derniére compilation: 2025-01-13 12:27:17Z. (Version Web: botafogo.saitis.net)


botafogo.saitis.net

10.7. Résumé du chapitre sur la diagonalisation

On calcule la forme échelonnée réduite de A— ((1++v/3)/2)13, ce qui nous donne

2

L—iZl
—i¥ o T - L I 10 i
2 V3 2 L _%La Ly—L3—L;
0 3-i% 0 — 01 0/™="10 1 of.
_¥3 0 _i¥3 1 0 i 0 0O
2 2
En conséquence,
1 0 1
E. .. s=Ker{0 1 O
’ 000
X1
=< |x2]|:x1=—ix3,x=0
X3
—iX3
= 0 :x3€e€C
X3
—i
= Vect 0
1
Alors, sil’on pose
20 0 0 i —i
Dp=[0 =8 et P:(l 0 0),
1+iV3
0 0 L 01 1
on voit que
0 i -i\(¢ O 0 0 10
A=pPDP'=|1 0 o |fo =2 o [[-{ o 1],
. 1 1
01 1/{p o LJ{{ 0 3

ol1'on a calculé P~! avec la méthode de Gauss-Jordan. On conclut que A est diagonalisable dans C mais
pas dans R. 3

10.7 Résumé du chapitre sur la diagonalisation

MATRICE A € M, (R) DIAGONALISABLE :
A DIAGONALISABLE = 3P € M, (R) INVERSIBLE TELLE QUE P~ AP EST MATRICE DIAGONALE

RESULTAT DE BASE :

V1,...,Vi VECTEURS PROPRES RESP. POUR 1, ..., A € spectre(A) DISTINCTES = {vj,...,vi} LIBRE
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10.7. Résumé du chapitre sur la diagonalisation

RESULTAT FONDAMENTALI :

A€M, (R) DIAGONALISABLE < 3vj,...,v, VECTEURS PROPRES DE A ET LIBRE (= BASE) ]

(VOIR THM 10.8)
U
d 0 - 0
A=PDP™' AVEC P=[viv,...v,] ET D= (:) d:Z (:),01‘1 Av; = d;v;
0 0 - dy

RESULTAT FONDAMENTAL II :

SITOUTE RACINE DE

P (1) EST REELLE, A DIAGONALISABLE < VA VALEUR PROPRE multg (1) = multg(A)

(VOIRTHM 10.17)

RESULTAT REMARQUABLE :

A= P diag(d,,...,d,) P"' = A¥ = P diag(d¥,...,d* P!

202 NumChap: chap-diagonalisation, Derniére compilation: 2025-01-13 12:27:17Z. (Version Web: botafogo.saitis.net)


botafogo.saitis.net

Chapitre 11

Produit scalaire et orthogonalité

11.1 Introduction

Dans ce chapitre on va étudier la notion de distance entre vecteurs, et entre vecteurs et sous-espaces vecto-
riels. Pour le faire on va introduire la notion de produit scalaire des vecteurs, qui nous permet aussi d’étudier
la notion d’orthogonalité (aussi appelé perpendicularité).

La raison fondamentale pour laquelle on s’'intéresse aux notions de distance et de perpendicularité est due
au probleme suivant. Souvent on va se rencontrer avec des systeme d’équations linéaires Ax = b, ou A
est une matrice de taille m x n et b € R™, qui sont incompatibles, i.e. qui n'ont pas de solution. Jusqu'a
maintenant, on s’est contenté de dire uniquement qu’ils n'admettent pas de solution. Par contre, méme si
ces systemes d’équations linéaires n'ont pas de solution au sens strict, on peut considérer des points qui
sont les plus proches a étre une solution, i.e. des éléments xy € R” tels que

distance entre Axg et b soit minimale.

On verra les détails de ces calculs, et en particulier comment calculer les vecteurs qui minimisent la distance
précédente dans le chapitre suivant. La perpendicularité rentre dans ce probléme, car, comme on verra plus
tard, la condition de minimalité de la distance précédente est équivalente au fait que b— Ax, est orthogonal
atout vecteur de la image Img(A) de A.

La situation peut se représenter graphiquement de la facon suivante :

Img(A)
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11.2. Norme et distance euclidiennes

Objectifs de ce chapitre

Ala fin de ce chapitre vous devriez étre capable de

(0.1) connaitre la définition de produit scalaire, ainsi que quelques propriétés;

(0.2) déterminer si une application est un produit scalaire;

(0.3) calculer des produits scalaires, vérifier si des éléments sont orthogonaux;

(0.4) calculer des compléments orthogonaux, et prouver des propriétés fondamentales;

(0.5) appliquer l'algorithme de Gram-Schmidt pour trouver une base orthonormée a partir d'une
famille génératrice;

(0.6) calculer la projection orthogonale d'un vecteur sur un sous-espace vectoriel, qui donne la
meilleure approximation du vecteur avec des éléments du sous-espace;

(0.7) calculer la décomposition QR d'une matrice.

Nouveau vocabulaire dans ce chapitre

¢ produit scalaire o famille orthonormée

o produit scalaire usuel o complément orthogonal

e norme associée a un produit scalaire  projection orthogonale

» distance entre deux vecteurs  distance d’'un vecteur a un sous-espace
e vecteur unitaire o algorithme de Gram-Schmidt

» vecteurs orthogonaux o orthonormalisation d'une base

» famille orthogonale o décomposition QR d'une matrice

11.2 Norme et distance euclidiennes

Définition 11.1. Sixe R", etsi x,..., X, sont ses composantes relatives a la base canonique, alors sa
norme euclidienne (ou usuelle) est définie par le réel

x|l := xf+---+x%.

Proposition 11.2 (Propriétés de la norme euclidienne). La norme euclidienne satisfait aux proprié-
tés suivantes :

(NOR.1) |Ax|| = |A|lIx]| pour tous A € R,x € R ;
(NOR.2) |x|| = 0 pour toutx € R", et ||x|| = 0 si et seulement six=0;
(NOR.3) |x+yll < X[l + lyll pour tousx,y € R" (inégalité triangulaire).

Preuve: Pour la premiére propriété,

IAx] = /(Ax)? + -+ (Axy)?
=\ JA2 e A2
= A3} et

=[x
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11.2. Norme et distance euclidiennes

Ensuite, | x|| > 0 est évidente, et remarquons que | x|| = 0 si et seulement si Ixl% =0, qui est équivalente a
xf+--~+xfl =0.

Or une somme de nombres non-négatifs est nulle si et seulement chacun de ces nombres est nul, xi =0, et donc
X =0 pour chaque k=1,...,n.

On démontrera I'inégalité triangulaire dans la section suivante. O

Définition 11.3. On dit que x € R" est unitaire (ou normalisé) si [|x]| = 1.

Remarque 11.4. Pour tout vecteur non-nul x, il existe exactement deux vecteurs unitaires qui sont coli-
néaires a x, donnés par

X
Uy i=+——.
(b

La notion de norme permet de définir encore deux notions géométriques classiques :

Définition 11.5. La distance euclidienne (ou usuelle) entre x et y est définie par

dist(x,y) := [[x—yll.
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11.3. Produit scalaire euclidien

11.3 Produit scalaire euclidien

11.3.1 Définition et propriétés fondamentales

Définition 11.6. Soient x,y € R". Le produit scalaire euclidien (ou usuel) de x et y est défini par
Xy =x1y1+x2y2+-+Xn¥n.

Remarque 11.7. Il sera souvent utile de récrire le produit scalaire euclidien en le réinterprétant comme un
produit matriciel un peu particulier :

N
X y=x1y1+-+xXpyn=x1--x5)| : |=X"Y.
———
1xn yn

~——
nxl1

Proposition 11.8 (Propriétés du produit scalaire euclidien). On a les propriétés suivantes.
(PS.1) Le produit scalaire euclidien est symétrique, i.e.X -y =y X.
(PS.2) Le produit scalaire euclidien est bilinéaire, i.e.
(PS.2.1) x-(y1 +Ay2) =X y1 + AX Y2 ;
(PS.2.2) x1+AX0) y=X; Y+ AXp-y.

(PS.3) Le produit scalaire euclidien est défini positif, i.e. x-x > 0 pour toutx € R", et x-x = 0 si et
seulement six = 0.

(NRM) Le produit scalaire euclidien et la norme euclidienne sont liés parx-x = ||x||?.

(C-S) Le produit scalaire euclidien satisfait l'inégalité de Cauchy-Schwarz
Ix-yl < Iyl
Preuve: Les cinq premiéres propriétés suivent directement de la définition du produit scalaire euclidien. Démontrons

I'inégalité de Cauchy-Schwarz.

Pour commencer, remarquons que I'inégalité est triviale des que y (ou x) est nul. On peut donc supposer que y # 0.
Ensuite, remarquons que pour tout f € R,

0 < lIx+ tyll* = (x+ ty) - (X + ty)
=X-X+2t(xX-y) + tz(y-y)
= [Ix||I* + 2t (x-y) + £ lyll.

Comme cette inégalité est vraie pour tout ¢ € R, le discriminant du polynéme quadratique précédent est non positif,
vu qu’il posséde au moins une racine réelle, ce qui implique que

4x-y)* —4lx*lyl* <0,

ce qui équivaut a
x-y)2 < x>

On obtient I'inégalité de Cauchy-Schwarz en prenant la racine carrée des deux cotés. O

Remarque 11.9. R”, muni du produit scalaire, est un cas particulier de ce que nous appellerons plus tard
un espace euclidien. 3
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11.3. Produit scalaire euclidien

Informel 11.10. En petites dimensions (n = 2 ou 3), le produit scalaire est relié a 'angle 6 fait par x
ety, par la relation fondamentale suivante :

x-y =[xyl cos(®).
Néanmoins, nous ne ferons pas usage de cette relation.
On peut utiliser I'inégalité de Cauchy-Schwarz pour démontrer I'inégalité triangulaire de la section précé-
dente:

Ix+ylI? = x+y)- x+y)
= IxII* +2(x-y) + llyl?
<IN + 2011yl + llyl?

2
= (IIxIl + hyll)~-
11.3.2 Orthogonalité
Le produit scalaire est surtout utilisé, en algebre linéaire, pour résoudre des problemes dansR" a l'aide d’ar-
guments géométriques empruntés a la géométrie du plan et de I'espace. Et la premiére notion qui joue un

role en géométrie est celle d’orthogonalité.

Définition 11.11. Deux vecteurs X,y € R” sont orthogonaux (ou perpendiculaires) six-y = 0. Six et
y sont orthogonaux, on écritx L y.

£ ;
X+y |
|
y l
Iy
X
Exemple 11.12. Dans RS, les vecteurs
3 2
1 2
x=|-21, y=15
0 3
2 1
sont orthogonaux, vu que x-y = 0. o

Voici une description équivalente de I'orthogonalité de vecteurs de R” :

Lemme 11.13. Deux vecteursx,y € R" sont orthogonaux si et seulement si ||x + yII2 = |Ix/I% + ||y||2.
Preuve: On remarque d’abord I'égalité

— 1 2 2 2
0y = 5 (I P = (10 + yi?)).
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11.3. Produit scalaire euclidien

Ceciimplique que x-y = 0 si et seulement si ||x + y||2 = |Ix|I? + ||y||2, comme on voulait démontrer. O

En géométrie, on considere souvent un objet géométrique, généralement une droite ou un plan, défini
comme étant perpendiculaire a un autre. En algebre linéaire, on définit un ensemble de vecteurs qui sont
tous orthogonaux aux vecteurs d'un autre ensemble :

Définition 11.14. Soit W un sous-espace vectoriel de R”. Le complément orthogonal de W est'en-
semble
wt.= {veR"|vLlwVYwe W}.

Commengons par comprendre intuitivement le sens de W+, en petites dimensions :

Exemple 11.15. Si W est un plan (passant par l'origine) de R3, alors W+ est la droite perpendiculaire a W,
passant par l'origine :

W = Vect{vy, vz} wt
Vi
V2
2
@ /
(En effet, un vecteur v quelconque sur la droite est perpendiculaire a tous les vecteurs w du plan.) o

Exemple 11.16. Si I est une droite (passant par I'origine) de R, alors W+ est le plan perpendiculaire 2 W,
passant par |'origine :

Wl w
w
Vi
V2
2
@ /
(En effet, un vecteur v quelconque sur le plan est perpendiculaire a tous les vecteurs w de la droite.) 3

Ces deux derniers exemples illustrent bien les propriétés générales ci-dessous :
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Proposition 11.17 (Propriétés du complément orthogonal). Etant donné un sous-espace vectoriel
W cR", alors

1) W est un sous-espace vectoriel deR" ;
2 wht=w;
3) dim(W) +dim(W+) = n.

Preuve: On vérifie que W+ est un sous-espace vectoriel de R”.
« Clairement, le vecteur nul appartient a W puisque 0-w = 0 pour toutwe W.

« Sive W+, alors pour tout scalaire A € R,
Av) - w=A(v-w) =0,

donc Ave W+,
e Sivy, v, € W+, alors pour toutwe W,

Vi+Vv2) - w=vy;-w+vy-w=0+0=0,

doncvy +vp € W1,
Les autes propriétés seront démontrées en exercice. O
Dans la définition, W+ est défini comme I’ensemble des vecteurs qui sont orthogonaux a tous les vecteurs

de W. Ceciimplique que d'un point de vue calculatoire, on devrait a priori vérifier une infinité de conditions
pour savoir si un vecteur appartient a2 W+. Mais lorsqu’on posséde une base les choses sont plus simples :

Lemme 11.18. Soit W un sous-espace vectoriel de R", et soit B = {wy, ..., Wy} une famille génératrice
de W. Alorsve W+ si et seulement siv L. w; pourtoutj=1,..., k.

Preuve: On sait par hypothése que W = Vect{wy,...,w}.

Si v est orthogonal a tous les vecteurs de W, il est en particulier orthogonal a chacun des éléments de la famille géné-
ratrice 28.

Inversement, supposons que v est orthogonal a chacun des éléments de la base. Comme un élément quelconque
w e W peut se décomposer dans la base, w = a;w; + - - + a Wy, la linéarité du produit scalaire implique que

VW=V (AW +-+awg)
=a1(v-wy) +- +ap(v-wg)
—— ~——
=0 =0

etdoncve W+, O

Calcul du complément orthogonal W+ d’un sous-espace vectoriel W < R”

Etant donné un sous-espace vectoriel W de R”, pour calculer W+ :
(CO.1) on trouve une base {wy,::-,w} de W;

(CO.2) ona
w = Ker([wl wk]T).
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Remarque 11.19. La preuve de l'identité wt = Ker([wy -+ wy] T précédente suit de lemme ci-dessus. En
effet, ve Ker(fw; --- wi]7) si et seulement si

wlT wlT v WiV
0=[w; - wil'v=| : |v=[ ¢ [=f : [,
T T .
W WV WiV
ce qui équivaut a w; - v = - = Wg - v = 0. Le lemme précédent nous ainsi que v € Ker([w; --- wk]T) si et
seulement sive W+, o
Exemple 11.20. Dans R3, considérons les vecteurs
1 -1
W) = 2 » Wy = B
0 1

et considérons le plan
W = Vect{w,w»}.

Le lemme précédent dit que
wt = {ve R3: vilw; etvlwy}.

Donc on cherche les vecteurs v € R3 tels que les deux conditions suivantes soient satisfaites simultanément :

v-w; =0,
{V-WZZO.
U1
Siv=| v, |, ceciest équivalent a
U3
4] + 219 = 0,
{—Ul + 31, + v3 = 0.

On peut prendre v; comme variable libre, et donc on voit que W+ est une droite :

X1 2
Wh=_{v=|-x1/2||x;eR Y =Vect{ | -1
5X1/2 5

On vérifie bien dans ce cas que
dim(W) + dim(W+) =2+1=3.

Informel 11.21. Dans ce dernier exemple, I'intuition géométrique aurait peut-étre suggéré de trou-
ver un vecteur directeur de la droite W+ en calculant le produit vectoriel de w; et w». Mais ce produit
(que nous ne traiterons pas dans ce cours) n’existe que dans R3, alors que la méthode que nous avons
utilisée fonctionne en toute dimension.

Exemple 11.22. Dans R*, considérons les vecteurs

1 -1
2 0

W1 = gl W2 = 1|
0 2
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et considérons le plan
W = Vect{w,w»}.

Puisque dim(W) =2 et que
dim(W) +dim(W+) = 4,

on sait que dim(W+) = 2, et donc W+ doit aussi étre un plan. Et effectivement, un calcul semblable  celui
de I'exemple précédent (voir exercices) montre que

wt = Vect{p1,p2}-

ou

pP1

Il
o = O =
=
]
|
(=)

11.4 Définition abstraite de produit scalaire et exemples

11.4.1 Définitions générales

Dans cette section, nous allons introduire la notion de produit scalaire sur un espace vectoriel quelconque.
Ceci permettra de définir la notion de perpendicularité dans un cadre trés général, et d'utiliser une ap-
proche semblable a celle des derniers chapitres pour la résolution de nombreux problemes d’approxima-
tion.

Définition 11.23. Soit V un espace vectoriel. On appelle produit scalaire une application V x V —
R qui a toute paire de vecteurs u,v € V associe un réel noté (u|v) € R, satisfaisant aux propriétés
suivantes :

(PS.1) l'application V x V — R est symétrique, i.e. (u|v) = (v|u) pour tous u,ve V;
(PS.2) T'application V x V — R est bilinéaire, i.e.

(PS.2.1) (u+Au'|v) = (ulv) + A(t|v) pour tous u, u’, ve Vet LER;

(PS.2.2) (ulv+Av") = (ulv) + A(u|v') pour tous u, v, v € Vet LeR;

(PS.3) l'application V x V — R est définie positive, i.e. (u|u) > 0 pour tout u € V, et (u|u) =0 si et
seulement si u =0y .

Un espace vectoriel muni d'un produit scalaire est un espace préhilbertien. Un espace préhilbertien
de dimension finie est un espace euclidien.

Exemple 11.24. L'espace R", muni du produit scalaire euclidien
ulv):=u-v=uv1+---+uyv,,

est notre premier exemple d’espace euclidien. 3

Exemple 11.25. On considere I'espace vectoriel V = R?> muni du produit scalaire donné par
(3 1
(ujv):=u 1 3 v=3uv1+uva+upv; +3upvs.

L'expression précédent définie en effet un produit scalaire. La symétrie suit de

(uv) =3uvi+ujva + usvy +3up 2 =3v1Up + ViU + Vol + 302U = (VW)

NumChap: chap-prod-scal-orthogonalite, Derniére compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net) 2 1 1


botafogo.saitis.net

11.4. Définition abstraite de produit scalaire et exemples

et la bilinéarité suit de

(u+Au'|v) =3(ug + Auy) vy + (ug + AUl v + (up + Auy) vy +3(up + Auy) vy

= Buivy + U V2 + Up vy +3Upv2) + AB U, U1 + Uy V2 + Uy U1 + 33Uy 2) = (Uv) + A |v).
Finalement, on note que
(ulu) = 3u? + 2uyup +3u3 = 2(u? + u? 2>0
=JUy 1U2 Uy =2(uy + uy) + (U + up)” 20,
et I'égalité est vraie si et seulement si u? = u3 = (u1 + u2)> =0, u.e. u; = up =0, ce qui équivaut au=0. o

Exemple 11.26. Sur I'espace vectoriel des polynémes P, on peut vérifier que

(plg):=)_piqi)

i=0

définit un produit scalaire. En effet, la symétrie et la bilinéarité sont clairement satisfaites, et
- 2
(plp)=)_ pi)*>0,
i=0

et cette somme de carrés est nulle si et seulement chacun des carrés p(i)? = 0, c’est-a-dire p(i) = 0, et donc
p = 0 est le polyndme nul, vu que 'unique polynéme de degré inférieur ou égal a n avec n + 1 racines
différentes est le polynéme nul. 3

Exemple 11.27. Sur I'’espace vectoriel des matrices M, ,(R), on peut vérifier que

m n

(AIB):=)_ ) A ;Bi;

i=1j=1

définit un produit scalaire. En effet, la symétrie et la bilinéarité sont clairement satisfaites, et
m n 9
(AlA) = Zl ZlA” >0,
1= ]:

et cette somme de carrés est nulle si et seulement chacun des carrés Alz. i 0, c’'est-a-dire A; j = 0, et donc
A =0 estla matrice nulle. o

Si V est muni d’un produit scalaire (-|-), on peut maintenant définir

¢ une norme,

lvll:=+wlv),

ce qui permet ensuite de parler de la distance entre deux vecteurs u, v € V, définie par ||u — v|.

¢ lanotion d’orthogonalité : deux vecteurs u, v € V sont orthogonaux, noté u L v, si

(u|lv) =0.

¢ pour un sous-espace vectoriel W < V, le complément orthogonal dans V est
whi={veV:vlwYweW}.
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11.4.2 Structure euclidienne sur les espaces de fonctions™

Considérons 'espace vectoriel de toutes les fonctions continues sur un intervalle fermé et borné, f: [a, b] —
R, noté C([a, b]).

Notons (voir le cours d’Analyse 1) que les fonctions continues sont intégrables. Donc i f, g € C([a, b)), leur
produit étant aussi une fonction continue, on peut définir le nombre

b
(flg) :=f f(hg(pdt.
a

Lemme 11.28. Cette expression définit un produit scalaire sur C([a, b]).

Preuve: D’abord,
b b
(f|g):f fmg(t)dr=f g f(Ddi=(glf).
a a

Ensuite, si on fixe g, alors pour tous f7, f> € C([a, bl), 11,2 € R, les propriétés de linéarité de I'intégrale impliquent

b
ML fi+ A2 folg) = f (ALfi() + A2 fo(D) g dit
a

b b
~u [ fngwde s [ fgmar
a a
=M (filg) +A2(f218).
En utilisant la symétrie (premiere propriété), et la propriété précédente,

(flA1g1+A282) = (A1g1 + A2g2| )
=gl f)+A208211)
=Mi(flg) +A2(f182).

Puisque I'intégrale d’'une fonction non-négative est non-négative,
b2
= fwtarzo.
a “—~—
>0

De plus, l'intégrale de f(1)? est nulle si et seulement si f(#) = 0 pour tout ¢ € [a, b] (voir cours d’analyse), ce qui
implique que f estla fonction identiquement nulle : f =0. O

Ainsi, muni de ce produit scalaire, C([a, b]) est un espace préhilbertien (mais pas euclidien puisque C([a, b])
est de dimension infinie). En particulier :

e Lanorme de f € C([a, b]) se calcule avec

| rb
Ifl= ff(t)zdt.

» Ladistance entre f, g € C([a, b]) est donnée par

b
lf-gll= ¢f If(5)—gt)*dt.
a

Intuitivement, deux fonctions f, g continues sur [a, b] sont proches, au sens de | - ||, sil’aire géométrique qui
sépare leurs graphes est petite :
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(Malgré tout, ce n’est pas exactement cette aire qui apparait puisqu’on integre le carré | f (1) — g()]?.)

Linterprétation du produit scalaire, par contre, est moins évidente.

Exemple 11.29. Sur C([0, ]), considérons les fonctions f(¢) := t et g(¢) := sin(¢), et calculons leur produit
scalaire en utilisant une intégration par parties :

(flg) =f tsin(t)dt
0

e T
= t(—cos(t)))0 +f0 cos(ndt=m.

Ensuite, si h(t) = cos(t), alors
/4
(glh):f sin(t)cos(t) dt
10 T
Z—f sin(2t) dt
2 Jo

1
= Z(—cos(2t))| =0,

b/
0
donc g L h. o

11.5 A propos de Col(A) et Lgn(A)

Rappelons que si A est une matrice de taille m x n,
e Col(A) < R™ est le sous-espace engendré par ses colonnes, et

» Lgn(A) cR” estle sous-espace engendré par ses lignes.

Théoreme 11.30. Si A est une matrice de taille m x n, alors
1) Lgn(A)* =Ker(A),
2) Col(A)* =Ker(AT).

Preuve: Nous avons déja vu dans la Sous-section 7.7.3 que 'on peut toujours exprimer une matrice de taille m x n a
I'aide de ses lignes :

Ofl[l,...,meRn.
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1) Ona

velgn(A)t = v-¢;=0 VYj=1,...m

— ﬁjrv:O Vj=1,...,m.

On peut exprimer ces m conditions simultanément en écrivant

or 0
V=L
2 0

qui n’est autre que Av=0.

2) Comme Col(A) = Lgn(AT), 'affirmation suit de la premiére partie :

Col(A)* = (Lgn(A™))" =Ker(a”).

11.6 Familles orthogonales

Définition 11.31. Une famille de vecteurs {wq,...,w;} € R" est dite
» orthogonale si ses vecteurs sont orthogonaux deux a deux (i.e. w; L w; pour tout i # j),

o orthonormée (ou orthonormale) si elle est orthogonale et si, de plus, tous ses vecteurs sont
unitaires (i.e. [[w;| =1 pour tout j).

Exemple 11.32. La base canonique de R", Bcap, = (€1,...,€,), est une famille orthonormée, puisque
1, sii=j,
€;-€;= c. .
0, sii#].
o

Remarque 11.33. Si {wy,...,wy} est orthogonale, et si aucun de ses vecteurs n'est le vecteur nul, alors on la
rend orthonormale en divisant chacun de ses vecteurs par sa norme :

{ wi Wy }
Iwyll™ " lwgll |
o
Exemple 11.34. Dans R3, la famille
1 1 -2
21,1 01,1 2
1 -1 -2

est orthogonale, mais pas orthonormée. Comme aucun de ses vecteurs n'est nul, on peut le diviser par sa
norme,
1 1 -2
1 1 1

) ’ 2
Vel va2l_y] viz|_,
pour obtenir une famille orthonormale. 3
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Une propriété importante des familles orthogonales :
Lemme 11.35. Sif{w,...,wy} est orthogonale, et si aucun de ses vecteurs n'est nul, alors elle est libre.

Preuve: Considérons la relation
AW + -+ A Wi =0.

Sil'on effectue le produit scalaire de cette relation avec wj,

al(wj-w1)+~-+a]-(wj-wj) +--~+ak(wj ~Wk) =0,
—— ——
=0 #0 =0

qui donne ajllw; 12 =o0. Puisque par hypothese w; # 0, ceci implique a; =0. Comme ceci vaut pour tout j =1,..., k,
on a bien montré que la famille est libre. O

Le grand avantage de travailler avec des bases orthogonales :

Théoreme 11.36. Soit W un sous-espace vectoriel deR", et soit B = (wy, ..., W) une base orthogonale
de W. Alors la décomposition d'unw e W relative a 4,

W=7Y1Wp + -+ YWk,

a ses coefficientsy ; donnés par
w- Wj w- Wj

Yi= = T2
wi-w; o [lwj?

En particulier, si 98 est orthonormée, alorsy = WWj.

Preuve: Considérons la décomposition
W=Y1W] + -+ Y Wk.

En prenant le produit scalaire de cette expression avec w;, I'orthogonalité de la base fait qu’il ne survit qu'un seul
terme dans le membre de droite :

Wi-w=7yj(wj-wj).

Ceci démontre I'affirmation. O

Informel 11.37. Rappelons qu’en principe, trouver les coordonnées d'un vecteur relatives a une base
se fait en résolvant un systeme. Ici, on voit le grand avantage de travailler avec des bases orthogo-
nales : pour avoir une composante, il suffit de calculer un produit scalaire.

Exemple 11.38. Considérons

1 1 -2
B=15121,1 01],] 2
1) \-1) \-2

On a vu plus haut que cette famille est orthogonale, et donc libre puisqu’aucun de ses vecteurs n’est nul, ce
qui en fait une base de R3. Si on prend un vecteur quelconque de R”, par exemple
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on calcule ses coordonnées relatives a 28 :

v-by 0
1= ===V,
= b7 " 6
V'bg 4
2=——>=-=2,
Y2 b2 T 2
_ V'bg _ -30 _ -5
V32”12 T 2
ce qui donne
0
Vlg=| 2 |,
-5/2
c’est-a-dire
1 1 5 -2
v=0|2]|+2] 0 —5 2
1 -1 -2

Bien-sir, on trouverait la méme chose en cherchant les coordonnées comme on le faisait avant, en étudiant
le systeme

1 1 -2 7
Yi[2|+r2| O [+y3[ 2 |=]|-5
1 -1 -2 3

Définition 11.39. Une matrice A de taille m x n est orthogonale si
ATAa=1,.
Lemme 11.40. Une matrice A = [a; ...a,] de taille m x n est orthogonale si et seulement si la famille

{a,...,ay} < R™ formée des colonnes de A est orthonormeée.

Preuve: Sil'on écrit une matrice carrée a ’aide de ses colonnes, A = [a; ---a,], alors on peut interpréter chaque coef-
ficient du produit AT A comme un produit scalaire :

a;-a; a;-ap a;-a,
r ar-a; ar-a ar-a,

A A=
a;-ap a,-ay a,-a,

Ainsi, A est orthogonale (AT A =1,) si et seulement si

{1, sii=j,
a;-aj= o
0, sii#j],
O
1/vV3 -1/vV2 1/V6
Exemple 11.41. A= | 1/v/3 1/v/2 1/V/6] est orthogonale, puisque ses colonnes forment une famille
-1/V3 0 2/V6

orthonormée de R3. Par conséquent, son inverse est donné par

1/vV3 1/V3 -1/V3
Al=AT==1/v2 11V2 0
1/vV6 1/vV6 2/vV6
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Il'y a donc autant de matrices orthogonales de taille m x n qu’il y a de familles orthonormales de n vecteurs
dans R™.

11.7 Projection sur un vecteur

Lanotion d’orthogonalité permet d’'introduire en algebre linéaire plusieurs notions géométriques tres utiles.
La premiere est celle de projection.

Comme motivation, fixons un vecteur w € R”, et posons la question suivante : Pour un deuxieme v € R”
donné, comment définir la projection orthogonale de v sur w?

Informel 11.42. On a déja considéré, dans le plan, la projection d’'un vecteur sur une droite. Mais
ici, on est en dimension quelconque n! Et nous allons commencer par projeter sur un vecteur, mais
plus loin nous projetterons sur un sous-espace vectoriel quelconque de R”.

Un schéma peut aider a comprendre comment nous allons procéder (attention : cette image est représentée
dans le plan, mais 'argument qui suit fonctionne en toute dimension!) :

2)

Vi v

La projection orthogonale de v sur w, que nous noterons v pour commencer, doit permettre de décompo-
ser v en deux composantes vectorielles,
V=V|+Vy,

N

ou
1) vy est colinéaire (parallele) a w,

2) v, estorthogonal a w.

Il se trouve que ces deux conditions caractérisent entierement v et v .

En effet, pour que v soit colinéaire a w, il doit exister un scalaire « tel que
V| =aw.
Puis, pour que v, soit orthogonal a w, il faut que
O=v, -w=(v-v))-w=(v—aw) -w.

De cette derniere relation, on tire que
VW VW

a=—n= 5
w-w w]

En utilisant ce scalaire particulier dans vj = aw, ceci motive la définition suivante :
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Définition 11.43. Soitw e R”, w # 0. La projection orthogonale de v e R" sur w est définie par

roi.. (v) VW VW
V)i=——w= w.
PO o™ ™ w2
Exemple 11.44. Dans R°, la projection orthogonale de
0 1
2 0
v=|-3 sur w=|-1
1 0
-1 1
est donnée par
1 2/3
0 0
=~ W w=2| 1= |23
PIO]y, - WLl T
lwli 3 0 0
1 2/3

<

Remarque 11.45. La définition de proj,,(v) dépend uniquement de la direction de w, pas de son sens ni de
sa norme. En effet, la projection sur un vecteur colinéaire 2 w, w' = Aw, donne le méme résultat, puisque

/

(V) =
10}/ (V) = ——W
PIOWw Y = w2
_v-(/lw)
| Aw|?
V-W
= w
w2
= pr0j,, (V).

/

(Aw)

Donc il est plus juste de penser a la projection sur un vecteur comme a la projection sur la droite engendrée

par ce vecteur. v

La projection de v sur w est aussi optimale, dans le sens ot c’est elle qui réalise la distance minimale entre
v et un vecteur quelconque de la droite dirigée par w:

Théoréme 11.46. Soitw € R” non-nul, et soit W = Vect{w}. Alors
Iv—proj, Wl < lv-x[,  VxeW.

Comme proj,,(v) € W, ceci implique

V—proj..(v)|| = min|lv—x||.
v — proj, (V)| erII |

De plus, projy, (v) est l'unique vecteur de W qui réalise ce minimum. On dit ainsi que projy, (v) donne
la meilleure approximation av avec des vecteurs de V.

En d’autres termes, proj,, (v) est le vecteur de W dont la distance a v est minimale :

219

NumChap: chap-prod-scal-orthogonalite, Derniére compilation: 2025-01-13 12:27:17Z. (Version Web:botafogo.saitis.net)


botafogo.saitis.net

11.8. Projection sur un sous-espace vectoriel

2

Projy (V)

Preuve: Pour tout x € W, on peut écrire

V—X= (V- proj, (v)‘) + (proj,, (V) —x).

ewd ewW

On adonc

Iv=x1? = [V = proj, W) I* + I proj, (v) —x||*
—_— ——
>0
> |[v - proj, ()|°.
Supposons maintenant qu’il existe, en plus de v = proj,,(v), un autre vecteur de W satisfaisant la méme propriété;
notons-le vil. Alors par définition,

. /
[Vv=vyll =min|v-x| = [[v-v|.
xeW

Aussi,
2 2
IV=vy "= Iv=v)) + (v) = v
N—— ——
ewt ew
2 /2
= V=" + llvy = v [I7.
On a donc
/2
”VH -V I©=0,
qui implique vj = vi‘ . O

Le fait que proj,,(v) réalise un minimum indique que certains problémes d’optimisation pourront trouver
une solution par I'utilisation de projections. (Voir plus loin, Méthode des moindres carrés.)
11.8 Projection sur un sous-espace vectoriel

11.8.1 Motivation : projection sur un plan de R3

Pour motiver la définition générale de projection sur un sous-espace vectoriel W, nous commencerons par
un cas légerement plus compliqué que la projection sur une droite (section précédente), en considérant
une projection sur un plan.

Exemple 11.47. Considérons les deux vecteurs non-colinéaires

-2
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ainsi que le plan contenant I'origine, engendré par ces deux vecteurs :

W = Vect{w,wy}.

5
Siv=| 2
-3

, comment calculer sa projection orthogonale sur W?

w V)

@)
Yi
m

Comme dans la section précédente, nous commencerons par représenter la projection de v sur W a I'aide
du symbole v|. Cette projection doit permettre de décomposer v en deux composantes vectorielles,

V=V|+Vy,

N

ou
1) vyeWw,

2) v e Wt
La premiere condition impose que v soit une combinaison linéaire de w; et wy :

V| = a1W1 + a2W2,

et la deuxieme impose que
0=v, -w)=(V-—a1w; —a,ws) W,

0 =V] "Wy = (V— a1Wqp —CK2W2) ‘W2

11, on en déduit que les coefficients a;, a»

Comme ||w1||2 =3, ||w2||2 =6,w;-wy=-2,v-w; =10, v-wy

sont solutions du systéeme

(%) 3(,151 - 2“2 = 10,
—-2a; + 6ap, = -11.
Onadonca; = %, az = —i—i. Ainsi, la projection de v sur le plan W est donnée par
19 13 32/7
v = 7w1 — —4w2 =| 25/14
-51/14
3
221
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11.8.2 Cas général

Dans le cas général, énoncons d’abord le résultat général qui garantit que la projection orthogonale sur un
sous-espace vectoriel existe toujours :

Théoréme 11.48. Soit W un sous-espace vectoriel deR", et soitv € R". Alors il existe une unique paire
de vecteurs, v etv, telle que
V=V|+Vy,

et telle que
D vew,
2) v e Wt
Le vecteur v est appelé projection orthogonale dev sur W, et sera noté
V| = projy, (v).
De plus, projy, (v) est l'unique vecteur de W qui minimise la distance a v :

lv—projy, (W) || = min ||v-x].
p ]W xeW

On dit ainsi que projy, (v) donne la meilleure approximation av avec des vecteurs de W .

Dans le cas ol1 on connait une famille génératrice pour W,
W =Vect{wy,...,wi},

on peut calculer projy,, (v) comme onI'a fait dans la section précédente, en commencant par I’écrire comme
une combinaison linéaire
V| = Q1Wy + - Wi,

ot les coefficients doivent satisfaire simultanément aux k conditions suivantes :

0 =WV-—aiwy - —apwg) -wi,
0 =WV-a1wy - —apwg) -wa,
0 =(V—a1Wy - —aQpWg) - Wg.

Sans présenter de difficulté particuliere, cette approche requiert malgré tout la résolution d'un systeme de
taille n x k.

11.8.3 Cas ou W est décrit par une base orthogonale

Lorsque W est décrit a I'aide d’'une base orthogonale, la projection sur W prend une forme plus explicite :

Théoréme 11.49. Soit W un sous-espace vectoriel deR", et soit B = (W1, ..., W) une base orthogonale
de W. Alors la projection orthogonale d’'un vecteurv € R" sur W est donnée par

LR
projy, (v) = Z J wj.

j=1 ”W] 112

En particulier, l'application v — projy, (V) est linéaire.
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Preuve: Comme décrit plus haut, la projection est de la forme
projy, (V) = @1wy +--- Wy,

ou les a; doivent satisfaire

0 =W-—aiwy - —apwg) wg,
0 =WV—awy--—apwg) -wo,
0 =(V-—a1wy - —aWg) - Wg.

Mais comme la base 2 est orthogonale, w; -w; = 0si i # j. Il reste donc

0 =W-aywi) -wp,

0 =(-—axwg) wg,
. . V'Wj .
qui donne bien a; = w2 pour tout j = 1,..., k.
J
Vérifions la linéarité :

3y (Brv1 + P2va) -W;
Z7 wi?

projy, (B1vy + B2vz)

k
Wj

V1 Wj

||2Wf+ﬁ2

Vg‘Wj

VWi
w2 ™7

”W]

A\ W]

:ﬁZ ﬁzz

j=1 j=1
= f1projy (vi) + B2projy, (v2) .

Wi

||w] ||2 THE

La linéarité de la projection fait qu’on peut chercher sa matrice relative a une base.

Exemple 11.50. Considérons les deux vecteurs non-colinéaires

2 -2

ainsi que le plan contenant I'origine, engendré par ces deux vecteurs :
W = Vect{w,w»}.

Commencons par prendre un vecteur, par exemple

et calculons sa projection sur W. On pourrait procéder comme on I'a fait plus haut, mais on remarque tout
de suite que cette fois, {w;,w»} est orthogonale car w; -w» = 0. On peut donc écrire la projection directement

al’aide de la formule du théoréme :

. ( ) V-W; + V-Wo
projy, (v) = w1 wi
W= w2 w2
11 2 -1 -2 -2/5
= —30 5 +? 1 = —2
-1 1 1/5
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Considérons ensuite la matrice de la projection, relative a la base canonique :

[projy) @... = [[Projyy (e1)] [projy, (e2)] [projy, (3]

4/5 0 -=2/5
=1 0 1 0
-2/5 0 1/5

11.8.4 Cas ou W est décrit par une base orthonormée

Sil'on exige en plus que la famille qui engendre W soit formée de vecteurs unitaires, alors la projection est
encore plus simple a décrire :

Théoreme 11.51. Soit W un sous-espace vectoriel deR", et soit B = {uy, ..., uy} une base orthonormée
de W. Alors la projection orthogonale d’'un vecteurv € R" sur W est donnée par

k
projy, (v) = Z(v-uj)uj.
j=1
De plus, la matrice de projy, : R" — R" (relative a la base canonique) est donnée par
[projy, 1 = UUT,
ot U est la matrice de taille n x k dont les colonnes sont les vecteurs de la base 98 :

U=[u; - ug.

Preuve: Par le théoréeme précédent, et comme |lu jll =1 pour tout j, la projection est bien donnée par
projy, (v) = (v-upug +--- + (V- ug)ug.
Profitons de la structure de cette expression pour la récrire sous forme d'un produit matriciel :

[projyy (W1 = (v-upug +--- + (v-ugug

v-up
= [ul . uk]
V-up
u{v
=[ug ] |
u]{v
uj
=[up w2 v
[ ——
=U u]];
——
=yT

O
Remarque 11.52. La projection est une application de R” dans R", donc la matrice qui la représente est de
taille n x n. C’est bien le cas ici puisque
rojyl= U U .
[projy]
nxk kxn

nxn
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Exemple 11.53. Considérons la méme projection orthogonale que celle vue plus haut, sur le plan W engen-
dré par
2 -2

On sait que la base
B = {wy, W}

est orthogonale, et on peut la rendre orthonormée en divisant chaque vecteur par sa norme :

gg/ _ { w1 w2 }
= R .
will™ llwall

On peut maintenant utiliser le théoréme pour obtenir la matrice de la projection sur W relative a la base
canonique :

[projW]%can: u UT

—~—
3x2 2x3
wT
= ] nw;n
IIW1|| [wa ||
Twall
21V30  —2IV8\ ) a5 13T _1vED
=| 5/V30 1IVe —2/vV6 1/vV6  1/V6
-1/v/30 1/v6
4/5 0 -=-2/5
=l o 1 o [,
—2/5 0 1/5

qui est bien la méme que nous avions trouvé plus haut. On peut maintenant utiliser cette matrice pour
projeter n'importe quel vecteur sur W. Par exemple,

1 4/5 0 -=2/5\(1 -2/5
projy/ | —-2]=] O 1 0 -2|=] -2
3 -2/5 0 1/5 3 1/5

<

Exemple 11.54. Considérons la projection proj, sur une droite d passant par |'origine et faisant un angle de
0 avece; :

6 =0.300...

Fa(e)

Cette droite d est un sous-espace de R?, engendrée par le vecteur unitaire
w = cosf
'~ \sing) "
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Par la formule du théoréme ci-dessus, sa matrice relative a la base canonique est donc donnée par
Sy T
[proj;,1=UU
= ll]ll{

B (cos@

sinB) (cos@ sin6)

_ cos20 cosfsinf
“lcosfsin®  sin%6

Remarque 11.55. Il est important d’apprécier I'ordre des matrices apparaissant dans la formule
[proj,,1 = UUT.

Le fait que les matrices soient dans cet ordre (“U fois U””) font de leur produit une application linéaire
non-triviale, qui projette sur 'espace engendré par les colonnes de U. Car si I'on multiplie ces matrices
dans I'ordre inverse, on obtient une matrice de taille k x k contenant les produits scalaires

uu;=u;-u;=

0, sinon,
et donc
u;-um up-u ul.uk
T u -u us - up s Up-Ug
U'U-=

Up-u; Ugp-up cer U Ug

> o - 0

2

0 lazl= --- 0

0 0 - fugl?

11.9 Leprocédé d’orthogonalisationet d’orthonormalisation de Gram-Schmidt

Les sections précédentes ont montré tout 'avantage de travailler avec une base orthogonale (ou orthonor-
mée) pour un sous-espace W, puisque cela permet par exemple d’accéder directement aux composantes
d’'un vecteur relativement a cette base, ou de calculer plus facilement des projections orthogonales sur W.

Mais il se peut que le sous-espace W soit défini des le départ par une base 98 qui n’est pas orthogonale. Pour
profiter des avantages décrits ci-dessus, il est donc naturel de chercher une autre base de W, %’, qui soit
elle orthogonale.

Nous allons voir qu’'une telle base existe toujours, et nous verrons comment la construire en modifiant la
base de départ, par un algorithme appelé le procédé d’orthogonalisation de Gram-Schmidt.

Informel 11.56. Lidée est de “tordre” un a un les vecteurs de 98, de facon a les rendre progressive-
ment orthogonaux deux-a-deux, et en garantissant qu'ils engendrent toujours W.

Voyons comment faire sur un exemple trés simple d'une base ne contenant que deux vecteurs.
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11.9.1 Lidée, sur un exemple ot dim(W) =2

Considérons le plan de R3, W = Vect{w;,w>}, oll

3 1
w=|-1]1, wy =12
2 1

La paire £ = {w;,w»} est une base de W, mais elle n’est pas orthogonale car
Wi -Wo = 3#0.

Voyons comment modifier 98 de fagon a la transformer en une autre base pour W, orthogonale cette fois.

La nouvelle base sera &’ = {v;,v»}, avec

Vii=wy,

Vo (=W —aW].

Voyons ce qui se passe lorsque « varie :

° a=—0.200...

Informel 11.57. Remarquons que 'on “tord” w; en lui rajoutant un multiple de wy, ce qui fait que
vy reste dans le plan W'

C’est évident sur I'animation ci-dessus, mais écrivons-le explicitement :
Lemme 11.58. Peu importe la valeur du scalaire a, ' = {vy,V»} est toujours une base de W .

Preuve: (en exercice) O

1l s’agit ensuite de choisir a de fagon a ce que %’ soit orthogonale. Or la seule condition a satisfaire est que
V]V = 0,

qui se traduit par
wi - (W —awy) =0,

et qui implique
_ W1-Wp

a= .
w12
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‘I'I‘;;;"l‘l’ﬁwl, qui n’est autre que la projection de w, sur w; (c’est-a-dire sur vi). En résumé, on a
1

pris B’ = {v1, vz}, ot

Ainsi, aw;y =

Vii=wp,

Vy i=Wp — plrojvl (wa),

qui donne
31 ! 351
vi=|—-1}, Vo = —
2 14 8

Maintenant, %’ = {v;,Vv,} est orthogonale puisque v - v, = 0.

La construction décrite dans I'exemple ci-dessus n’a rien de particulier 2 R3, et peut s'utiliser pour orthogo-
naliser la base de n'importe quel sous-espace de dimension 2 :

Exemple 11.59. Considérons le plan de R® engendré par

1 0

-2

W) = 1], Wy = 0
-1 1

0 1

La base 28 = {w,w»} de ce plan n’est pas orthogonale, mais en prenant v; :=wj, et

0 1 1/3
-2 |0 -2
v2:=w2—projwl(w2)= 0 Y 1 |=|1/3],
1 -1 2/3
1 0 1
on obtient une base %’ = {vy,v,} orthogonale. o

11.9.2 Cas général

Dans le cas général, considérons un sous-espace W de R3, de dimension k < n, muni d'une base (a priori
pas orthogonale)
B ={wy,...,Wi},

et voyons comment 'utiliser pour construire une nouvelle base de W,
!
B =1{vi,...,Vi},

qui soit orthogonale. Cette construction est le procédé d’orthogonalisation de Gram-Schmidt.

Lidée est de procéder de maniére inductive, le j-éme vecteur v; de 28’ étant construit a partir des j premiers
vecteurs de 98, de fagon a ce que pour tout j = 1,..., k, deux conditions soient satisfaites :

* {vy,...,v;} est orthogonale (et donc libre),

e Vectivy,...,v;} = Vect{wy,...,w;}.

La vérification de ces conditions implique qu’ala fin, lorsque j = k, on a bien construit une famille {vy,..., vy}
qui est orthogonale (et donc libre), et qui engendre W.
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Lexemple précédent a suggéré de commencer par modifier w, en lui soustrayant sa projection sur w;. Pour
les suivants, on peut continuer a soustraire a chaque vecteur sa projection sur I'espace engendré par les
précédents :

Vii=wy,
Vy i=Wp — projVect{wl} (wo),

V3 := W3 — PIOJyectiw, ,wo} (ws),

Vj:=Wj = PIO)vectiw,,...w;_,} (w;),

Vi i=Wg — prOjVect{wl, ...... ,Wk—l}(wk) ’

Remarquons que le procédé nécessite, al’étape j, de calculer la projection sur le sous-espace Vect{wy, ..., w;_1}.
Or, comme

Vect{wl,...,wj_l} =Vect{v1,...,vj_1},
on a, pour tout j,

prOjVect{wl,...,wj_l} (W]) = prOjVect{vl,...,vj_l} (W]) .

Maintenant, comme {vy,...,v;_1} est orthogonale, la formule de la section précédente permet d’écrire cette
derniére projection comme

Ilwi-v:
. _ J 1 .
pro]Vect{vl,...,v]-,l}(wj) - Z N2 Vi.
i=1 Ivill
Donc on peut écrire le procédé comme suit :
V] =W,
Vo =W w 'vlv
2.— W2~ 1,
vy 112
. 2 W3-V,
V3 =W3— Z T2 Vi
o1 il
k-1
Vii= Wi Zwk‘viv.
- - - .5 Vi-.
= Ivil?

Remarque 11.60.  Une fois le procédé terminé, on peut toujours normaliser les vecteurs de %’ pour
en faire une base orthonorméede W :
B = { Vi Vi }
vl il

o La convention est que I'algorithme du procédé de Gram-Schmidt se fait en respectant I’ordre qui est
est fixé dans la base de départ.
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Méthode d’orthogonalisation et d’orthonormalisation de Gram-Schmidt d’'une base % =
{wy,...,wr} d'un sous-espace vectoriel W < R".

On produit une base orthogonale %’ = {vy,...,vi} de W et ensuite une base orthonormée %"
{uy,...,uy} de Wvia

. Vi
V] i=Wwp, u = ——,
Wy V] vl
A\ W2——2V1, Vo
[lv |l 2= vl
W3-V W3-V v2
V3 i=W3 — vy — V2, .__'3
vy 12 V2112 uz = sl
L W V] Wi Vi1
Vi =Wg———> Vi~ — > V-1, Vi
[lvy ] Vi1l uy = Vel

Remarque 11.61. La preuve du fait que %’ = {vy,..., v} est une base orthogonale de W = Vect{wy,...,wy}
suit par récurrence sur k. En effet, c’est clair si k = 1. On suppose que c’est vrai pour k—1 > 1 et on va le
démontrer pour k. Or, par hypothése de la récurrence on sait que Vect{wy,...,wy_;} = Vect{vy,...,vi_1} et
que {vy,...,vi_1} est orthogonale. En outre, par définition de projection orthogonale,

Wi - Vi-1
Vi-1

Wi -V
Vi1 l2

v
l[vy 112

Wi = PIOjvectiw, ... w1} (Wk) = Wk = PIOjyectpv,,....vi_} (W) = Wik —

estorthogonal a Vect{wy,...,wy_1} = Vect{vy,...,vi_1}, oll'on a utilisé que {vy, ..., vi_,} est orthogonale pour
calculer la projection orthogonale de wy. En conséquence, sil’'on pose

Wi V]
V1112

Vi =

W

la famille {vy,..., vy} est orthogonale. En outre, la définition de vy nous dit que

Vect{iwy,...,wr_1, W} = Vect{vy,...,vi_1, Wi} 2 Vect{vy,...,Vi_1,Vi},

tandis que
Wk_Vk-i—Wk‘VlV Wi Vi1 .
- £ vy -y
vl IVi-111?

nous dit que

Vect{iwy,...,wr_1,wg} = Vect{vy,...,vi_1, Wi} S Vect{vy,...,Vi_1,Vi}.
On conclut que

Vect{wy,...,wr_1,w} = Vect{vy,...,vi_1, Wi} = Vect{vy,...,Vi_1,Vi},
et donc &' = {vy,...,vi} est une base orthogonale de W = Vect{wy, ..., wi}. Le fait que " = {uy,...,u;} est
une base orthonormée de W = Vect{wy,...,w;} est direct. o

Exemple 11.62. Considérons, dans R?*, le sous-espace W défini par

W = Vect{w;,ws, w3},

ou
1 -1 0
o 1o 1
Wi = 1|’ W = ol W3 (= -1
0 1 0
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Appliquons le procédé de Gram-Schmidt. D’abord, v; := wy, puis

. W2 -V
VW e
-1 1\ (-1/2
o] nlo] | o
o] 2 |1 12 |’
1 0 1
et pour finir
L W3-V) W3 -V2
VEE T
0 1 ~1/2
1| -1]o] -12] o
-1 2 (1| B2 | 12
0 0 1
1/3
|1
| -1/3
1/3

Remarquons que %’ = {v1,Vv,vs} est bien orthogonale puisque, par construction,
Vi:Vo=V]-V3=Vy-V3=0.
o

Dans ce dernier exemple, on aurait pu remarquer des le début que w, L w3, et donc obtenir une base or-
thogonale {v}, V), v;}, en gardant deux vecteurs inchangés, et en ne modifiant que w; :

/
V, = W2,
V3= W3,
/
‘/‘_ _Wl'VZ /_Wl.vg /
1:=WwWp B vy E V3.

TA TA

Donc en général, il y a plusieurs facons d’orthogonaliser une base, mais en général, lorsqu’on implémente
le procédé de Gram-Schmidt, la convention est de modifier les vecteurs dans U'ordre donné par la base de
départ.

11.9.3 Propriété d’'unicité de la base orthonormée obtenue par le procédé de Gram-Schmidt*

La base orthonormée de Gram-Schmidt peut étre caractérisée de facon unique a partir de la propriété sui-
vante.

Théoréme 11.63. Soit B = {wy,..., Wi} une base d’'un sous-espace vectoriel W < R". Alors, la base
orthonormée B" = {u,...,u;} obtenue du procédé de Gram-Schmidt appliqué a A est la seule base
orthonormée de W qui satisfait aux propriétés suivantes :

(GS.1) Vect{uy,...,u;} = Vectiwy,...,w;}t pour j=1,...,k;
(GS.2) uj-w;>0pourj=1,...,k.
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Preuve: On montre d’abord que la base orthonormée 98" = {uy, ..., ux} obtenue du procédé de Gram-Schmidt appli-
qué a & vérifie les propriétés (GS.1) et (GS.2). Lidentité (GS.1) a été démontrée dans la remarque précédente. On va
montrer que la propriété (GS.2) est aussi vérifiée. Pour le faire, on note d’abord que

j-1 j-1

lwiov; g2 w;-v; w;-v;
J i J i J i
o= & el = o) o 5 o)
/ izzlnviu2 ! i;nviu2 ! i;nviu2
Zhw;j-v)? Zlw-v;
2 J Vi J 4
= |w;l> - —=(w-— —v,.)-
/ ; llvill2 ! l-zzlnvin2 /

En conséquence, I'inégalité précédente et la définition de la base 8" = {uy, ..., u;} nous dit que

vj 1 ( jilW]”Vl'
wowie 1 wi= L (W _Vi).
PR v T T v Y & 2 !

_ T S S/ AL R

= ”v—j“(nw, 12 v ; T vi)-w; >0,

ce qui montre que la base orthonormée %" obtenue du procédé de Gram-Schmidt appliqué a 28 vérifie les propriétés
(GS.1) et (GS.2).

On va montrer maintenant que la base 9" est 'unique base orthonormée de W qui vérifie les propriétés (GS.1) et
(GS.2). Soit B" = {u],...,u}} une base orthonormée de W qui vérifie les propriétés (GS.1) et (GS.2). On va montrer
que u’j =u; pour tout j = 1,..., k. D’abord, (GS.1) pour j = 1 nous dit que Vect{u;} = Vect{w;} = Vect{u/}, ce qui nous
dit que u; = Au} avec A # 0. Comme 1 = [lu;|| = |A].|u}l| = [A], alors A = =1 ou A = 1. Si A = —1, alors u} = —uy,
ce qui implique que u} -w; = —u; -w; < 0, par la condition (GS.2) pour j = 1 et la base 28". Cela nous donne une
contradiction avec la condition (GS.2) pour j =1 et la base 28" En conséquence, u} = u;. On suppose que u’]. =u;
7.1 = Uey1. Eneffet, comme " et " sont des bases orthonormées,
€ Vect{u,..., u’[}L. La condition (GS.1) pour j = ¢ nous dit donc que Vect{uy, ..., us}* =

pourtout j=1,...,¢.Si¢ < k, on vamontrer que u

!
(+1

Vect{wy,...,wo}t = Vect{u’l,...,u’[}L, ce qui implique que ug,1,u), | € Vect{iw, ...,wz}*. La condition (GS.1) pour j =
¢ + 1 nous dit que U[+1,u’€+1 € Vect{wy,..., Wy, Wy, 1}, ce qui implique que

uy, € Vect{uy,...,us}t etu

L
Uy, u), ;€ Vect{wy,..., Wy, Wpyq} NVect{w, ..., wel—.

Or, le sous-espace vectoriel Vect{wy,...,wy, Wy, 1} NVect{wy,... ,w[}J- a dimension 1, ce qui nous dit que uy,; = ’lu/é+1
avec A # 0. Comme 1 = |lugyq| = |/1|-||ll'[+1|| =|A|,alors A =-1ou A =1.SiA=-1, alors “lé+1 = —uy41, Ce qui im-
plique que u’[Jrl “Wpy1 = —Uypy1 - Wy <0, par la condition (GS.2) pour j = £ +1 et la base 2”. Cela nous donne une
contradiction avec la condition (GS.2) pour j = £ +1 etlabase 88". En conséquence, u,, | =uy,;. Par un argument de
récurrence sur £ on conclut que u’j =u; pourtout j=1,...,k. O

11.10 Ladécomposition QR

La décomposition QR est une méthode qui permet de factoriser une matrice, c’est-a-dire de I’écrire comme
un produit de deux autres matrices particulieres (un peu comme une matrice carrée inversible peut étre
factorisée en un produit de matrices élémentaires).

On le verra, pouvoir écrire une matrice comme un produit de matrices plus simples possédera de nombreux
avantages.

11.10.1 Cas général
Soit A une matrice non nulle de taille m x n, que I'on écrit a I'aide de ses colonnes :
A=lay---an],

ouichaque a; € R". Onnote {a;,...,a; } 'ensemble des colonnes-pivot de A, qui donne une base de Img(A),
et, en particulier, r = rang(A). Cette base n'est a priori pas orthogonale, on peut donc lui appliquer le pro-
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cédé de Gram-Schmidt :

vii=a;,
vo:=a Ay 'Vlv
2=, ———>V1,
lIvy 1%
2
aj, 'Vj
v3i=a, - ) —— v,
= vill?
r—1
a; -v;
Vyi=a; — Z Vi.
"o Ivil?
Normalisons chacun des v;, en définissant
Vi Vy
u] =—, W, = )
vyl [Iv,
et on définit les matrices
T
Q:=[u; - u] EMy,R) et R:i=QTAeM;xn[R). (11.1)

Théoréme 11.64. Soit A une matrice non nulle de taille m x n de rangrang(A) = r. Alors, les matrices
Q €M<+ (R) et R e M, (R) définies précédemment satisfont aux propriétés

(Q) la matrice Q est orthogonale, i.e. QTQ=1,,
(R) la matrice R est échelonnée telle que le premier coefficient non nul de chaque ligne non nulle est
positif,
(QR) A=QR.
En plus, il existe une unique paire de matrices Q et R qui satisfont aux propriétés (Q), (R) et (QR). Cette

factorisation est la factorisation QR de A. On remarque que le rang des matrices Q et R estr = rang(A),
et donc R n'a pas en fait de lignes nulles.

Preuve:* On va démontrer d’abord que les matrices Q et R définies ci-dessus satisfont aux propriétés (Q), (R) et (QR).
Comme la famille {uy,...,u,} est orthonormée, par construction, la matrice Q définie ci-dessus est orthogonale, ce qui
nous donne (Q).

On va démontrer que R est échelonnée. Pour le faire, on va montrer le résultat intermédiaire suivant : u; -a; = 0 pour
tous 1 < k<ij—1etl < j<r.En effet, par le Corollaire de la Section 7.6, Vect{al,...,a,-j,l} = Vect{al,...,a,-jfl} et,
comme u;-a; =---=U;-a; = 0 par définition de u;, on conclut que u; € Vect{al,...,a,-jfl}L = Vect{a, ...,a,-j_l}l,
comme on voulait démontrer. Or, par définition de R on a

u-a; e u;-a,
R:=Q"A=Q"[a; --a,=| : - |,
ur . al e ur . an
ie. Rjr=uj-ag. Alors,uj-ay =0 pourtous 1 < k< ij—1letl<j<r.Comme i <--<ion conclut que R est
échelonnée.
On montre maintenant que le premier coefficient non nul de chaque ligne de R est positif. On note d’abord que, par
définition le premier coefficient non nul de la j-éme ligne de R est

Rj,ij =u;-a;;.
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Or, on remarque que le procédé de Gram-Schmidt pour obtenir les colonnes de Q nous dit que

a;, = [villuy,

£
n
[

= (aj, -upuy + [[vzlluz,

a;, =) (a;-upu; | +[lvsus,
i=1

r—1
a;, =Y (@, u)u; |+ [vylu,.
i=1

En conséquence,
j-1

i =wjra; =u;- ( Zl(aij ‘up)up) +vi;llaj | = llvjllu;-u; =[v;l >0,
p:

R

ol l'on a utilisé dans la troisieme égalité que {u;,...,u,} est une famille orthogonale. On conclut que le premier coef-
ficient non nul de chaque ligne de R est positif. Cela montre que la matrice R satisfait a la propriété (R).

On montre maintenant que la propriété (QR) est aussi vérifiée. Comme {uy,...,u;} est une base orthonormée de
Img(A), la matrice QQ est la matrice canonique de la projection orthogonale sur Img(A), d’aprés le dernier théo-
réme de la Section 11.8. En particulier, QQT Ax = Ax pour tout x € R”, ce qui implique que QQT A = A. Lidentité
R=QTA implique ainsi QR = QQTA=A, ce qui montre (QR).

Finalement, on va démontrer qu'’il existe une unique paire de matrices Q et R qui satisfont aux propriétés (Q), (R) et
(QR). On montre d’abord que, si Q' et R’ deux matrices qui satisfont aussi aux propriétés (Q), (R) et (QR), alors le rang
de Q' et R’ est r. En effet, que le rang de Q' est r suit du fait que le noyau de Q' est trivial et le Théoréeme du Rang. Pour
R’, on note que la taille de R nous dit que rang(R’) < r. En outre, comme A = Q'R’, le théoréme de la Section 7.4 nous
dit que rang(R’) > rang(A) = r, ce qui implique que rang(R’) = r, comme on voulait démontrer.

Les propriétés (Q) et (QR) nous disent que

RTRZRTInRzRTQTQRz (RQ)T(QR) —ATA= (R/Q/)T(Q/R/) =R’TQ’TQ/R/=R’TInR/=R’TR/.

SilonécritR=1[r; ---rp] et R’ =[r] ---1},], RTR=R'"R équivaut a

rjore=rr (11.2)
pour tous 1 < j < k < n. On va aussi écrire ry, , et r]’c,p les p-eme coordonnées de ry et de r}, respectivement. Soient

=[rp, -~ 1plet R =[r ’p,l .. r’p , ] les matrices formées des colonnes-pivots de R et de R, respectivement. On affirme
que{p) <---<pr={p|<---<p)let rp, = r;} pour tout 1 < j < r. Sicen’est pas le cas, soit 1 < ¢ < r le premier entier

positif tel que p, # p, ou p, = pj etr,, #v e Si p, # p),, on peut supposer sans perte de généralité que p, < p/,. Or,
Py
(11.2) pour j = pset k= p, avec 1 < s < £ nous dit que

J— /o /
Ly Tpp =Xp Xy, =Tps-Xp,s
vuquery, = r;,s, ce qui implique que
Iy =
rps : (rl’l _rp[) =0

et, en conséquence, la s-eéme coordonnée de r,, —r),, estnulle pour tout 1 < s </, i.e. rp, s = rp[ spourtoutl <s< /.

En outre, (11.2) pour j = k = py nous dit que

4
2 _ 2 _ e 12 _ 2
Y Tops=lep 7 =10r, 12 =3

P

~

ot I'on a utilisé que ry,,s = 1), . = 0 pour s > ¢, vu que R et R’ sont échelonnées. Comme 7, s = 1}, ¢ pour tout
1< s< ¢, on conclut que

/2
0< rW pe = W pe’ (1L.3)

vu que rp, est le £-eme vecteur de R, qui satisfait la proprlete (R). Or, si py < p! ¢ alors rp ,,pe = 0, ce qui implique
m:m =0, ce qui est absurde d’apres (11.3). En outre, si py = p[, la propriété (R) pour R et R' nous dit que r,,p, = Tp,,p»
etdoncry, = r’p ,» qui contredit la définition de ¢. En conséquence,

14

R=F,
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comme on voulait démontrer.
Or, I'identité QR = A= Q'R’ nous donne QR = Q'R’, et comme R = R’, on conclut que QR = Q'R. En outre, par défini-
tion la matrice carrée R = R’ de taille r a rang r, et elle est donc inversible. En conséquence,

Q=QL=QRR'=QRR'=Q'I,=Q/,

ce qui implique aussi
R=L;R=QTQR=QTA=QTA=QTQ'R'=1,R' =R,

ce qui montre 'unicité affirmée. O

En conséquence, la factorisation QR d'une matrice A peut s’obtenir comme suit :

‘ Calcul de la décomposition QR d’'une matrice non nulle A = [a; ---a,] derang r

(QR.1) Calculer la matrice A’ = [a;, --- a;,] formé de colonnes-pivot de A;

(QR.2) appliquer le procédé de Gram-Schmidt aux colonnes de A’, et normaliser les vecteurs obtenus,
pour obtenir Q := [u; ---u;];

(QR.3) calculer R := QTA.

11.10.2 Lorsque les colonnes de A sont indépendantes

Le théoréme précédent est d’habitude trop général. On va utiliser souvent la version particuliere suivante,
qui suffit largement pour les cas que I'on va considérer.

Théoréeme 11.65. Soit A une matrice non nulle de taille m x n de rangrang(A) = n. Alors, les matrices
QeMpxn(R) et R € M« (R) définies précédemment satisfont aux propriétés

(Q) la matrice Q est orthogonale, i.e. QT Q =1,,
(R) la matrice R est triangulaire supérieure telle que tout coefficient de la diagonale est positif,

(QR) A=QR.

Preuve: On remarque que la matrice R est dans ce cas carrée de taille n de rang n. Cela implique que le premier
coefficient non nul de chaque ligne, qui est positif, est dans la diagonale de R. En plus, comme R est échelonnée, elle
est triangulaire supérieure. O

Remarque 11.66. Dans le cas du dernier théoréme, on peut donner une preuve plus directe de la decompo-
sition QR. En effet, on remarque que le procédé de Gram-Schmidt pour obtenir les colonnes de Q nous dit
que

a; = [vilug,

(a2 w)ug + [[va]uy,

2
(Z (a3 'lli)lli) +llvsllug,

i=1

ay

ag

r—1
a; = (Z (ar -ui)uz-) +valuy.

i=1
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Ensuite, considérons la matrice triangulaire supérieure R de taille n x n formée a partir des coefficients
apparaissant dans les combinaisons linéaires ci-dessus :

vill az-u; ag-u; -+ ap1-wp a, w

0 Vol  ag-up -+ ap1-uwpx ap u

0 0 lvsll -+ ap—1-uz a,-ug
R:=

0 0 0 Vi1l  an-uu—

0 0 0 0 vyl

En d’autres termes, les coefficients apparaissant dans la k-eme colonne de R sont les coefficients de la
combinaison linéaire donnant a,. On affirme que QR = A. Pour le voir explicitement, on peut écrire

R=[r;--1p],

r; =|vile,

r; = (a;-upe; +|valey,

n—-1
Iy (Z (a; 'ui)ei) +lvalen.
i=1

Ainsi, la k-éme colonne de QR = [Qr; - - - Qr] est donnée par

k-1
Qry=0Q ( Y (a;-uy)e; + ||Vk||ek)
i=1
k-1
Z (@; -u;)(Qe;) + [[vi |l Qex
k

|
—

(@; -up)u; + ||villag
1

~
I

ay.

On remarque que I'expression de R ci-dessus, pleine de produits scalaires, coincide avec I’expression au
début de cette section. En effet, remarquons que si I'on multiplie (a gauche) les deux cotés de 'identité
A=QR par QT on trouve

Q"A=Q"(QR) = Q"QR=1,R=R.

<

La factorisation QR d’'une matrice A € My, «,(R) dont les colonnes sont linéairement indépendantes peut
s’obtenir comme suit :

Calcul de la décomposition QR d’une matrice A = [a; - --a,] dont les colonnes sont linéairement
indépendantes

(QR’.1) Appliquer le procédé de Gram-Schmidt aux colonnes de A’, et normaliser les vecteurs obtenus,
pour obtenir Q := [u; ---uyl;

(QR’.2) calculer R:= QT A.
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11.11. Résumé du chapitre sur le produit scalaire et I'orthogonalité

Exemple 11.67. Calculons une factorisation QR de
11
A=]1 2
0 2

Ici, A = [a; ay], ol a; et @, sont indépendants, donc le théoreme s’applique. Le procédé de Gram-Schmidt
donne

. ~1/2
2 "d]
Ta Y " 1/2

1
vii=a;=11], Vo:i=ap—
0 lai] )

On a donc, aprés normalisation,

V212 =216
Q=|v2/2 V26
0 2v2/3

Ensuite,

11
R=QTA= V212 V2/2 0 L 2
B “\-v2/6 V2/6 2v2/3 0 2

(V2 3v2i2
‘(0 3\/5/2)'

Remarquons que cette derniere est bien

R= (||V1|| a2'111) ,
0 vl

N V
olu; = m
11.11 Résumé du chapitre sur le produit scalaire et I'orthogonalité
NORME EUCLIDIENNE DE x € R" :

Il := /X3 +--+ x5 — VECTEURUNITAIRE: x| =1
PROPRIETES DE LA NORME EUCLIDIENNE :

(NOR.1) [IAx] = [Allx]l, VA € R,x € R"; (NOR.3) [x+yl < IIx] + [yl
(NOR.2) X[ =0 ET |x|=0<x=0

DISTANCE EUCLIDIENNE ENTREx € R” ETye R" :

dist(x,y) := [Ix -yl
PRODUIT SCALAIRE EUCLIDIEN DEx € R” ETye R" :

Xy=xi)1+x2y2+--+Xpnyn
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PROPRIETES DU PRODUIT SCALAIRE EUCLIDIEN :

(PS.1) x-y=y-x (PS.3) x-x>0,VxeR? ET x-x=0x=0
(PS.2.1) x-(y; +Ay2) =X y] +AX- Yo (NRM) x-x= |x]|?
(PS.2.2) (x3+Ax2) y=xX1-y+AXz2-y (C-S) x-yl < Iyl

ORTHOGONALITEDE x€ R” ETye R" :

xly = x-y=0 2SS Ix+yl? = IxI1% + lIyll*
COMPLEMENT ORTHOGONAL DE W cR" ;

wt:={veR"|vLwVYwe W} — SEVDER"
CALCUL DU COMPLEMENT ORTHOGONAL DU SEV W cR" :

@ ’ CALCUL D’UNE BASE {wy,--- ,wi} DEW
@ wt =Ker([w1 wk]T)

PROPRIETES DU COMPLEMENT ORTHOGONAL :

) whi=w 2) dim(W) +dim(Wt)=n
PRODUIT SCALAIRE ABSTRAIT (u|v) € RPOUR u, v DANSEV V :

(PS.1) (ulv) = (v|w (PS.2.2) (ulv+Av") = (ulv) + Au|v)
(PS.2.1) (u+Au|v)=wlv)+ AW |v) (PS.3) (ulu) =>0,YueV ET (ulu) =0 u=0y

ORTHOGONALITE ENTRE LIGNES ET COLONNES DE MATRICE A :

Lgn(A)* =Ker(4) ET  Col(A)* =Ker(AT) |(VOIR THM 11.30)

FAMILLE ORTHOGONALE ET ORTHONORMEE {wy, ..., w;} SR" :

{wi,...,wr} <R” ORTHOGONALE
Wi, ...,wi} SR” ORTHONORMEE = ORTHOGONALEET |w;| =1,Vi

Wl'J_Wj,Vi#j

BASE ORTHOGONALE (BO) ET BASE ORTHONORMEE (BON) :
¢ BASE ORTHOGONALE = BASE ET FAMILLE ORTHOGONALE
o BASE ORTHONORMEE = BASE ET FAMILLE ORTHONORMEE

RESULTAT REMARQUABLE :

{wy,...,wi} SR” ORTHOGONALE ET w; #0,Vi = {wi,...,wr} LIBRE | (VOIR LEMME 11.35)

BASE ORTHOGONALE ET COORDONNEES DEw € WV :

W-Wp

lTwy 12
B ={wy,...,wi} <R" BODE SEV W ET weWw — Wlg = :
W-Wp
lIwlI?
MATRICE ORTHOGONALE:
A€M,;xn(R) ORTHOGONALE = ATA=1,
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PROJECTION ORTHOGONALE DEve R"” SURSEVIW cR":

RESULTAT FONDAMENTAL: | 3lv, € wi,3! v € WTELSQUEv=v+v, [(VOIRTHM 11.48)

=:projy, (v)
.

projection orthogonale

V-Vj
Be

COMMENT CALCULER projy, (v): | SI{vy,..., v} BODE W : projy, (v) = + el
k

vV-Vvp
—vl + ...
vy 112

METHODE D’ORTHOGONALISATION ET D’ORTHONORMALISATION DE GRAM-SCHMIDT (GS) :

,%:{wl,...,wk}BASEDESEVWg[R"\—»]gg’:{vl,...,vk} BODEW‘

——|%"={uy,...,u;} BONDE W |

A
V] =W = —
. Wy -V ”V] ”

V2 =Wy — 2V1 W
Ivil W=

Ve wa_ WBVI W3-Va vi

3 .= W3 — 1~ 2 .
AR w21l ug = Vsl
o Wi V] Wi Vi1

Vi 1= Wi — S VI~ T T 5 Vil Yk
V1l Vi1l W= v

DECOMPOSITION QR D’UNE MATRICE A = [a; --- a,] € M, (R) AVEC rang(A) = n:

(1) ] GSA{aj,---,a,} POUR OBTENIR BON {uj,---,u,}

(2) |[A=QR OU Q=[u; - u,JETR=Q" A
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Chapitre 12

La méthode des moindres carrés

12.1 Introduction

12.1.1 Description générale

La méthode des moindres carrés, également appelée régression linéaire (least squares ou linear regression
en anglais), est une technique qui permet de modéliser des données expérimentales a I’aide d'un modele li-
néaire optimal (dans un sens que nous préciserons). Elle est utilisée dans beaucoup de domaines, et consti-
tue en particulier un des piliers des méthodes de base rencontrées en machine learning.

De notre point de vue, la méthode des moindres carrés sera une application de 1’algébre linéaire a des pro-
blemes d’optimisation.

Avant de la décrire en toute généralité, nous allons la motiver sur un exemple simple, de petite dimension,
qui nous permettra de comprendre 1'idée de base, qui sera ensuite généralisée.

Objectifs de ce chapitre

Ala fin de ce chapitre vous devriez étre capable de
(0.1) appliquer la méthode moindres carrées pour calculer la pseudo-solution d'un SEL;
(0.2) appliquer la décomposition QR pour calculer la pseudo-solution d'un SEL.

Nouveau vocabulaire dans ce chapitre

e régression linéaire o meilleure approximation d'une solution
o méthode des moindres carrées d’un SEL
o pseudo-solution (ou solution au sens des

moindres carrées) e équation normale

12.1.2 Motivation : Celsius vs Fahrenheit?

Supposons que I'’on souhaite étudier la relation permettant de convertir les unités de mesure d'une tempé-
rature, de Celsius (notée T¢) en Fahrenheit (notée Tr).

On se souvient que cette relation est du type suivant :
mais on ne se souvient plus des valeurs de «a et .
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12.1. Introduction

Si on dispose de deux thermometre, un qui mesure en Celsius, 'autre en Fahrenheit, on peut prendre des
mesures et les utiliser pour essayer de retrouver les valeurs des coefficients a et . Si ces thermomeétres
permettaient de faire des mesures “parfaites”, il suffirait de faire deux mesures de températures assez dif-
férentes, (Té”, T }U) (au milieu du laboratoire par exemple) et (T, T}Z)) (dans le frigo par exemple), de les
injecter dans (1),

(1) _ ()
aT; +,6—TF ,
(2) _ 72
als +6=T;",

et de résoudre ce systeme pour trouver «a et f.

Mais on sait que des mesures empiriques ne sont par définition pas parfaites : un processus de mesure de
ce genre peut contenir de multiples sources d’erreur : mauvaise calibration des appareils, minivariations de
températures entre les points ol la température est mesurée, imprécisions lors de la lecture de la tempéra-
ture sur les thermomeétres, etc.

Supposons pour simplifier que I’on fasse trois mesures. On les reporte dans un tableau :

Tc Tr
2 30
12 52
65 147

Encore une fois, comme nos mesures ne sont pas exactes, il est trés peu probable que les trois points satis-
fassent simultanément la relation Tr = a T¢ + B, pour des coefficients a, f bien définis. En d’autres termes,
le systeme

2a¢  + B = 30,
120 + B = 52,
650 + P = 147

est incompatible.

Mais on ne doit pas pour autant abandonner la recherche de la vraie relation qui lie ces températures!
Car si des mesures expérimentales ne permettent pas de retrouver exactement une relation théorique, elles
permettent néanmoins de s’en approcher.

D’un point de vue graphique, le probléme rencontré ci-dessus peut s’exprimer comme suit : les trois paires
(Tc, Tr) mesurées en laboratoire peuvent étre représentées comme des points dans le plan :

Tr

Tc
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Si ces points ne sont pas sur une méme droite, ils doivent quand-méme étre proches de la droite théorique
“Tr=aTc+ p”. Et on peut donc se poser la question de savoir sil est possible, a partir de nos trois mesures,
de calculer une paire (&, 8) qui donne une droite Tr = &T¢ + B qui approxime au mieux ce nuage de trois
points. Comment définir cette droite?

Pour répondre a cette question, utilisons le langage de 'algebre linéaire pour formuler précisément le pro-
bleme. On I'a dit, avec nos trois mesures, on est mené au systeme de taille 3 x 2 donné par

2 1 a 30

12 1 (ﬁ) =152],

65 1/ .0 147
T/ =x T

qui est incompatible, et qui le sera en général des que ces trois mesures sont faites en laboratoire. Il est
utile de formuler géométriquement ’absence de solution au probleme Ax = b ci-dessus, en reprenant la
définition de base du produit matriciel :

2 1 30
al12|+p[1]=] 52

65 1 147
~—— ~ =
= =a =b

Ce systeme posséderait une solution (a, ) si b appartenait a Col(A), c’est-a-dire au plan engendré par a; et
a,. Mais le plus probable est que b ne soit pas dans ce plan :

Col(4)

Cette image suggere que malgré tout, si on ne peut pas trouver de paire telle que la combinaison linéaire
aa, + fay soit exactement égale a b, on pourrait chercher la paire telle que la combinaison linéaire aa; + fa,
soit aussi proche que possible deb, c’est a dire la paire (@, ) qui minimise la distance

[ (aa; + fay) —b|l.

On sait, par les résultats démontrés dans le chapitre précédent, que la combinaison linéaire qui réalise ce
minimum est précisément celle qui est égale a la projection de b sur 'espace engendré par a; et ap, a savoir
Col(A) :
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- Col(A)
PIO0]col(4) (b)

Pour résumer, au lieu de résoudre le systeme incompatible
(%) : Ax=b,

on cherche le x qui minimise la distance
I Ax—bll,

et on sait que ce x correspond a la solution de

() mc: AX = Projggya)(b).

Ce deuxieme systeme possede toujours une solution x, puisque par définition, la projection projc, 4 (b) €
Col(A). Calculons donc la projection de b sur W = Col(A) = Vect{a;,ay}.

Informel 12.1. Attention, les calculs qui suivent sont simples, mais menent a des fractions que I'on
ne peut pas forcément simplifier. Pas grave, c’est la vie! La plupart du temps, dés qu’on s’attaque a
un probléeme venu d’une situation pratique, il apparait toujours des nombres moins jolis que ceux
qu’on est habitués a trouver dans les séries d’exercices. (Et le plus probable est que I'on implémente
I'algorithme sur un ordinateur, donc on ne fera pas a la main ces calculs de fractions.)

Comme les colonnes de A ne sont pas orthogonales, on peut d’abord faire (Gram-Schmidt) :

1 79 2 4215/4373
a'2 =ay —projal @)=1|1]- m 12| =1 3425/4373
1 65 —762/4373
La projection peut maintenant se calculer :
. b- a b- a/2
PrOjcoia (b) = oz + Wa'z
2
10239 2 192536 4215
= 1373 | 2| " 30077294 | 222
65 —762
31.6644...
=| 50.0215...
147.3140...
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Maintenant, on peut résoudre le systéme Ax = projc) 4 (b) :

2 1 “ 31.6644...
12 1 (ﬂ): 50.0215...
65 1 147.3140...
On trouve :
a =1.8357...,
f=27.9930...,

Donc nos trois mesures, et le raisonnement géométrique menant a projeter sur les colonnes de la matrice
A, nous ont mené a la version suivante de la relation entre degrés Celsius et Fahrenheit :

Tr=1.8357...T¢c +27.9930...,

Cette droite est celle qui approxime le mieux nos mesures, au sens des moindre carrés (voir la section
suivante pour 'explication de cette terminologie).

Pour information, la vraie relation, que I’on trouve par exemple ici, est la suivante :
9
Tr = ch+32 =1.8T¢c+32.

Avec seulement trois points, notre méthode fournit donc des coefficients dont I’erreur avec la relation théo-
rique est d’environ 2% pour «a, et 13% pour .

Informel 12.2. Bien-sir, on obtiendrait un bien meilleur résultat en faisant beaucoup plus que trois
mesures! Si on faisait 100 mesures par exemple, I'erreur sur a et § serait bien plus petite. Pourtant,
on traiterait le probleme exactement de la méme fagon : avec 100 mesures, on devrait considérer un

systeme incompatible
A x =Db
N
100x2 eR2 €[R100

On projetterait alors b € R%° sur le plan Col(A) € R'%, pour finalement obtenir une droite qui ap-
proxime notre nuage, formé par les 100 points des mesures faites en laboratoire.

12.2 Méthode générale
12.2.1 Généralités

Considérons un systeme de taille m x n,
(x): Ax=Db,

que I'on supposera incompatible, ce qui signifie

min || Ax—b| > 0.
xeR”

Définition 12.3. On dit que X € R” est une pseudo-solution de (), ou solution de (*) au sens des

moindres carrés si
|AX—b| = min| Ax—Db]|.
xeR”

On dit ainsi que la pseudo-solution X donne I'une des meilleures approximations a la solution du
systeme d’équations linéaires ().

Schématiquement :
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R" — R

Remarque 12.4. A propos de la terminologie “moindres carrés”, trouver le x qui minimise une certaine
norme revient au méme que de trouver le x qui minimise le carré de cette norme , donc la recherche d'une
pseudo-solution revient a minimiser la fonction

m
2 2
x— [Ax-b[* =) ((Ax)r—bi)*,
k=1
qui est une somme de carrés. 3
On présente de facon explicite les arguments indiqués dans la section précédente.
Théoréme 12.5. Un vecteur X € R" est solution de Ax = b au sens des moindres carrés si et seulement

SiX est solution de
AX = Projo)4) (b).

Preuve: Par la derniere propriété de la projection orthogonale dans le deuxieme théoréeme de la Section 11.8, on sait
que
Iprojcey 4y (b) —bll = min || Ax—bl|,
xeR”

ce qui nous dit que toute préimage X € R" de projg,4 (b) par A est solution de Ax = b au sens des moindres carrés.
De fagon réciproque, si X € R” est solution de Ax = b au sens des moindres carrés, alors

| AX—bll =min | Ax—-b].
xeR”

Comme Ax est dans Col(A), la derniére propriété de la projection orthogonale dans le deuxiéme théoréme de la Sec-
tion 11.8 nous dit que AX = projc, 4 (b), comme on voulait démontrer. O

12.2.2 Léquation normale

Considérons une pseudo-solution X :
|AX—b|| =min||Ax—Db].
xeR”

Comme on sait, considérer tous les produits q := Ax possibles, lorsque x varie, revient a considérer toutes les
combinaisons linéaires possibles des colonnes de A, et donc a parcourir tout le sous-espace Col(A). Donc
on peut tout aussi bien écrire

min||Ax—b| = min |q-bl.

XeR” gqeCol(A)

Or on a vu que le minimum de cette distance est réalisé lorsque q est la projection de b sur Col(A) :

q = Projcy)(a (b)

On peut toujours calculer cette projection, typiquement en extrayant une base de Col(A), et en 'orthogo-
nalisant avec le procédé de Gram-Schmidt. (C’est ce que nous avons fait dans I’exemple de I'introduction.)
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Mais nous allons voir qu’il est possible de passer outre le calcul explicite de cette projection.

Théoréme 12.6. Un vecteur X € R” est solution de Ax = b au sens des moindres carrés si et seulement
siX est solution de l'équation normale, donnée par

AT Ax= ATb.
Preuve: Si x € R" est solution de Ax = b au sens des moindres carrés, alors le premier théoréme de cette section nous
dit que Ax = projg,(4) (). Or, onrappelle que b = projg, 4 (b) est caractérisé par le fait que b, := b—by est orthogonal

a Col(A),i.e. b, € Col(A)*:

Col(A)

b = projcec4) (b)

En outre, on a montré dans la Section 11.5 que

Col(A)* =Ker(AT).

Ainsi, b, doit satisfaire A”b; =0, qui donne
ATb-bp =0,

c’est-a-dire
ATb” =ATb.

Réciproquement, si X est solution de I'équation normale A” Ax = A”b, on a que A” (AX—b) =0, ce qui implique que
Ax—b e Ker(AT) = Col(A)*. Comme

AX—b= (AX = PIOjcol(a) (b)l + (Projeoy) (b) —b),

€Col(A) €Col(A)L

alors AR — projgg4 () € Col(A)* N Col(A) = {0}, ce qui nous dit que X est solution de (*) au sens des moindres carrés,
d’apres le premier théoreme de cette section. O

Exemple 12.7. Considérons ’exemple de I'introduction, ot le systeme incompatible Ax = b de départ était

2 1 a 30
12 1 (ﬁ) =1 52
65 1 147

Donnons la solution de cette équation sans passer par la projection, en utilisant le théoréme ci-dessus. On
obtient I'équation normale en multipliant des deux cotés par A”, qui donne

(2 12 65) o (a)_(Z 12 65) >
11| p)- 1 )|
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c’est-a-dire
4373 79\ (a) _ (10239
79 3/\B) |\ 229 )

La solution de ce dernier est donnée par

12626
a=——=1.8357...,
6878
192536
f=———=27.9930...,
6878
comme nous avions trouvé en utilisant la projection. o

Informel 12.8. Si A est une matrice de taille m x n, AT A est une matrice de taille n x n, et donc
I’équation normale représente un systéme carré de taille n x n qui posséde tfoujours une solution.

Dans I'exemple précédent, la solution de I'’équation normale était unique. Mais il peut arriver que 1'équa-
tion normale posséde plus d'une solution, ce que I'on aimerait éviter dans les problemes pratiques. Voyons
comment garantir 'unicité de la pseudo-solution :

Théoreme 12.9. Soit A une matrice de taille m x n. Sont équivalents :
1) pour toutb € R™, la pseudo-solution de Ax = b est unique;
2) pour toutb € R™, la solution de I'équation normale AT Ax = ATb est unique;
3) la matrice carrée AT A de taille n x n est inversible;

4) les colonnes de A sont linéairement indépendantes.

Ainsi, lorsque la pseudo-solution X du systeme Ax = b est unique, elle s’exprime explicitement par
x=(ATAHATD.

Pour la preuve des équivalences énoncées dans le théoréme, nous aurons besoin du résultat préliminaire
suivant :

Lemme 12.10. Pour toute matrice A de taille m x n, Ax = 0 si et seulement si AT Ax = 0.

Preuve: 1l est évident que si Ax =0, alors AT Ax=0.

Inversément, si AT Ax = 0, alors
Il Ax||? = (Ax) T (Ax) =x" (AT Ax) =0,

ce qui implique || Ax|| = 0, c’est-a-dire Ax = 0. O
Passons maintenant a la preuve du théoréme :

Preuve: 1. & 2. : clair par ce que nous avons montré ci-dessus (un x est pseudo-solution si et seulement si c’est une
solution de I'équation normale).

2. < 3.:0On sait qu'un systeme carré Mx =y posséde une unique solution pour tout y si et seulement si M est inver-
sible.

3. © 4.:En effet, les colonnes de A sont indépendantes si et seulement si’équation Ax = 0 ne possede que la solution
triviale, et par le lemme ci-dessus, ceci est équivalent a dire que A” Ax = 0 ne posséde que la solution triviale, qui
encore une fois est équivalent a dire que A” A est inversible, qui est 2. O
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Exemple 12.11. Le systéme incompatible

1 2 3 1
1 -3 —2|(M) |2
055?—3
1 1 o) |4

possede une infinité de pseudo-solutions. En effet, la troisieme colonne de A est égale a la somme des deux
premieres; par le théoreme, ceci implique que la solution n’est pas unique. On conclut que le nombre de
solutions est infini, par le Théoréme “0,1,00” appliqué a AT Ax= A”b. o

Plus tard, nous appliquerons la méthode des moindres carrés pour résoudre d’autres problemes d’optimi-
sation, inspirés de I'analyse.

12.2.3 Droite de régression

Supposons que |'on ait un nuage de points dans le plan, obtenu en prenant des mesures
@ ={(x1,y1),-.., xn, YN},
sensées obéir a une relation affine théorique de la forme
y=ax+p.

Dans ce cas, le systéme d’équations linéaires de taille N x 2

axy + B = »n,
axy + P =y,
axy + p = yn

est en général incompatible, et la solution au sens des moindres carrés correspond a minimiser

x= (;) — % ((@xi+ B - i)’

k=1

La paire (&, ) qui minimise cette fonction fournit donc une droite qui approxime le nuage £, au sens des
moindres carrés, i.e. (&, B) est la solution au sens des moindres carrés de

La droite y = éx + ,3 ainsi obtenue est appelée la droite de régression de la famille de points

P = {(X1,J/1),...,(xN,yN)} cR?.
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Par exemple, avec seulement N = 3 (comme dans I’exemple de motivation) :

Pour une animation semblable, mais fonctionnant avec un nombre arbitraire de points, cliquer ici (Stats
applets).

Exemple 12.12. On considére la famille 22 = {(-6,-1),(-2,2),(1,1),(7,6)} de points du plan. La droite de
régression y = dx + [ associée est obtenue a partir de la solution de moindres carrées de

-6 1 -1
-2 1|(a) |2
s |G|
7 1 6

Sil’on utilise 'équation normale, on cherche donc a résoudre

-6 1 -1
90 O\(a) (-6 -2 1 7\|-2 1|(a) (-6 -2 1 7\|2 45
o 4){p) \1 1 1 11 1\ {1 1 1 1|1 8)’
7 1 6
qui admet la solution unique
ay _(1/2
Bl \2)
En conséquence, la droite de régression est y = %x +2. 3
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12.3 Utilisation de la décomposition QR

La décomposition QR intervient dans la recherche des solutions d'un systéme au sens des moindres carrés.

En effet, considérons un systeme incompatible

Ax=b.

Théoreme 12.13. Soit A une matrice de taille m x n quelconque, et soit A = QR une décomposition
QR de A. Alors un vecteur x € R est la solution de Ax = b au sens des moindres carrés si et seulement si
il est solution du systeme

Rx=Q'b.

Remarque 12.14. Lavantage du systéme Rx = Q'b est qu'il est triangulaire. 3
Preuve: Supposons d’abord que x est pseudo-solution de Ax = b. On sait que cela signifie que

b - Ax € Col(A)* = Col(Q)* =Ker(Q7).

Dans la premiére égalité, on a utilisé le fait que les colonnes de Q, par définition, engendrent le méme sous-espace
que celles de A.

On adonc
Q'b-Ax =0,
et comme QT A = R, cette derniére implique que x est solution de
Rx=Q"b.

Inversément, supposons que X est solution de ce dernier systeme, que I'on écrit plutot

QT Ax=Q"b.
En multipliant des deux cotés par R” et en utilisant R” Q7 = (QR)T = AT, on obtient

AT Ax=A"b,
donc x est solution de I’équation normale. O

Exemple 12.15. Considérons le systeme Ax = b incompatible suivant :

2 1) 1
2 o(xl)z -5
1 1)V7? 2

Puisque les colonnes de A sont indépendantes, la solution au sens des moindres carrés est unique, et on va
la calculer en utilisant le théoreme ci-dessus.

Le procédé de Gram-Schmidt appliqué aux colonnes de A, suivi d'une normalisation, donne

2/3 1/3
Q=|2/3 -2/3
1/3  2/3
On adonc
T . 3 1 Ty -2
R=Q A-(O Nooe om=(F).

Ainsi, Rx = QTb est le systéme triangulaire donné par

3 1)\(x1) (-2

0 1/{x2) (5)°
La solution de ce dernier est x; = —7/3, x» = 5. On peut bien-sir vérifier que cette solution est la méme que
celle de I'’équation normale associée au systéme incompatible initial. 3
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12.4 Résumé du chapitre sur la méthode des moindres carrés

PSEUDO-SOLUTION (OU SOLUTION DE MOINDRES CARREES) DE Ax=b:

X PSEUDO-SOLUTION DE Ax=b

RESULTATS FONDAMENTAUX :

| AX—b| = min| Ax-b].
xeR”

X PSEUDO-SOLUTION DE Ax =b

o ATAx=A"b |(VOIRTHM 12.6)
[ ———

équation normale

[ JX PSEUDO-SOLUTION DE Ax=b <«

COLONNES DE A LIBRES ] (VOIR THM 12.9)

DROITE DE REGRESSION y = @x + S POUR {(p1,q1),-- -, (PN, Gn)} S R? :

CALCULER PSEUDO-SOLUTION % = (g)

(pr.a) -~
<.

AT

I (p2.a2)

pr 1 7
a
DE . . =
i (g)
pn 1)~ \gn
T X T

(pnan)_ -~

. -
-
e,
-
-

y y=ax+p

PSEUDO-SOLUTION A PARTIR DE LA DECOMPOSITION QR A= QR:

X PSEUDO-SOLUTION DE Ax=b

<& R%=Q"b |(VOIRTHM 12.13)
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Chapitre 13

Diagonalisation de matrices symétriques via
matrices orthogonales

13.1 Introduction

Dans ce chapitre, on montrera un résultat fondamental de I’algebre linéaire, qui a des applications dans
toutes les branches de mathématiques et d’autres disciplines comme la physique et la biologie : que toute
matrices symétrique est diagonalisable par des matrices orthogonales.

Objectifs de ce chapitre

Ala fin de ce chapitre vous devriez étre capable de
(O.1) connaitre les propriétés des matrices orthogonales;
(0.2) calculer la décomposition spectrale d'une matrice symétrique.

Nouveau vocabulaire dans ce chapitre

» matrice orthogonale o décomposition spectrale

13.2 Rappel sur les matrices symétriques et orthogonales

Dans ce chapitre, on ne traitera que des matrices carrées.

Définition 13.1. On rappelle qu'une matrice A de taille n x n est symétrique si A7 = A, c’est-a-dire

S1
Aj,i:Ai,jy Vi,j:1,2,...,n.

Donc une matrice symétrique a ses coefficients symétriques par rapport a la diagonale.

Exemple 13.2. ¢ Lamatrice identité I, est symétrique.
1 2 3
e B=[2 0 -5]estsymétrique.
3 -5 7
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n’est pas symétrique.

.
O
Il
—— - O
\CHE el \C R e R )
— o NN~
N O O O -
— DN = e

<o

Avant de commencer I'étude des propriétés remarquables des matrices symétriques, introduisons une autre
classe de matrices, intimement liées (comme on le verra) aux matrices symétriques :

Définition 13.3. On rappelle qu'une matrice A de taille n x n est orthogonale si
ATA=1,.
Remarque 13.4. On affirme qu'une matrice carrée A de taille n est orthogonale si et seulement si
ATA=AAT =1,,.

C’est clair que si A vérifie la condition précédente elle est orthogonale. Réciproquement, par sa définition,
une matrice carrée A de taille n orthogonale a noyau trivial. En effet, si Av=0, alors

v=I,v=ATAv=AT0=0,
ce qui nous dit que le noyau de A est trivial. Comme A est une matrice carrée, elle est donc inversible. En

plus, A~1 = AT car
AT=AT, =ATAa Y= ATapAa " =1,A7 =471,

ce qui nous dit qu'une matrice carrée orthogonale A vérifie
ATA=AAT =1,,.
3

En général, dans le cas des matrices de taille n x n, on parle des matrices orthogonales de déterminant 1
comme des rotations, puisqu’elles représentent des transformations rigides, qui préservent l'orthogonalité.
Nous reviendrons la-dessus.

13.3 Sur les espaces propres d’'une matrice symétrique

Commencons par une propriété élémentaire du produit scalaire :
Lemme 13.5. Soit B une matrice de taille n x n quelconque. Alors pour tousx,y € R”,
(Bx)-y=x- (BTy) .
En particulier, si B est symétrique, alors
(Bx)-y=x-(By).

Preuve: Par I'interprétation matricielle du produit scalaire,

(Bx)-y=Bx) y=x"Bly=x"(BTy) =x- (BTy).
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Une conséquence immédiate :

Corollaire 13.6. Soit G une matrice orthogonale de taille n x n. Alors pour tousx,y € R",
* (GX)-(Gy) =x-y,
o [Gx| = IxI.

Preuve: Supposons que G est orthogonale. Par le lemme précédent,
(Gx) - (Gy) =x- (GT Gy) =x-y.
La deuxiéme identité s’obtient en prenant y = x. O

Remarque 13.7. La deuxieme propriété montre qu'une application linéaire définie par une matrice ortho-
gonale est une isométrie, c’est-a-dire qu’elle ne change pas la longueur d’'un vecteur (seulement sa direc-
tion). o

Exemple 13.8. Un exemple typique d’isométrie est la rotation d’angle 6 dans le plan :

6 =1.000... ote(z)

Rappelons que la matrice de cette rotation relative a la base canonique est donnée par

cos(@) - sin(H))

rot =1 .
(r0t0] B (sm(@) cos(0)
Cette matrice est orthogonale puisque ses colonnes sont unitaires et perpendiculaires entre elles :

cos(0) sin(@))(cos(@) —sin(@))

T _
[roto) 2 [mte]‘%c“‘_(—sin(e) cos(@)) \sin(@) cos(9)

=1.
3
On sait que pour une matrice quelconque, des vecteurs propres associés a des valeurs propres distinctes

sont indépendants. Pour une matrice symétrique, cette propriété est vérifiée dans un sens plus fort :

Corollaire 13.9. Soit A une matrice symétrique de taille n x n. Sivy etv, sont deux vecteurs propres de
A associés a des valeurs propres distinctes, alorsvy L v».
Preuve: Si Avy = A1vy, Avy = A,vy, alors

A1 (V1 -v2) = (A1vy) - V2 = (Avy) - Vo
=v1-(Avy) = vy - (A2v2) = A2(vy - V2),
qui implique (1; — A2)(vy - v2) = 0. Donc si 11 # A2, on a forcément que vy - v, = 0. O
Dans I'exemple suivant, nous vérifierons ce résultat sur un exemple concret, et nous observerons encore

une propriété qui sera énoncée comme un résultat général dans la prochaine section.
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Exemple 13.10. Etudions les espaces propres de la matrice symétrique

3 -2 4
A=|-2 6 2
4 2 3

On calcule son polynoéme caractéristique,

Pp(A)=det| -2 6-1 2

=det| O 6-1 2

=det| 0 6-1 2
0 4 -1-2
=—(A+2)(A=7)>.

Donc A posséde deux valeurs propres, 1; = -2 et 1, = 7. Les espaces propres associés se calculent facile-
ment :

2
e E ,=Vect{vl,ouv=| 1 |,
-2
1 -1
e E; =Vectiw,wy},otw; =0, wp=| 2
1 0

On remarque qu’effectivement, v L wi, et v L wy, et donc n'importe quel vecteur de E_; est orthogonal a
n'importe quel autre vecteur de E;. En d’autres termes :

E,'=E,, E“=E_.

(Pourtant, w; et w, ne sont pas orthogonaux entre eux.)

w2

Remarquons aussi que
2

multg(Ax) =1+2=3,
k=1

ce qui implique que A est diagonalisable. En prenant par exemple

-2 0 0 1 1 -1/2
D=0 7 0|, P=[vwiwy]=[1/2 O 1 ,
0 0 7 -1 1 0
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on obtient la diagonalisation A= PDP™!,

Mais rappelons que I'on peut former la matrice de changement de base en choisissant les vecteurs propres
que 'on veut, tant qu'’ils forment une base des espaces propres concernés, et que 1’on respecte 1'ordre des
valeurs propres dans la matrice diagonale D.

Donc on peut tres bien, si on veut, commencer par orthogonaliser la base de E7 avant de mettre en place P :

“/1 =wy,
-1/2
W) 1= W2 — PIOjy, (W) = | 2
1/2

Ainsi, une autre diagonalisation de A serait A = QDQ_I, avec la méme matrice D qu’avant, et

1 1 -1/2
Q=lvwiwyl=[1/2 0 2
-1 1 1/2

Cette fois, les colonnes de Q sont orthogonales deux a deux. Or rien ne nous empéche de les normaliser
avant de définir Q :

oW,
v.ow 2

TCARTA

’

qui donne une troisiéme diagonalisation de A: A= RDR™! (avec D la méme matrice qu’avant). Mais ici, R
étant orthogonale, son inverse est R~! = R”, et donc le changement de base devient

A=RDR".
On a donc pu diagonaliser A dans une base orthonormée deRS. o

Nous verrons, dans la section suivante, que ce que nous avons fait sur ce dernier exemple peut se faire avec
n'importe quelle matrice symétrique.

13.4 Théoreme de décomposition spectrale

13.4.1 Le Théoréme Spectral

Un des résultats importants de I'algebre linéaire :

Théoréme 13.11 (Théoréme spectral). Soit A une matrice de taille n x n. Alors A symétrique si et
seulement si elle peut se diagonaliser a l'aide d’'une matrice de changement de base orthogonale.

On dit que les matrices symétriques sont orthogonalement diagonalisables.
Preuve:* <) Supposons que A peut se diagonaliser a 'aide d’'une matrice de changement de base G orthogonale :
A=GDGT. Alors

AT =(GDpGN" =GN D'G" =GDG" = 4,

donc A est symétrique.

=) Pour montrer ce résultat on va utiliser le résultat suivant.

Lemme 13.12. Soit A une matrice de taille n x n symétrique. Alors A possede un vecteur propre v € R" avec
valeur propre A € R.
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Preuve: Pour 0 < s < 1, soient Cs, := {xe R" : s < [Ix|| < 7} et 'application f:R"\ {0} — R définie par

x-(Ax)  Xjj=1 %idijXj
- n 2
j=1%j

f®=

X-X

Alors, f est continue. Comme f est continue et C; , est fermé et borné, alors f admet un maximum v € Cs, dans Cs ;.
En plus, comme f(1x) = f(x) pour tout ¢ € R\ {0} et x e R"\ {0}, v est un maximum de f dans R"\ {0}, vu que, pour tout
x € R™\ {0},

f(x):f(si) <fW).

Il
En conséquence, étant donné w € R”, I'application fyw : R — R donnée par f(f) = fyw(v+ tw) admet un maximum
local en t = 0, ce qui nous dit que

. A — _
0= fi ) = W Av-sow) (A"—f(")")

Vv Vv
ot1’on a utilisé la regle de dérivation en chaine. Comme cette identité est vrai pour tout w € R”, on conclut que
Av-fvv 0

V-V

’

ce quinous dit que Av—f(v)v=0, i.e. Av= f(v)v. En conséquence, v est un vecteur propre avec valeur propre A = f(v),
comme on voulait démontrer. O

On revient a la preuve du théoréme. Il suffit de montrer qu’il existe une base orthogonale {vy,...,v,} de R” formée de
vecteurs propres de A, car dans ce cas la matrice

Vi Vi

vl lvall

est orthogonale et GT AG est diagonale. On va le démontrer par induction sur la taille 7 de la matrice A. Sin =1, le
résultat suit du lemme précédent. On suppose que le théoréme est vrai pour tout entier positif strictement inférieur
an>1, et on vale démontrer pour n. D’apres le lemme précédent, A posséde un vecteur propre v € R” avec valeur
propre A € R. Comme v € R” est un vecteur propre, il es non nul, ce qui nous dit que Vect{v} a dimension 1. On pose
W = Vect{v}+ < R". En conséquence, d’apres la derniére proposition dans la Section 11.3, on conclut que dim(W) =
n—1.0n note que Aw € W pour toutwe W, vu que

(AwW) - v=w:(AV) =w-(Av) = Aw-v=0,
oul’on autilisé le lemme de la section précédente. Soit {wy, ..., w,_1} une base orthonormée de W et soit Q € M, x(,-1)(R)
la matrice orthogonale
Q=[wy - wp1].
On définit aussi la matrice B = QT AQ € M,,_; (R). Alors, B est symétrique, vu que
Par hypothése de la récurrence, il existe une base orthonormée {uy,...,u,—1} < R"! formée de vecteurs propres de

B. Comme Q est orthogonale, i.e. QTQ =1,_1, et {uy,...,u,—1} € R"! est orthonormée, on conclut que la famille
{Quy,...,Quy,_1} est aussi orthonormée, vu que

(Quy)- (Quj) = (Quy)” (Quj) =u] Q" Qu; =u]uj=u;-u;=6;;.

On affirme en plus que {Quy,...,Quy_1} € W = Vect{v}' est une famille de vecteur propres de A. Pour le démontrer,
on rappelle d’abord que QQ est la matrice canonique de I'application linéaire projy, : R” — R", d’apres le dernier
théoréme de la Section 11.8. Or, comme u; est un vecteur propre de B il existe A; € R tel que Bu; = A;u;, i.e. que
QTAQuj = Ajuj, ce qui implique

AQu; = projy, (AQu;) = QQTAQuj =QAju; =21;Quj,
ol la premiere égalité suit du fait que Aw € W pour tout w € W. En conséquence, {Quy, ..., Quy_1} est une famille de
vecteur propres de A.
Comme {Quy,...,Qup_1} € W = Vect{v}', alors {Quy, ..., Quy_1,v} S R” est une famille orthogonale formée de vec-
teurs propres de A, et donc une base orthogonale de R" par le premier lemme de la Section 11.6. On a ainsi montré
qu’il existe une base orthogonale de R” formée de vecteurs propres de A, comme on voulait démontrer. O
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Remarque 13.13. Pour étre plus concret, donnons aussi la preuve dans le cas n = 2. Soit A une matrice de
taille 2 x 2 symétrique, que I'on écrit comme suit :

A= o)

Montrons que A est toujours diagonalisable, quelles que soient les valeurs de a, b, c € R. Commencons donc
par calculer les valeurs propres, a I’aide du polynéme caractéristique :

PAL) = det(a_/l b )

b c—A
=(a-A)(c-1)—-b?
=A% —(a+ o)A+ (ac-b>).

Calculons le discriminant
A=(a+c)?-4(ac-b*) =(a-c)*+4b>.

Cette derniere ligne montre que I'on a toujours A > 0, et donc toujours au moins une valeur propre. Distin-
guons les cas.

1) Cas A = (a—c)? +4b? = 0. Ceci signifie que a = c et b =0, et donc que A est en fait la matrice
a 0
A= ,
o &

qui est déja diagonale! On peut évidemment I’écrire comme A = I, AIZT .

2) Cas A >0. Dans ce cas, P4 posseéde deux racines distinctes

a+c+vVA

Ai: 2

Si on considere un vecteur propre quelconque v, associé a 1., et un vecteur propre quelconque v_
associé a A_, on sait par le corollaire de la section précédente que v, L v_. Ainsi, la matrice

v, V_

Vel vl

est orthogonale, et permet de diagonaliser A: A= GDG', ot1 D = diag(1,,1_).

Exemple 13.14. La matrice

1 V2 V3 V5 V7 V8 Vi1
V2 Vo om o #n* nd n® onm
V3 T -1 e -—-e e —e
Vi @ e 0 0 0 O
Vi 2 —e 0 1 1 1
V8 nm* e 0 1 2 2
Vi1 7 —-e 0 1 2 3

étant symétrique, le Théoréme Spectral s’applique : elle est diagonalisable. Il existe une matrice diagonale
D et une matrice orthogonale G telles que A= GDG”. 3
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13.4.2 Décomposition spectrale

Voyons comment le Théoréeme Spectral permet de représenter I'application linéaire T : R — R associée a

une matrice symétrique A de taille n x n,

x— T(x) := AX.

En effet, le Théoreme Spectral garantit que A peut étre diagonalisée a I'aide d'une matrice de changement

de base orthogonale :

A=GDG '=GDG".

Ici, D = diag(Ay,...,A,) est formée de valeurs propres de A (pas forcément distinctes), et G est formée de

vecteurs propres associés, formant une base orthonormale {uy, - --

G=[u-uy).

On peut donc écrire, pour un x € R” quelconque,

Tx) = Ax=GDG'x = [u;--u,|D

= [Alul e Anun]

k

|

Z )Lkuku,{

Akukugx
1

1
n

n
A= Z Akukug .
k=1

,u,deR":

Jx

On peut donc écrire A comme une combinaison linéaire de matrices :

On sait que chaque ukulf est une matrice de taille n x n, et représente le projecteur sur uy. . En effet, comme

chaque uy est unitaire,

On a donc pu récrire I'applications linéaire T comme la combinaison linéaire de projecteurs :

Définition 13.15. Les représentations de A et T a I'aide de projecteurs sur les espaces propres de A

T X Ui .
weu X = (X-upug = —lzuk = proj,, ().

[l

n
T= Z Akprojy, -
k=1

sont appelées décompositions spectrales.

Remarque 13.16. La représentation spectrale dépend bien-stir du choix des vecteurs propres pour la ma-

trice; elle n’est donc pas unique.
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13.4. Théoreme de décomposition spectrale

Une décomposition spectrale fournit une interprétation trés géométrique de comment A agit sur un vecteur
X.

En effet, 'expression

n
Ax = Z Ak projy,, (x)
k=1

montre que Ax est une somme vectorielle, dans laquelle chaque terme, Aproj,,, (X), a une interprétion tres
claire :

1) projeter x sur ug;

2) amplifier cette projection par la valeur propre Ay.

Lintérét est que I'on peut travailler indépendamment pour chaque k =1,2,..., n, puis les sommer.

Voyons comment réaliser concretement cette décomposition, dans des cas particuliers.

Exemple 13.17. Considérons la matrice symétrique

A=l 1)

On vérifie facilement que les valeurs propres de Asont 1; = —1, 1, = 3, et que leurs espaces propres associés
sont

1
e E ;=Vect{vl,ouv= (_1);

1
e FE3=Vect{w}, olw= (1)

(On observe a nouveau, comme on sait, que ces espaces sont orthogonaux.) Pour faire la décomposition
spectrale, on a besoin de vecteurs propres unitaires. On peut par exemple prendre

) )

Maintenant, la décomposition spectrale de A est donnée par

2
T
Ax = Z Akukukx
k=1
= (—l)ululT +3u2u2T

=(- l)projul (x) + 3pr0j112 (x).

Linterprétation géométrique de la transformation x — Ax devient limpide :
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Az

ctrale

uy

Vérifions encore, pourquoi pas :

(—1)u1u1T + 3u2u2T =

1 1

-cn() A)es(E)
V2 V2
11 11

= (_1)( % 12)7“3(% %)
2 2 2 2

1 2
)=

3 -2 4
A=|-2 6 2
4 2 3

A possede deux valeurs propres, 11 = —2 et A, = 7, et nous avions appliqué le procédé de Gram-Schmidt
pour trouver

1
e E »=Vect{vl,ouv=|1/2],
-1
1 -1/2
o E;=Vect{w;,wp},ouw| =|0|,w,=| 2
1 1/2
En normalisant ces vecteurs,
uj: v u WII u le
1:= 7> 2= 3=
vl A TA

on obtient une matrice de passage qui est orthogonale de la forme
R=[uwuus],
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qui donne A= RDRT.
Donc la décomposition spectrale obtenue est

A= (—2)u1u1T+7u2u2T+7u3u3T.

13.5 Résumé du chapitre sur la diagonalisation de matrices symétriques via
matrices orthogonales

MATRICE ORTHOGONALE :

A€M, x,(R) ORTHOGONALE 5N ATA=aAT =1,
THEOREME SPECTRAL (DIAGONALISATION DE MATRICES SYMETRIQUES) :

A€Myxn(®) SYMETRIQUE <  3Q € M,x,(R) ORTHOGONALE TELLE QUE Q7 AQ DIAGONALE
(VOIR THM 13.11)

SI{uj,...,u,;} BON DE VECTEURS PROPRES: Q = [u; ... u,]

DECOMPOSITION SPECTRALE DE MATRICES SYMETRIQUES :

SI {uy,...,u,} BONDEVECTEURS
PROPRES DE A AVEC VALEURS = A=A +--+ Au,ul
PROPRES 11,...,1,, RESP.
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Chapitre 14

La décomposition en valeurs singulieres

14.1 Introduction

“Today, singular value decomposition has spread through many branches of science, in particular psycho-
logy and sociology, climate and atmospheric science, and astronomy. It is also extremely useful in machine
learning and in both descriptive and predictive statistics. ”

Peter Mills

“Eigenvalues and eigenvectors are restricted to square matrices. But data comes in rectangular matrices. ”
Gilbert Strang
Si la diagonalisation a permis de comprendre la nature géométrique de certaines applications linéaires, elle

exige malheureusement que I'application considérée se préte a cette analyse (qu’elle soit diagonalisable
justement), et surtout : elle ne s’applique qu’a des matrices carrées.

Objectifs de ce chapitre

Ala fin de ce chapitre vous devriez étre capable de

(0.1) calculer la décomposition en valeurs singulieres d’'une matrice.

Nouveau vocabulaire dans ce chapitre

o décomposition en valeurs singuliéres » vecteurs singuliers a droite
» vecteurs singuliers a gauche » valeurs singulieres

14.1.1 Lerésultat

La décomposition en valeurs singuliéres (en anglais, SVD=Singular Value Decomposition) est une méthode
trés générale de factorisation qui donne une nouvelle interprétation géométrique de n'importe quelle ap-
plication linéaire T : R” — R™. Elle consiste a factoriser une matrice quelconque A de taille m x n en un
produit,

A=UzvT,

ol
1) est une matrice orthogonale de taille m x m, i.e. vlfu=vuuT = L

2) Z estune matrice non négative diagonale de taille mx n,i.e.Z; ; =0sii# jetZ; ; >0;
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14.1. Introduction

3) V estune matrice orthogonale de taille n x n, i.e. viv=vvT= I,.

On sait d'une part que les matrices orthogonales représentent des isométries, c’est-a-dire des transfor-
mations rigides de I'’espace, comme des rotations. D’autre part, une matrice diagonale de taille m x n a
pour effet d’étirer les vecteurs dans certaines directions (avec un changement de dimension, voir plus bas).
Donc la décomposition en valeurs singuliéres permet de décomposer I'application T : R” — R™ définie par
T (x) = Ax en trois parties :

n vl on z \ m s R™M
(isométrie)/ (étirement)/ ’

Il est important d’insister sur le fait que la décomposition en valeurs singuliéres ne suppose rien sur A; elle
est toujours possible. En particulier, elle s’applique a des matrices qui ne sont pas forcément carrées.

14.1.2 Structure

Dans la section suivante, nous établirons rigoureusement la décomposition en valeurs singuliéres. Pour
I'instant, supposons qu'une décomposition
A=Uzv’

soit donnée, et voyons ce que cela dit déja sur les matrices U, Z et V.

Nommons les colonnesde V, U et X :

U:[u1~~~um], llkElRm,
Z:[O'l“‘o-n], OLE[RmJ
V=[vi--vyl, vjeR".

Comme U et V sont orthogonales, les familles {uy, ..., u;,} SR et {vy,...,v,} = R" sont orthogonales.

La matrice X représente une application R” — R dont la simplicité rappelle celle des matrices diagonales
carrées. Nous noterons o; les éléments diagonaux de Z. Notons que si m > n (resp., m < n), alors certaines
lignes (resp., colonnes) de Z sont nulles.

Exemple 14.1. Si m =7 et n =4, alors les 3 derniéres lignes de X sont nulles :

op. 0 0 0
0 g2 0 0
0 0 o3 O
=0 0 0 o4
0 0 0 0
0 0 0 0
0 0 0 0

Notons PBean et BL,, les bases canoniques de R* et R” :

PBean = {€1,€2,€3,€4},

! _ / / / / / / /
PBean = €], €5, €3, €, 85,8;,e7} .
Lapplication x — Zx représente des “stretches” pour les 4 vecteurs de %Bcan,

Te;=01€], Zey=02€,, Ze;=o03€e;, Iey=04€).
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Exemple 14.2. Si m =3, n =5, alors les 2 derniéres colonnes de Z sont nulles :

(o8] 0 0 0 0
2=10 o0, 0 0 O
0 0 o3 0 0

Notons %Bean et BL,, les bases canoniques de R° et R3 :

%can = {91;92»93,94,95} ’

[ A A
‘%can - {el’eZ’eB} .

On a des “stretches” pour les 3 premiers vecteurs de Bcan,
Te;=01€], Zey=07e,, Xe;=03e€},
mais les deux derniers sont tous envoyés sur le vecteur nul :
2e;=2e5=0.

<

Remarque 14.3. Les relations ci-dessus, “Xe; = o je’j ”, rappellent celles du type “Av = Av”. La grande diffé-
rence ici est que e; et e’j vivent dans des espaces différents! o

Pour comprendre les relations entre les ug, les v; et la matrice X (toujours en supposant que la décomposi-
tion A= UZV' est déja connue), on multiplie A par sa transposée pour obtenir une matrice de taille 7 x n
donnée par

ATa=wzvhlwzvh

=vzTyTuzv?

=veiyve.
On a, dans le terme de droite, trois matrices de taille n x n. Puisque >T3 est diagonale, et puisque VT est
l'inverse de V (car cette derniere est orthogonale), on voit que ce produit de trois matrices carrées repré-
sente une diagonalisation de la matrice symétrique AT A. En particulier, les colonnes de V sont des vecteurs
propres orthonormés de A” A, associés a des valeurs propres qui sont les éléments diagonauxde 7%, 4 sa-
voir 0% :

T = g2v: -
(A A)vj—ajv], Vji=1,...,n.

De méme pour AAT : ¢’est une matrice de taille m x m, et
AAT=uEzhut,

qui implique que les colonnes de U sont des vecteurs propres orthonormés de AA”, associés a des valeurs
propres qui sont les éléments diagonaux de X7 :

AATukzaiuk, Vk=1,...,m.

Remarquons encore que dans les deux cas, les matrices diagonales 27X et 2= ont des coefficients diago-

naux donnés par les carrés crf.

Cette discussion montre que si une décomposition en valeurs singulieres existe, alors les matrices U et V se
calculent en diagonalisant AAT et AT A. (On verra comment simplifier un peu ce procédé par la suite.)

Ce qui n'est pas du tout démontré par 'argument ci-dessus, c’est si la décomposition existe effectivement;
nous le démontrerons dans la section suivante.
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14.1.3 Matrices définies par blocs

Dans ce chapitre, nous définirons et manipulerons des matrices définies par blocs, ce qui signifie définies
comme composées de sous-matrices. On utilisera I'indice “[]” pour indiquer qu'une matrice est définie par
blocs.

Exemple 14.4. Avec

=la e el )

on peut définir
a b c¢c 1 2
R

Les blocs qui composent une matrice par blocs doivent avoir des dimensions compatibles.

Plus généralement, sil’on posséde quatre matrices,
Adetaille mx k, BdetaillemxlI, Cdetaillehxk, Ddetaillehx]I,

on peut définir

e lamatricedetaille mx (k+1):

[ A B ]D,
¢ la matrice de taille (m+ h) x k :
[ A
Clg
e la matrice de taille (m+ h) x (k+1) :
[ A B
C D |,

14.1.4 Le polynéme caractéristique de AB et BA™

Théoreme 14.5. Soient A € M, (R) et B € My« (R), avec m < n. Alors, les polynémes caractéris-
tiques de AB et de B A satisfont
Ppa(M) =A"""P4p(A).

Preuve: On commence avec la preuve pour le cas m = n. Soit r = rang(A). Alors, il existe des matrices inversibles
B QeM,«,([R) telles que
I
A=p| 1 0 Q,
0 0 |4
ol 0 indiquée ci-dessus désigne la matrice nulle dans M (,—r) (R), M-y xr (R) ou M- r)x(n—r) (R), selon la position
dans la matrice définie par blocs. On écrit aussi

-1| Bi1 Bip ] -1
B=Q'| M1 | P,
Q [ By1 B2 |

ou By 1 € My« (R), B12 € Mrx(n—r)[R), B2,1 € Mn—ryxr(R) et Ba1 € M(5—r)x (n—r) (R). Alors,

B11 B Bi1 Bip

o 0o |7 =] K
AB=P pl=p P,
0 0 ]DQQ B Ba2 | 0o o |,
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ce qui nous dit que P4p(A) = (—xl)"‘rPBL1 (1), vu que

_ _ Bi1 Bip2 g [ AL 0 4
det(AB Mn)—det(P[ o 0 ]DP p[ o AL Dp

—det[p Bi1—Al,  Bip p-1
0 AL g

_ Bii—-AlL,  Bip

—det( 0 AL, ]D)

= (_A)n—r det(BLl —-Al)
= (=) Pp,, ),

et

B B I, 0 Bi1 O
—_ -1 1,1 1,2 -1 r _ -1 1,1
BA=Q [ Bs1 Bop ]DP P[ 0 0 ]DQ‘Q [ By O ]DQ’

ce qui nous dit que P4p(A) = (—A)"’rPBL1 (1), vu que

BMO] __I[Alr 0 ] )
By1 0 DQ Q 0 AL, DQ

_ ~1| Bii—AlL 0
_det(Q [ B “AL,, ]DQ)

:det([ Bii-AL 0 )
O

det(BA-Al,) = det (Q‘l

BZ,I _AIn—r
= ()" det(B,1 - AL,)
=(=A)""Pg,, ().

En conséquence, P4p(A) = (=1)""" Pp, , (1) = Pg4(A), comme on voulait démontrer.

On va démontrer le cas général. Soit A € M, ,,(R) la matrice obtenue de B en ajoutant n — m lignes nulles en bas de
A et soit B € M« (R) la matrice obtenue de B en ajoutant m — n colonnes nulles a droite de B. En outre, on voit bien
que BA=BAeM;xx(R) et

eEMpxn(R).
O

En conséquence,

AB - A1, 0

PAE(A)Zdet( 0 AL,

] ) = (-AN)"""det(AB - A1) = (1) Pap(A).
0O

Alors,

Ppa(A)=P3;(A)=Pj3(0) = (=)™ "Pap(A),
comme on voulait démontrer. O
14.2 Existence

Dans cette section, on montre que toute matrice possede une décomposition en valeurs singulieres :
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Théoréme 14.6 (Existence d'une décomposition en valeurs singulieres). Toute matrice A de taille
m x n peut s'écrire comme un produit,
A=UzvT,

ou

1) U est une matrice orthogonale de taille m x m, i.e. UTU = UUT =1,,; ses colonnes sont appelées
vecteurs singuliers a gauche de A;

2) Z est une matrice non négative diagonale de taille m x n, i.e. Z; j > 0 pour tous i,j et Z; j =
0 sii # j, les coefficients situés sur sa diagonale sont non négatifs, et sont appelés les valeurs
singulieres de A;

3) V est une matrice orthogonale de taille n x n, i.e. V'V = VVT =1, ses colonnes sont appelées
vecteurs singuliers a droite de A.

14.2.1 Les matrices AT Aet AAT

Notre point de départ :

Lemme 14.7. Pour une matrice A de taille m x n quelconque,
(i) AT A estune matrice symétrique de taille nx n et AAT est une matrice symétrique de taille mxm;
(ii) Ker(AT A) = Ker(A) etKer(AAT) = Ker(AT);
(iii) rang(AT A) = rang(A) = rang(A”) = rang(AAT).

Preuve:
(i) Parles propriétés de la transposée,
ATAHT = AT (AT = AT 4,
(AANYT = (AT AT = aAT.
(ii) Enremplacant A par AT et en utilisant I'identité (AT)T = A, on note qu’il suffit de démontrer la premiére iden-
tité Ker(A” A) = Ker(A). Or, on voit bien aussi que Ker(A” A) 2 Ker(A), vu que Av = 0, i.e. v € Ker(A), implique

AT Av=AT0=0, i.e. ve Ker(AT A). Pour montrer l'inclusion Ker(A” A) < Ker(A), on note que, si v € Ker(AT A),
ie. AT Av=0, alors

| Av|> = vT AT Av

ce qui implique que Av=0, i.e. ve Ker(A).
(iii) Litem précédent et le Théoreme du Rang nous disent que

rang(A” A) = n— dim (Ker(A” A)) = n— dim (Ker(A)) = rang(A),
rang(AAT) = m — dim (Ker(AA”)) = n — dim (Ker(AT)) = rang(A7),

tandis que 1'égalité rang(A) = rang(AT) a été démontrée dans le dernier théoréeme de la Section 7.7.

O
-1 2
Exemple 14.8.Si A=| 2 0|, alors
3 5
-1 2
-1 2 3 14 13
2 0 5 13 29
3 5
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et
-1 2 5 -2 7
-1 2 3
AAT =12 o (2 0 5): -2 4 6
3 5 7 6 34

S
Etant symétriques, le Théoréme Spectral dans la Section 13.4 garantit que AT A et AAT sont diagonali-

sables :

« il existe une matrice orthogonale V de taille n x n et une matrice diagonale D de taille n x n telle que
ATa=vDvT;

« il existe une matrice orthogonale U de taille m x m et une matrice diagonale D' de taille m x m telle
que
AAT=UD'UT.

On sait que les éléments diagonaux de D (resp., D) sont les valeurs propres de AT A (resp., AAT), avec
éventuellement des répétitions selon les dimensions des espaces propres associés. Or ces valeurs propres
ont des propriétés particulieres :

Lemme 14.9. Pour toute matrice A,

1) un scalaire A # 0 est valeur propre de AT A si et seulement s'il est également valeur propre de
AAT, et, de facon plus générale, la multiplicité algébrique de la valeur propre A # 0 de AT A est
égale a la multiplicité algébrique de la valeur propre A # 0 de AAT ;

2) si A est valeur propre de AT A oude AAT, alors A > 0.

Preuve: 1) 1l s’agit d'une conséquence directe du dernier théoréeme de la Section 14.1.

2) Maintenant avec une valeur propre A de AT A, et un vecteur propre v #0, AT Av=2Av, on peut écrire

AV = Awv-v)
=v-(lv)
=v-(AT Av)
= (AV)- (AV)
= Av|* >0.

Comme |[v]| >0, on en déduit que A > 0. O

Remarque 14.10. On peut donner une preuve directe de la premiere partie du premier item du lemme pré-
cédent. Pour le faire, supposons que A # 0 est valeur propre de A” A. Alors il existe v € R”, non-nul, tel que

(AT Ajv = Av.

Remarquons que Av # 0 puisque AT Av # 0.

Ensuite, en multipliant les deux cotés de I'identité de dessus par A, on obtient
AAT (Av) = A(AV),

qui signifie que A est aussi valeur propre de AA”, associée au vecteur propre Av € R™ (qui est non-nul
comme on a dit). Le méme argument montre que toute valeur propre non-nulle de AA” est également
valeur propre de AT A. 3
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Les résultats ci-dessus impliquent :

Corollaire 14.11. Pour toute matrice A de taille m x n, il existe au plus min{m, n} valeurs propres
non-nulles communes de AT A et AAT .

Preuve: On sait que AT A est une matrice de taille n x n et posséde donc au maximum 7 valeurs propres non-nulles,
et AAT est une matrice de taille m x m et possede donc au maximum m valeurs propres non-nulles. Comme ces
matrices ont les mémes valeurs propres non-nulles, le nombre de ces valeurs propres non-nulles est plus petit que n
et que m. O

14.2.2 Preuve du théoréeme :
Considérons la diagonalisation de AT A':
ATa=vpvT,
En multipliant & gauche par V' puis a droite par V,
viaTav=Db.
Lidentité précédente nous dit que rang(A” A) = rang(D). En plus, par le lemme ci-dessus, toutes les valeurs
propres de AT A surla diagonale de D, sont non négatives.

Sans perte de généralité, on peut supposer que la valeur propre nulle (éventuellement répétée) apparait en
bas de la diagonale :
D= diag(/h,/lg,...,)Lg,O,...,O),

avec 1 > ... 2 1y > 0. Comme rang(D) = ¢, on conclut que ¢ = rang(ATA) =rang(A). Distinguons ensuite
la sous-matrice diagonale de D qui contient les valeurs propres strictement positives, en écrivant :

D, 0

D=
0 0

d
ou D, =diag(1y,...,1¢) est une matrice de taille ¢ x ¢, et les “0” sont des matrices nulles.
ATordre fixé par les valeurs propres dans D correspond un ordre des colonnes dans la matrice de change-

ment de base V :
v=[Wn V2],

o V] est une matrice de taille n x ¢ dont les colonnes forment une famille libre de vecteurs propres
associés aux valeurs propres non-nulles Ay, ..., Ay.

o V5 est une matrice de taille n x (n —¢) dont les colonnes forment une famille libre de vecteurs propres
associés a la valeur propre 1 = 0.

Lorthonormalité des colonnes de V implique que
Vivi=l,, Vi Va=l,y,
mais la relation VVT =1, implique aussi que

VT
n=VVi=[ Ve g e | =i ey
2

d

O
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Utilisons ces matrices V; et V» pour récrire la diagonalisation AT A= VDV, qui est équivalentea V' (AT A)V =
D. Comme

VT
T, 2T T
viatav=| b | ATA[v W |,
2 O
VIT T T
=| r [ ATAn, AT AV, |
2 O
[ viiaTany, vIAT Ay,
Tl vfATAan VAT AV, o

et comme cette matrice est égale a
D, 0

D:[o 0

0
ceci implique que l'identité
v AT AV, = D,

de matrices de taille ¢ x ¢ et I'identité
viATAV, =0

de matrices de taille (n — ¢) x (n — ¢). De cette derniere, on tire que (AV>) T(AVg) =0, qui implique que
AV, =0.

(En effet, on sait que pour toute matrice M, M M contient tous les produits scalaires possibles entre les co-
lonnes de M, en particulier, sur sa diagonale, les carrés des normes des colonnes. Si M M = 0, cela implique
que la norme de chaque colonne de M est nulle, et donc que M est la matrice nulle. )

Définissons maintenant la matrice de taille m x ¢ :

U, := AV,D;'?,

D;Y? .= diag(1/\/A1,...,1/1\/Ap)

est bien définie puisque A > 0 pour tout k=1,...,4, et n'est rien d’autre que 'inverse de

DY?:=diag(v/A1,..., vV A0).

On remarque maintenant que les colonnes de U; forment une famille orthonormale, puisque
ulu, = v DY) T Avy D2
- p-12p, p-172
=1,.

Montrons que Uy, D, et V] fournissent déja une premiére factorisation de A:

Y4 n
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En effet,

I
4
= AV
= A, -V2 V)
=A— (A V!
——
=0
= A.

Cette premiere factorisation constitue la base de I'argument; il reste maintenant a modifier le produit ma-
triciel U1 DY/2V/T, en augmentant les tailles des matrices, de fagon a ce qu'il devienne UXVT.

On rajoute d’abord a V; le bloc V., ce qui donne

T
Vl

VZ

O

Passons a U. Si ¢ = m, alors on peut prendre U = U;. Mais, si £ < m, U; nest pas carrées : ses colonnes
forment une base orthonormée de Col(U;) € R™, mais pas de R™, on peut donc compléter cette base en une
base de R™, et méme, via un procédé de Gram-Schmidt si nécessaire, la compléter en une base orthonormée
de R". Les m — ¢ vecteurs rajoutés peuvent étre rangés dans une matrice U, de taille m x (m — £) qui permet
de définir la matrice de taille m x m orthogonale

U:=[ U1 Uz ]E\'

Finalement, la matrice X de taille m x n est construite a partir de la matrice D!/2 de taille ¢ x #) en rajoutant
des blocs nuls, si nécessaire (rappelons que ¢ < min{m, n}) :

D’lk/Z

Z::[ 0 0

O

e 0 estune matrice de taille [ x (n—¢),
¢ 0 estune matrice de taille (m —¢) x ¢,
¢ 0 est une matrice de taille (m—2¢) x (n—2¥¢).
Remarquons que ceci peut a priori faire apparaitre des valeurs singuliéres nulles sur la diagonale de X.

Montrons que I'on a ce qu’on voulait :

4 m-—¢ 0 n-¢ n
n
¢ DI/Z
¢ v
m U, U, = m A
m-0 0 0 n-t V]
U ) vT
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En effet,
D1/2 VT
usvli=[ Uy U ] - !
O T
0 0],V Iy
Dl/2vT
_ * V]
_[ U U, ]EI 0 .
=U, DYV
=A.

Ceci termine la preuve de I'existence d’'une décomposition en valeurs singuliéres.
Quelques remarques au vu de la preuve que 'on vient de donner :

o Lesvaleurs singuliéres non-nulles de A sont les racines carrées des valeurs propresde A” A (et AAT):

O-j:\/;j-

Les valeurs singuliéres nulles sont possibles (elles apparaissent au moment oi1 on compléte D!/2 avec
des blocs de zéros), et sont liées au fait que AT A ou AAT peuvent posséder A = 0 comme valeur
propre.

e On I'a dit, les colonnes de V forment une base orthonormée de R”, formée de vecteurs propres de
AT A, et les colonnes de U forment une base orthonormale de R”, formée de vecteurs propres de
AAT.

o La définition du bloc U = [u; --- u,] peut aussi s’exprimer comme suit :

U, = AV, D;/?
= [Av; - Av)D;'?

=L Av1---—1 Avy|.
Ae

e Ve

On a donc toujours un moyen direct de calculer les ¢ premiéeres colonnes de Uj :

llj' ‘AV]', j=1,2,...,(,

.
VA

ouv; estla j-eme colonne de V;, correspondant au vecteur propre orthonormé de AT A, associé ala
Jj-éme valeur propre A; > 0.

o La décomposition en valeurs singuliéres existe toujours, mais n’est pas unique. En effet, le choix des
vecteurs propres, dans la construction de V, peut toujours se faire de multiples facons, menant a
autant de décompositions en valeurs singulieres différentes.

Une conséquence de la preuve précédente est le résultat suivant :
Proposition 14.12. Le rang de la matrice A est égal au nombre ¢ de valeurs singuliéres non-nulles

(chacune comptée autant de fois que sa multiplicité).

14.3 Exemples

La preuve de la section précédente a montré clairement quelles sont les étapes menant a une décomposition
singuliere d'une matrice A:
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Méthode pour calculer la décomposition en valeurs singuliéres UZV’ d’une matrice A € M, ,(R)

(SVD.1) Calculer les valeurs propres 1; > ... > 1, > 0de ATAeM nxn(R) (chacune est répétée autant
de fois que sa multiplicité algébrique), en distinguant ses valeurs propres positives 1; > ... >
A¢ >0, o1 £ = rang(A) = rang(A” A). Les valeurs singulieres de A sont

o=yfA;, =120,

La matrice X € M« ,(R) s’obtient alors

o1 0co 0

0 .- Oy
0 0 0
(SVD.2) Une base orthonormée {vy,...,v,} de vecteurs propres de A’ A, oi1 v; est le vecteur propre de
valeur propre 1;, donnent la matrice

V: [Vl ~--Vn] EMnxn(R)r

les n— ¢ derniéres colonnes étant associées a la valeur propre nulle (si besoin est).

(SVD.3) On définit d’abord
ujzz%Avj, j=12,...,¢.

Vi
Si ¢ = m, on pose
U:=[u; - uy] eMyxm(R).
Si ¢ < m, on utilise une entre les deux méthodes ci-dessous :

(SVD.3.i) on compleéte {uj,...,us} en une base {uy,...,uy,wWyyq,...,Wy,} de R™, et on applique le
procédé d’orthonormalisation de Gram-Schmidt pour obtenir une base orthonormée
fu,...,up,upsq,..., Uyt de R™;

(SVD.3.ii) on calcule une base {wy,,...,Wy;} du noyau de la matrice AT e My xm (R) (ou AAT €

Mnxm (R)), et on applique le procédé d’orthonormalisation de Gram-Schmidt pour obte-
nir une base orthonormeée {uy,1,...,u,} de Ker(AT) = Ker(AAT) cR™.

On pose finalement
Ui=[u---upupsy -yl €Mym®).

Remarque 14.13. Le calcul des premiers u; peut également se faire comme suit :

u Avi,  j=12,..,0.

e 1
J T Al
En effet, par un calcul que I'on a déja fait,

1AV (12 = (Av)) - (Av)) =v; - (AT Av)) = vj- (A;v)) = AjlIvj 112 = A5,

etdonc [|Av;|l =4/A;.

Informel 14.14. Remarquons que le travail nécessaire pour diagonaliser AT A et AAT peut étre tres
différent, étant donné que ces matrices sont a priori de tailles différentes!
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Exemple 14.15. Calculons la décomposition en valeurs singulieres de

A=

3 1
2v2 242
3[ 13

10v2  10v2

Comme A est una matrice de taille 2 x 2, sa décomposition A= UXV7 sera un produit de trois matrices de
taille 2 x 2.

On commence par calculer V, qui on le rappelle est formée de vecteurs propres de AT A. Or

1 (153 96
ATaA=— )
100 ( 96 97)

et on sait (voir exercices) que cette derniere possede deux valeurs propres, 11 = 9/4, 1, = 1/4, et que les

espaces propres associés sont
4 -3
E9/4:Vect{(3)}, E1/4=Vect{(4)},

qui donne, aprés normalisation,

4/5 -3/5
E9/4_Vect{(3/5)}, E1/4—Vect{(4/5)}.

4/5 -3/5
V= (3/5 4/5 ) ’

On peut donc prendre

qui correspond a une rotation d’angle 0 = arccos(4/5). Ainsi, yvIr=y-l correspond a une rotation de —6.

Etant connues les valeurs propres de A’ A, les valeurs singuliéres de A sont données par

3 1
012\//11:5, o2= /12=§,

ce qui donne

3/12 0
z_( 0 1/2)'

Ensuite, U a pour colonnes des vecteurs propres de AAT, or

5/4 1
T _
AA _( 1 5/4)’

qui posséde comme valeurs propres A; = 9/4 et 1, = 1/4 (comme on sait, les mémes que A’ A!). Ses espaces
propres correspondants sont donnés par

s} s

ou encore, aprés normalisation :

E9/4:Vect{(1;g)}, E1/4:Vect{(_11//\>/§§)},

|
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qui n’est autre qu'une rotation de ¢ = 7.
Remarquons qu’on aurait aussi pu trouver les colonnes de U en faisant
3 1
1 1 |55 202 |[4/5 1/V2
u; = —AV1 = — B[ 13 = ,
01 3/2 m m 3/5 1/\/5
pareil pour uy.

On a donc la décomposition en valeurs singulieres de A, qui permet de voir la transformation

3/2 0)\(4/5 3/5
X~ Ax= ( 0 1/2) (—3/5 4/5)"'
R Zl‘/rTx |
UZT/TX

comme une composition
1) d’une rotation d’angle —0 =~ —36.9, suivie
2) d’un étirement le long des axes de coordonnées (3/2 selon e;, 1/2 selon ey), suivi

3) d'une d’angle ¢ = +45°.

Ax Vig Wi Usvlig

A
(g

<

Remarque 14.16. Wolfram Alpha peut donner une décomposition en valeurs singulieres de n'importe quelle
matrice. Par exemple, pour obtenir la décomposition de

30
M‘(4 5)’

il suffit d’entrer
singular value decomposition [[3,0],[4,5]]

276 NumChap: chap-decomp-val-singulieres, Derniére compilation: 2025-01-13 12:27:17Z. (Version Web: botafogo.saitis.net)


https://www.wolframalpha.com/
botafogo.saitis.net

14.3. Exemples

% Wolfram

singular value decomposition [[3,0],[4,5]] =] ‘

|
X

=] Jfe MATH INPUT B EXTEN

0
singular value decomposition (4 5]

Approximate forms

M=UzV'
u-(2)
“l4 s
1 _ 3
vio Y1
L:[L _1]
Vio V1o
Z_[ax/? o]
0 Vs
11
vz vz
V=l fl]
VZoWzZ

Exemple 14.17. Calculons la décomposition en valeurs singulieres de
1 1
A=|1 1
00
On commence par

2 2
ATA= :
2
qui posséde deux valeurs propres, A1 =4 et A, = 0. Ainsi, A posséde une seule valeur singuliere non-nulle :
o1 =+/A1 =2.0On trouve un vecteur propre unitaire pour chaque valeur propre, par exemple :

w=liva) w=(1vs)

qui donne déja
v (V2 -1v2
vz uvz)

Pour calculer U, on peut soit passer par 'étude de AAT, ou alors commencer par obtenir une de ses co-
lonnes en prenant

1/V2

11
1 1/V2

u = Avi=—11 1 (1/%): 1/vV2].
VA 2\0 o 0

On doit maintenant trouver deux colonnes u, et usz, de facon a ce que U = [u; up us] soit orthogonale. On
peut par exemple prendre

1/v?2 0
u = —1/\/2 , Uug = 0
0 1

277
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Il reste a produire X. Puisque A n’a qu'une seule valeur singuliere non-nulle, et que X doit étre de taille 3 x 2,
on rajoute des blocs appropriés :

2

0 0

On a donc une décomposition en valeurs singulieres pour A :

11
A=[1 1
0 0
1/vV2 1/V2 2
—1;£ —1//{/_28 0 0(1/\/2 _I/ﬁ)T
0 0 1001/\@1/\/5

Exemple 14.18. Etudions la décomposition en valeurs singuliéres de

3 11
A_(—l 3 1)’

pour laquelle on aura une matrice U de taille 2 x 2, une matrice X de taille 2 x 3 et une matrice V de taille
3 x 3. Commencons par

10 0 2
ATa=[0 10 4],
2 4 2

qui a pour polyndéme caractéristique
Pyrp(A) ==A(A-10)(A -12).

On a donc les valeurs propres, en ordre décroissant, 1; =12, A, = 10, A3 = 0. On a donc deux valeurs singu-
lieres strictement positives, 0; = V12 = 2v/3, 02 = V10.
Les espaces propres sont :
1
Erp =Ker(ATA—1213) = Vect{ | 2| },
1

-2
Ejp=Ker(ATA-10I3) =Vect{ | 1 |},

-1
Ey =Ker(AT A) = Ker(A) = Vect{ | -2
5

On peut donc normaliser et obtenir

1/vV6 =2/v5 -1//30
V=[vivovsl=|2/vV6 1/vV/5 —2/V/30].
1/vV6 0 5/v/30

La matrice U = [u; uy] s’obtient par

1 1 (3 11 L/v/8 1/V2
w=—An="ml g 2/‘/_:1/\/2’
g1 2\/§ l/\/é
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U S (3 1 1) _12//\/‘/55 _(—1/\/2)
S T A S B o | \uve)

Finalement, les deux valeurs singuliéres positives permettent d’écrire

s_[2v3 0
Lo V1o o)’
On a donc une décomposition en valeurs singuliéres pour A:
3 11
A= (—1 3 1)

1/V6 —2/v5 —1/v30\"

1/vV2 -1/vV2\(2v/3 0
‘(WE 1/@)(0 VIO )ffﬁ ”f ;2,/\}/3%_0

14.4 Représentation d’'une matrice suite sa décomposition en valeurs singu-
lieres™
14.4.1 Lerésultat principal

Soit A une matrice de taille m x n dont une décomposition en valeurs singulieres est donnée :
A=UzvT,

Comme nous avons fait avec la décomposition spectrale, nous allons profiter de la décomposition en va-
leurs singuliéres pour écrire A comme une combinaison linéaire de matrices plus simples.

On rappelle que 'on impose dans une décomposition en valeurs singulieres que les valeurs apparaissent
sur la diagonale de X en ordre décroissant :

012022...2 Omin(m,n) -
En nommant les colonnes de U etde V :
U=|uupl, V=[vivp].
Définissons alors I'indice de la plus petite valeur singuliére strictement positive,
¢ :=max{l < k<min(m,n): o >0}.

et procédons comme on I'a fait pour la décomposition spectrale en écrivant, pour tout x € R”,

V{X
Ax=UzVTx=[u;- uy]Z| :
vix
V{X
:[Ulul...(;[ugo...o]
vix

¢
=Y orupvix

k=1
4
= (Z Ukukvlf)x.
k=1
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On a donc pu écrire A comme une somme :

4
A= Z akukv,f,
k=1

On retrouve bien, pour tout j,

4
— T .
Avj= Z O ULV V|

Remarquons qu’a l'inverse de la décomposition spectrale, une matrice ukvlf ne représente pas une pro-
jection puisqu’elle transforme un vecteur de R” en un vecteur de R"”. Son seul point commun avec une
projection est que

rang(ukvlz) =1.

La décomposition en valeurs singuliéres fournit donc une représentation d’'une matrice comme une somme
de matrices de rang égal a 1.

14.4.2 Approximation optimale par une matrice de rang fixé
Définissons, pour tout k < ¢,
k
o T
A(k) := Z oju;v; .
j=1
Alors A(k) estla matrice de rang k qui approxime le mieux A, dans le sens suivant :

Théoréme 14.19 (Théoreme d’Eckart-Young). Soit A une matrice de taille m x n de rang ¢ < n. Pour
toutl < k < ¥, A(k) est la matrice de rang k qui approxime le mieux A :

min|[A- Bl = | A- AR,
ot le minimum est pris sur toutes les matrices m x n de rang au plus égal a k.
Preuve: D'une part, comme A(k) est de rang k, on a bien
InBin IA-B| < |A-AWK)].

Remarquons ensuite que
[A-AW)| =0k

Il reste a vérifier que sirang(B) < k, alors ||A— Bl > 0.1. En effet, par le théoréme du rang, on sait que le noyau de B
a dimension au moins n — k. Les vecteurs v; a vy, engendrent un sous-espace de dimension k + 1, donc ces espaces
doivent s’'intersecter. On prend un x qui est dans les deux a la fois, et on calcule

k+1
=Bl =14x1° = 3. fo > (Lo, =, Il
J= J
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14.5 Flongations et ellipsoides*

Dans cette section nous utiliserons la décomposition en valeurs singuliéres pour répondre a deux questions
géométrique naturelles & propos d'une application linéaire T : R” — R™ définie par une matrice A, T'(x) =
Ax:

1) Comment se transforme la sphére unité, définie par

F=xeR": x| =1}

=xeR": x{+--+ x5 =1},

sous I'actionde T'? (En d =2, & est le cercle de rayon 1 centré a l'origine.)

2) Parmiles vecteurs x situés sur cette sphere, quels sont ceux qui subissent une élongation maximale/minimale,
a savoir ceux pour lesquels || Ax|| est maximal/minimal?

Ces deux questions pourront étre étudiées simultanément.

Exemple 14.20. Sur 'animation suivante, on observe que I'application linéaire T : R> — R? donnée trans-
forme le cercle . en ellipse. Les axes de cette ellipse doivent donner les directions d’élongation maximale
(grand axe) et minimale (petit axe) :

cercle unité

trace

<

Soit A = UZVT une décomposition en valeurs singulieres de A, dans laquelle on suppose, comme précé-
demment, que les valeurs sur la diagonale de X sont arrangées en ordre décroissant :

012022...2 Omin(m,n) -
On rappelle qu'avec cet ordre, 0; = /A, o1 A; > 0 estla j-eme plus grande valeur propre de AT A,
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Proposition 14.21. L'élongation maximale d’'un vecteur sur la sphére unité est donnée par

max || Ax|| = maxo; =0;.
xeS k

Lélongation minimale d’'un vecteur sur la sphere unité est donnée par 0 siKer(A) # {0}, et sinon par
min | AX|| = minoy.
xeS k

De plus,

o le maximum est réalisé lorsquex est un vecteur propre unitaire de AT A associé a la plus grande
valeur propre de AT A (en loccurence 1).

e le minimum est réalisé lorsque X est un vecteur propre unitaire de AT A associé a la plus petite
valeur propre de AT A.

Nous utiliserons I'entier ¢ = rang(A), qui implique que oy >0etoy.; =05si ¢ <min(m, n).
Preuve: Par I'orthogonalité de U (qui implique || Uz|| = ||z|| pour tout z € R™), on peut écrire

IAx|| = [UZV x| = 1=V x|  vxeR".
On adonc
max | Ax|| = max |2V x|
xXeS xeS

=max|| X
may I1Zyll

2.2 2.2
=max\/o?y? +---+02%)>.
e, 41 Yo

Dans la deuxieme égalité, on a effectué le changement de variable y:= V 'x (I'orthogonalité de V' implique que cette
transformation est bijective, et que la condition ||x|| = 1 est préservée puisque || vIx| = xI).
Ensuite, remarquons que siy € .#, alors

2.2 2.2 2 2 2.2
OVt + Oy SOV 0 +01Yy
_ 2.2 2
=011+t
21112
<oyl

_ 2
=o7.

Ensuite, soit z € R" le vecteur qui a toutes ses composantes nulles sauf la premiere, qui vaut 1. Alors z€ .#, et donc
2.2 2.2 2,2 2 2
néaygi(olyl +et 0,y 2 (0127 + -+ 0,2))
y
21112
=o7lzl
2

=o07.
Ceci montre que maxxe & || AX|| = 0. Ensuite, on a déja fait plusieurs fois ce calcul : si v; est le vecteur propre unitaire
de AT A associé a 1, alors
I Avy I = (Avy) - (Avy)

=v;-(AT Avy)

=vy-(A1vy)

=Ml 1?

=,

ce qui montre que
néay;cllAXII =01 =V A1 =Av]l.
X
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Pour I'élongation minimale, le cas ou Ker(A) # {0} est immédiat puisque dans ce cas il existe x. € . tel que Ax. = 0.
Dans le cas contraire, on commence de la méme facon, en utilisant la décomposition en valeurs singuliéres pour écrire

IIlil’l||AX||=II1iIl\/O'2 24...40%2y2 =0, =mino,.
Xe.& xe.S# 1}’1 [y[ ¢ k k

Exemple 14.22. On a déja rencontré la matrice

A=

3 1
2v2 242
3,
10v2  10v2

qui possede comme valeurs singuliéres o] = % etoy = % Par le théoreme ci-dessus, les vecteur du cercle
unité qui subissent I’élongation maximale (d’amplitude Z—’) sous 'action de A sont

+vy =+ 4/5
=T =135/
dont I'image est
3(1/v2
+Av; =+ =4+ ,
=A==t _2(1/\/5)

et les vecteur du cercle unité qui subissent I'élongation minimale (d’amplitude %) sous I'action de A sont

v = 4 -3/5
=2 ais )
dont I'image est
1(-1/V2
tAvy, =+ =+— ,
w=some =23,

cercle unité

trace

v1

v
grands axes
petits axes
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14.6 Résumé du chapitre sur la décomposition en valeurs singuliéres

DECOMPOSITION EN VALEURS SINGULIERES D’UNE MATRICE A € M, ,(R) :

T
A= z [Vy -~ vyl
~——
EMuxn®) .y Tenm, ®R)

T

orthogonale : non négative diagonale : orthogonale :
vtu=uu' =1, 2 j=0sii#] viv=vvT=i,
et Zi,]' =0

VALEURS ET VECTEURS SINGULIERS DE MATRICE A € M, ,(R) :

o VECTEURS SINGULIERS A GAUCHE DE A:uy,---,uy,
o VALEURS SINGULIERSDE A: %y, >--- > %), , >0, p:=min(m, n)
o VECTEURS SINGULIERS ADROITEDE A:vy,---,v,
DECOMPOSITION EN VALEURS SINGULIERES D’UNE MATRICE A € M, ,(R) ET RANG :

rang(A) =#{j:Z;,; >0} |(VOIR PROPOSITION 14.12)

CALCUL DE DECOMPOSITION EN VALEURS SINGULIERES D’UNE MATRICE A € M, (R) :

(1) DIAGONALISER A” A € My, (R) —— VALEURS PROPRES 1; >---> A7 >0,Ag; == 1, =0

—— | ZeMpn® 211 =V A1, , 200 =/ Ag, DPAUTRES Zi,j =0

A >0 VALEUR PROPRE DE A’ A & 1 >0 VALEUR PROPRE DE AA”

FAIT IMPORTANT : N 2 2
0 ET ELLES ONT LA MEME MULTIPLICITE ALGEBRIQUE

(VOIR LEMME 14.9)
—— BON DE VECTEURS PROPRES {vy,---,v,}

[ Vi=vi - val |

[ FAIT IMPORTANT : 3, | = || Avil,..., 2/ = | Avg|| ]

el Ay oy = LAy, G
(2) up:= \/A_IAVI, Sy \/A_[Aw COMPLETER EN BON VIA GS fug, -+, up,upyy, - U}
ou

— BASE DE Ker(A”) PUIS BON DE Ker(A”) VIAGS : {uy.1,- -+, U}

_,[ U:=[u; - u,,l ]
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